MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells

Hilah Gal1,4,6,*, Gopal Pandi3,1, Andrew A. Kanner2, Zvi Ram3, Gila Lithwick-Yanai5, Ninette Amariglio2, Gideon Rechavi1 and David Givol4,6,7

1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel 2Department of Neurosurgery, Tel-Aviv Souraski Medical Center, Tel Aviv, Israel 3Department of Neurosurgery, Tel Aviv Souraski Medical Center, Tel Aviv, Israel 4Rosetta Genomics Ltd., Rehovot 76706, Israel 5Cancer Research Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 52621, Israel 6Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel


Abstract

We examined the microRNA profiles of Glioblastoma stem (CD133+) and non-stem (CD133−) cell populations and found up-regulation of several miRs in the CD133+ cells, including miR-451, miR-486, and miR-425, some of which may be involved in regulation of brain differentiation. Transfection of GBM cells with the above miRs inhibited neurosphere formation and transfection with the mature miR-451 dispersed neurospheres, and inhibited GBM cell growth. Furthermore, transfection of miR-451 combined with Imatinib mesylate treatment had a cooperative effect in dispersal of GBM neurospheres. In addition, we identified a target site for SMAD in the promoter region of miR-451 and showed that SMAD3 and 4 activate such a promoter-luciferase construct. Transfection of SMAD in GBM cells inhibited their growth, suggesting that SMAD may drive GBM stem cells to differentiate to CD133− cells through up-regulation of miR-451 and reduces their tumorigenicity. Identification of additional miRs and target genes that regulate GBM stem cells may provide new potential drugs for therapy.

Keywords: Stem cells; Neurospheres; MicroRNA; Combination therapy

Article Outline
Materials and methods

Results
- Isolation of CD133+ and CD133− fractions from primary GBM and miRNA expression profiling
- miR-451 and Imatinib mesylate cooperate in targeting GBM stem cells for neurosphere dispersion
- Regulation of miR-451 by SMAD

Discussion

Acknowledgements

Appendix A. Supplementary data

References

Note to users: The section "Articles in Press" contains peer reviewed accepted articles to be published in this journal. When the final article is assigned to an issue of the journal, the "Article in Press" version will be removed from this section and will appear in the associated published journal issue. The date it was first made available online will be carried over. Please be aware that although "Articles in Press" do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI as follows: Author(s), Article Title, Journal (Year), DOI. Please consult the journal's reference style for the exact appearance of these elements, abbreviation of journal names and the use of punctuation.

There are three types of "Articles in Press":
- Accepted manuscripts: these are articles that have been peer reviewed and accepted for publication by the Editorial Board. The articles have not yet been copy edited and/or formatted in the journal house style.
- Uncorrected proofs: these are copy edited and formatted articles that are not yet finalized and that will be corrected by the authors. Therefore the text could change before final publication.
- Corrected proofs: these are articles containing the authors' corrections and may, or may not yet have specific issue and page numbers assigned.