Phase I trial of VNP40101M (Cloretazine) in children with recurrent brain tumors: a pediatric brain tumor consortium study.


The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA. gurur002@mc.duke.edu

Abstract

PURPOSE: VNP40101M (Cloretazine), a novel DNA alkylating agent, was evaluated in a phase I study in children with recurrent brain tumors.

EXPERIMENTAL DESIGN: VNP40101M was given i.v. daily for 5 consecutive days every 6 weeks for up to eight cycles. Dose escalation was done independently in patients stratified based on intensity of prior therapy (moderately pretreated, stratum I; heavily pretreated, stratum II). Correlative studies included pharmacokinetics and measurement of O(6)-alkylguanine-DNA alkyl transferase levels in peripheral blood mononuclear cells before and after treatment.

RESULTS: Forty-one eligible patients (stratum I, 19; stratum II, 22) were enrolled on this study. The dose-limiting toxicity in 35 evaluable patients was myelosuppression, which occurred in 4 of 16 patients in stratum I and 3 of 19 patients in stratum II. Pharmacokinetic studies showed a median terminal half-life of 30 min (range, 14-39.5). The maximum tolerated dose in stratum I and II were 45 and 30 mg/m(2)/d daily for 5 days every 6 weeks, respectively. Peripheral blood mononuclear cells alkylguanine alkyl transferase levels did not decrease significantly after VNP40101M treatment. Central imaging review confirmed that three patients had stable disease for a median of 45 weeks (range, 37-61+) after therapy.

CONCLUSIONS: The recommended dose of VNP40101M for phase II studies in children with brain tumors is 45 mg/m(2)/d in moderately pretreated and 30 mg/m(2)/d in heavily pretreated patients when administered for 5 consecutive days every 6 weeks.