Evidence of galectin-1 involvement in glioma chemoresistance☆

Marie Le Merciera, 1, Florence Lefrancb, 2, Tatjana Mijatovicc, Olivier Debeird, 3, Benjamin Haibe-Kainsd, e, Gianluca Bontempi, Christine Decaesteckera, 3, Robert Kissa, 4, and Véronique Mathieua

aLaboratory of Toxicology, Institute of Pharmacy, Free University of Brussels (ULB), Brussels, Belgium
bDepartment of Neurosurgery, Erasmus University Hospital, ULB, Brussels, Belgium
cLaboratory of Image Synthesis and Analysis, Faculty of Applied Sciences, ULB, Brussels, Belgium
dMicroArray Unit, Jules Bordet Institute, Brussels, Belgium
eMachine Learning Group, Department of Computer Science, ULB, Brussels

Received 8 October 2007; revised 7 January 2008; accepted 12 January 2008. Available online 29 January 2008.
Abstract

Glioblastomas (GBMs) are resistant to apoptosis but less so to autophagy; a fact that may at least partly explain the therapeutic benefits of the pro-autophagic drug temozolomide in the treatment of GBM patients. Galectin-1 (Gal1) whose expression is stimulated by hypoxia is a potent modulator of GBM cell migration and a pro-angiogenic molecule. Hypoxia is also known to confer cancer cells with resistance to chemotherapy and radiotherapy and to modulate the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. The present study investigates whether decreasing Gal1 expression (by means of a siRNA approach) in human Hs683 GBM cells increases their sensitivity to pro-autophagic or pro-apoptotic drugs. The data reveal that temozolomide, the standard treatment for glioma patients, increases Gal1 expression in Hs683 cells both in vitro and in vivo. However, reducing Gal1 expression in these cells by siRNA increases the anti-tumor effects of various chemotherapeutic agents, in particular temozolomide both in vitro and in vivo. This decrease in Gal1 expression in Hs683 cells does not induce apoptotic or autophagic features, but is found to modulate p53 transcriptional activity and decrease p53-targeted gene expression including DDIT3/GADD153/CHOP, DUSP5 ATF3 and GADD45A. The decrease in Gal1 expression also impairs the expression levels of seven other genes implicated in chemoresistance: ORP150, HERP, GRP78/Bip, TRA1, BNIP3L, GADD45B and CYR61, some of which are located in the ER and whose expression is also known to be modified by hypoxia. This novel facet of Gal1 involvement in glioblastoma biology may be amenable to therapeutic manipulation.

Keywords: Galectin-1; Chemoresistance; Glioma

The present study was supported by grants awarded by the Fonds de la Recherche Scientifique Médicale (FRSM, Belgium) and by the Fonds Yvonne Boël (Brussels, Belgium).

Corresponding author. Laboratory of Toxicology, Institute of Pharmacy, Free University of Brussels, Campus de la Plaine CP205/1 – Boulevard du Triomphe, 1050 Brussels Belgium. Fax: +32 2 332 53 35.

1 Holders of a “Grant Télévie” from the Fonds National de la Recherche Scientifique (FNRS, Belgium).
2 Clinical Research Fellow.
3 Senior Research Associate of the FNRS.
4 Director of Research with the FNRS.

Note to users: The section "Articles in Press" contains peer reviewed accepted articles to be published in this journal. When the final article is assigned to an issue of the journal, the "Article in Press" version will be removed from this section and will appear in the associated published journal issue. The date it was first made available online will be carried over.