Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: A preliminary feasibility study

Nicholas F. Marko, Steven A. Toms, Gene H. Barnett and Robert Weil

Department of Neurosurgery, Cleveland Clinic, Cleveland, OH 44195, USA

Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA

Abstract

We used microarray analysis to investigate associations between genotypic expression profiles and survival phenotypes in patients with primary glioblastoma (GBM). Tumor samples from 7 long-term glioblastoma survivors (> 24 months) and 13 short-term survivors (< 9 months) were analyzed to detect differential patterns of gene expression between these groups and to identify genotypic subclasses of glioblastomas that correlate with survival phenotypes. Five unsupervised and three supervised clustering algorithms consistently and accurately grouped the tumors into genotypic subgroups corresponding to the two clinical survival phenotypes. Three unique prospective mathematical classification algorithms were subsequently trained to use expression data to stratify unknown glioblastomas between survival groups and performed this task with 100% accuracy in validation studies. A set of 1478 genes with significant differential expression (p < 0.01) between long-term and short-term survivors was identified, and additional mathematical filtering was used to isolate a 43-gene "fingerprint" that distinguished survival phenotypes. Differential regulation of a subset of these genes was confirmed using RT-PCR. Gene ontology analysis of the fingerprint demonstrated pathophysiologic functions for the gene products that are consistent with current models of tumor biology, suggesting that differential expression of these genes may contribute etiologically to the observed differences in
These results demonstrate that unique expression profiles characterize genotypic subsets of primary GBMs associated with differential survival phenotypes, and these profiles can be used in a prospective fashion to assign unknown tumors to survival groups. Future efforts will focus on building more robust classifiers and identifying additional subclasses of gliomas with phenotypic significance.

Keywords: Glioma; Glioblastoma; Genomics; Microarray; Classification

Article Outline

Results
- Using expression profiles for phenotypic class discovery
 - Selection of genes differentially expressed between long-term and short-term survivors
 - Unsupervised analysis
 - Supervised analysis
 - Building a prospective classifier—using genotype to predict phenotype
 - The survival fingerprint—analyzing differential expression patterns that distinguish survival phenotypes
 - Identifying genes that distinguish survival groups
 - Verifying expression data
 - Functional characteristics of genes that distinguish survival groups

Discussion
- Patient selection and inclusion criteria
- Differences in extent of initial resection between survival groups
- Class discovery
- Differential genomic variability between phenotypic groups
- Functional significance of the survival fingerprint

Conclusions

Materials and methods
- Inclusion criteria
- Sample selection
- Demographics
- Histologic examination
- RNA extraction and purification from tissue samples
- Control RNA
- Microarrays
- Real-time RT-PCR
- Data analysis

Acknowledgements

Appendix A. Supplementary data

References

Note to users: The section "Articles in Press" contains peer reviewed accepted articles to be published in this journal. When the final article is assigned to an issue of the journal, the "Article in Press" version will be removed from this section and will appear in the associated published journal issue. The date it was first made available online will be carried over. Please be aware that although "Articles in Press" do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI as follows: Author(s), Article Title, Journal (Year), DOI. Please consult the journal's reference style for the exact appearance of these elements, abbreviation of journal names and the use of punctuation.

There are three types of "Articles in Press":

- **Accepted manuscripts:** these are articles that have been peer reviewed and accepted for publication by the Editorial Board. The articles have not yet been copy edited and/or formatted in the journal house style.
- **Uncorrected proofs:** these are copy edited and formatted articles that are not yet finalized and that will be corrected by the authors. Therefore the text could change before final publication.
- **Corrected proofs:** these are articles containing the authors' corrections