CANCER STEM CELLS

Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tumor Cells in Clinically Relevant Mouse Models of Medulloblastoma and Glioma

Qin Shu 1, Kwok Kwok Wong 2, Jack M. Su 3, Adekunle M. Adesina 4, Li Tian Yu 1, Yvonne T.M. Tsang 2, Barbara C. Antalffy 4, Patricia Baxter 3, Laszlo Perlaky 3, Jianhua H. Yang 3, Robert C. Dauser 5, Murali Chintagumpala 3, Susan M. Blaney 3, Ching C. Lau 3, Xiaonan Li 1*

1 Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.
2 Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX. Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX.
3 Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX. Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.
4 Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.
5 Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.

* To whom correspondence should be addressed. E-mail: xiaonan@bcm.tmc.edu

Abstract

Recent identification of cancer stem cells in medulloblastoma (MB) and high-grade glioma has stimulated an urgent need for animal models that will not only replicate the biology of these tumors, but also preserve their cancer stem cell pool. We hypothesize that direct injection of fresh surgical specimen of MB and high-grade glioma tissues into anatomically equivalent locations in immune-deficient mouse brains will facilitate the formation of clinically accurate xenograft tumors by allowing brain tumor stem cells, together with their non-stem tumor and stromal cells, to grow in a microenvironment that is the closest to human brains. Eight of the 14 MBs (57.1%) and two of the three high-grade gliomas (66.7%) in this study developed transplantable (up to 12 passages) xenografts in mouse cerebellum and cerebrum, respectively. These xenografts are patient specific, replicating the histopathologic, immunophenotypic, invasive/metastatic, and major genetic (analyzed with 10K SNP array) abnormalities of the original tumors. The xenograft tumor cells have also been successfully cryopreserved for long-term preservation of tumorigenicity, ensuring a sustained supply of the animal models. More importantly, the CD133+ tumor cells, ranging from 0.2%–10.4%, were preserved in all the xenograft models following repeated orthotopic subtransplantations in vivo. The isolated CD133+ tumor cells formed neurospheres and displayed multi-lineage differentiation capabilities in vitro. In summary, our study demonstrates that direct orthotopic transplantation of fresh primary tumor cells is a powerful approach in developing novel clinical relevant animal models that can reliably preserve CD133+ tumor cell pools even during serial in vivo subtransplantations.

Author contributions: Q.S.: Collection and/or assembly of data, data analysis and interpretation, manuscript writing; K.K.W.: Collection and/or assembly of data, data analysis and interpretation; J.M.S.: Provision of study material or patients, data analysis and interpretation; A.M.A.: Provision of study material or patients, collection and/or assembly of data, data analysis and interpretation; L.Y.: Collection and/or assembly of data, data analysis and interpretation, manuscript writing; Y.T.M.T.: Collection and/or assembly of data, data analysis and interpretation; B.C.A.: Collection and/or assembly of data, data analysis and interpretation; P.B.: Collection and/or assembly of data, data analysis and interpretation, manuscript writing; L.P.: Provision of study material or patients; J.Y.: Data analysis and interpretation, manuscript writing; R.C.D.: Provision of study material or patients; M.C.: Provision of study material or patients, data analysis and interpretation, manuscript writing; S.M.B.: Provision of study material or patients, data analysis and interpretation, manuscript writing; C.C.L.: Provision of study material or patients, data analysis and interpretation, manuscript writing; X.L.: Conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript.

Key Words. medulloblastoma, glioma, orthotopic xenograft model, cancer stem cell
Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tu...