Diagnostic Accuracy of 11C-Methionine PET for Differentiation of Recurrent Brain Tumors from Radiation Necrosis After Radiotherapy

Yuzo Terakawa 1*, Naohiro Tsuyuguchi 1, Yoshiyasu Iwai 2, Kazuhiro Yamanaka 2, Shigeaki Higashiyama 3, Toshihiro Takami 1, and Kenji Ohata 1

1 Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
2 Department of Neurosurgery, Osaka City General Hospital, Osaka, Japan
3 Department of Nuclear Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan

* To whom correspondence should be addressed. E-mail: terakawa@msic.med.osaka-cu.ac.jp.

Abstract

We evaluated the diagnostic accuracy of PET with L-methyl-11C-methionine (11C-MET) for the differentiation of recurrent brain tumors from radiation necrosis. **Methods:** Seventy-seven patients who had been previously treated with radiotherapy after primary treatment for metastatic brain tumor ($n = 51$) or glioma ($n = 26$) were studied to clarify the diagnostic performance of 11C-MET PET in differentiating between recurrent brain tumors and radiation necrosis. A total of 88 PET scans with 11C-MET were obtained; sometimes more than one scan was obtained when there was an indication of recurrent brain tumor or radiation necrosis. A definitive diagnosis was made on the basis of pathologic examination for recurrent brain tumors and on the basis of pathologic examination or clinical course for radiation necrosis. Several indices characterizing the lesions were determined; these included mean and maximum standardized uptake values (SUV_{mean} and SUV_{max}, respectively) and the ratios of lesion uptake to contralateral normal frontal-lobe gray matter uptake corresponding to the SUV_{mean} and the SUV_{max} (L/N_{mean} and L/N_{max}, respectively). Receiver-operating-characteristic (ROC) curve analysis was used to determine the optimal index of 11C-MET PET and cutoff values for the differential diagnosis of tumor recurrence and radiation necrosis. **Results:** The values of each index of 11C-MET PET tended to be higher for tumor recurrence than for radiation necrosis. There were significant differences between tumor recurrence and radiation necrosis in all of the indices except for the L/N_{max} for glioma. ROC analysis indicated that the L/N_{mean} was the most informative index for differentiating between tumor recurrence.
and radiation necrosis. An L/N mean of greater than 1.41 provided the best sensitivity and specificity for metastatic brain tumor (79% and 75%, respectively), and an L/N mean of greater than 1.58 provided the best sensitivity and specificity for glioma (75% and 75%, respectively). **Conclusion:** 11C-MET PET can provide quantitative values to aid in the differentiation of tumor recurrence from radiation necrosis, although these values do not appear to be absolute indicators. Quantitative analysis of 11C-MET PET data may be helpful in managing irradiated brain tumors.

Key Words: 11C-MET, PET, radiotherapy, radiation necrosis