Glioblastoma formation from cell population depleted of Prominin1-expressing cells.

Nishide K, Nakatani Y, Kiyonari H, Kondo T.

Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Japan.

Prominin1 (Prom1, also known as CD133 in human) has been widely used as a marker for cancer stem cells (CSCs), which self-renew and are tumorigenic, in malignant tumors including glioblastoma multiforme (GBM). However, there is other evidence showing that Prom1-negative cancer cells also form tumors in vivo. Thus it remains controversial whether Prom1 is a bona fide marker for CSCs. To verify if Prom1-expressing cells are essential for tumorigenesis, we established a mouse line, whose Prom1-expressing cells can be eliminated conditionally by a Cre-inducible DTA gene on the Prom1 locus together with a tamoxifen-inducible CreER(TM), and generated glioma-initiating cells (GICs-LD) by overexpressing both the SV40 Large T antigen and an oncogenic H-Ras(L61) in neural stem cells of the mouse line. We show here that the tamoxifen-treated GICs-LD (GICs-DTA) form tumor-spheres in culture and transplantable GBM in vivo. Thus, our studies demonstrate that Prom1-expressing cells are dispensable for gliomagenesis in this mouse model.

Publication Types:
- Research Support, Non-U.S. Gov't

PMID: 19718438 [PubMed - in process]

PMCID: PMC2729925