Inhibition of U-87 human glioblastoma cell proliferation and formyl peptide receptor function by oligomer procyanidins (F2) isolated from grape seeds

Feng-Jiao Zhang, Jing-Yu Yang, Yan-Hua Mou, Bao-Shan Sun, Yi-Fang Ping, Ji-Ming Wang, Xiu-Wu Bian and Chun-Fu Wu

Department of Pharmacology, Shenyang Pharmaceutical University, 103# Wenhua Road, Shenyang District, 110016 Shenyang, PR China

Instituto Nacional de Recursos Biológicos, Quinta d’Almoinha, Estação Vitivinícola Nacional, 2565-191 Dois Portos, Portugal

Institute of Pathology, Southwest Hospital, Third Military Medical University, 400038 Chongqing, PR China

Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA

Received 16 October 2008; revised 14 December 2008; accepted 29 December 2008. Available online 10 January 2009.
Abstract

Gliomas are the most common and lethal tumor type in the brain. The present study investigated the effect of oligomer procyanidins (F2) (F2, degree of polymerization 2–15), a natural fraction isolated from grape seeds on the biological behavior of glioblastoma cells. We found that F2 significantly inhibited the glioblastoma growth, with little cytotoxicity on normal cells, induced G2/M arrest and decreased mitochondrial membrane potential in U-87 cells. It also induced a non-apoptotic cell death phenotype resembling paraptosis in U-87 cells. In addition, it was found for the first time that F2 in non-cytotoxic concentrations selectively inhibited U-87 cell chemotaxis mediated by a G-protein coupled receptor formyl peptide receptor FPR, which is implicated in tumor cell invasion and metastasis. Further experiments indicated that F2 inhibited fMLF-induced U-87 cell calcium mobilization and MAP kinases ERK1/2 phosphorylation. Moreover, F2 attenuated the glioblastoma FPR expression, a new molecular target for glioma therapeutics, which has been shown to play important roles in glioma cells chemotaxis, proliferation and angiogenesis in addition to its promotion to tumor progression, but did not affect FPR mRNA expression in U-87 cells. Taken together, our results suggest that F2 may be a promising candidate for the development of novel anti-tumor therapeutics.

Keywords: Grape seed extract; Oligomer procyanidins; Glioma; Formyl peptide receptor; Chemotaxis; U-87

Article Outline

1. Introduction
2. Materials and methods
 2.1. Cell culture and reagents
 2.2. Preparation of F2 from grape seeds
 2.3. Cell viability assay
 2.4. Cell cycle analysis
 2.5. Acridine orange/ethidium bromide (AO/EB) double staining
 2.6. Mitochondrial membrane potential (MMP) determination
 2.7. Cell migration assay
 2.8. Ca²⁺ assay
 2.9. RT-PCR
 2.10. Indirect immunofluorescence staining
 2.11. Western blot analysis
 2.12. Statistical analysis
3. Results
 3.1. Effect of F2 on glioblastoma cell proliferation
 3.1.1. Inhibition of proliferation of the human malignant glioma cell line U-87
 3.1.2. Effect of F2 on morphological changes of U-87 cells
 3.1.3. Effect of F2 on U-87 cell cycle
 3.1.4. Effect of F2 on mitochondrial membrane potential in U-87 cells
 3.2. Effect of F2 on the function of formyl peptide receptor (FPR)
 3.2.1. Attenuation of FPR function in U-87 cells
 3.2.2. Effect of F2 on the expression of FPR and differentiation markers of glioma cells
 3.2.3. Effect of F2 on U-87 cell chemotaxis in response to...
epidermal growth factor (EGF)

4. Discussion

Conflict of interest

Acknowledgements

References

Corresponding author. Fax: +86 24 2384 3567.

Note to users: The section "Articles in Press" contains peer reviewed accepted articles to be published in this journal. When the final article is assigned to an issue of the journal, the "Article in Press" version will be removed from this section and will appear in the associated published journal issue. The date it was first made available online will be carried over. Please be aware that although "Articles in Press" do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI as follows: Author(s), Article Title, Journal (Year), DOI. Please consult the journal's reference style for the exact appearance of these elements, abbreviation of journal names and the use of punctuation.

There are three types of "Articles in Press":

- **Accepted manuscripts**: these are articles that have been peer reviewed and accepted for publication by the Editorial Board. The articles have not yet been copy edited and/or formatted in the journal house style.
- **Uncorrected proofs**: these are copy edited and formatted articles that are not yet finalized and that will be corrected by the authors. Therefore the text could change before final publication.
- **Corrected proofs**: these are articles containing the authors' corrections and may, or may not yet have specific issue and page numbers assigned.

Sponsored Links

- Load Cell Solutions
 - Standard/Custom - Any Capacity
 - Any Application - Competitive Prices
 - www.sentranllc.com

- Ep-CAM & other markers
 - Antibodies for histology from $115.
 - Well-known clones, high quality.
 - www.custom-hybridoma.com

- Comet Assay Applications
 - Helix3 GLP Research & Development
 - and Comet Assay Services
 - www.helix3-inc.com/