Supratentorial primitive neuroectodermal tumors of the central nervous system in adults: molecular and histopathologic analysis of 12 cases.

*Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany †Department of Pathology, IRCCS Casa Sollievo della Sofferenza, S.Giovanni Rotondo ‡Department of Pathology, Catholic University §Department of Pathology and Experimental Medicine, University of Rome "La Sapienza", Rome ||IRCCS Neuromed, Pozzilli, Italy.

Abstract
Advances in understanding the molecular basis of primitive neuroectodermal tumors of the central nervous system (CNS-PNET) biology are critical to improve patient outcome. Recently, new data on their molecular features have been reported, suggesting that supratentorial PNET (s-PNET) in adult patients may represent a specific tumor entity among CNS-PNETs. In this study, we analyzed the clinicopathologic and molecular features of 12 cases of s-PNET in adult patients. The follow-up analysis showed that these tumors have an aggressive clinical behavior. At the histopathologic level, they resembled their pediatric counterpart, showing a variable spectrum of neuronal differentiation. These cases did not show astrocytic differentiation; therefore, they did not qualify for the differential diagnosis of glioblastoma variants. The tumors were also screened for mutation of TP53, IDH1, IDH2, and β-catenin, using single strand conformation polymorphism-based and sequencing assays, and were analyzed for c-myc/N-myc gene copy numbers with a quantitative polymerase chain reaction-based method. The strand conformation polymorphism-based mutational analysis showed that 5 tumors harbored TP53 mutations. In 2 cases, a mutation at codon 132 of the IDH1 gene was also found. No mutations of the β-catenin or IDH2 genes were identified. No cases presented c-myc or N-myc amplifications. Only 1 case presented overexpression of epidermal growth factor receptor. In conclusion, our data show a high incidence of TP53 mutations in this group of tumors and show, in comparison with pediatric s-PNET, the absence of amplification of the c-myc/N-myc genes, indicating that s-PNET in adult patients may represent a specific subset of tumors among CNS-PNETs.

PMID: 21378543 [PubMed - in process]

LinkOut - more resources