Clinical Relevance of Tumor Cells with Stem-Like Properties in Pediatric Brain Tumors

Cécile Thirant, #1 Barbara Bessette, #1 Pascale Varlet, #1, 2 Stéphanie Puget, #1, 3, 4 Josette Cadusseau, 5 Silvina Dos Reis Tavares, 1 Jeanne-Marie Studler, 1, 6 David Carlos Silvestre, 7 Aurélie Susini, 8 Chiara Villa, 1, 2 Catherine Miquel, 1, 2 Alexandra Boges, 1 Anne-Laure Surena, 1 Amélie Dias-Morais, 1 Nadine Léonard, 1, 2 Françoise Pflumio, 9 Ivan Bièche, 8 François D. Boussin, 7 Christian Sainte-Rose, 3 Jacques Grill, 4 Catherine Daumas-Duport, 1, 2 Hervé Chneiweiss, 1, 8 and Marie-Pierre Junier 1, 2*

1 Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
2 Department of Neuropathology, Hospital Sainte-Anne, Paris, France
3 Pediatric Neurosurgical Department, Hospital Necker, University Paris Descartes, Paris, France
4 CNRS UMR 8203, Vectorology and Anticancer Therapeutics, Gustave Roussy Cancer Institute, Villejuif, France
5 Inserm U955, Team 10, University of Paris 12, Créteil, France
6 Collège de France, Paris, France
7 Laboratoire de Radiothérapie UMR 967, CEA-INSEERM-Université Paris VII, Fontenay-aux-Roses, France
8 Laboratoire d’Oncogénétique - INSERM U735, Institut Curie/Hôpital René Huguenin, St-Cloud, France
9 Laboratoire des Cellules Souches Hématopoïétiques et Leucémiques, UMR 967, CEA-INSEERM-Université Paris VII, Fontenay-aux-Roses, France
10 Laboratoire de Radiopédriatrie UMR 967, U99, INSERM-Université Paris VII, Fontenay-aux-Roses, France

Donald Gullberg, Editor

Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France

Received August 12, 2010; Accepted December 19, 2010.

Abstract

Background

Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance needs to be determined.

Methodology/Principal Findings

Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and...
neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting.

Conclusions/Significance

In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.