Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

Venkatesh HS¹, Johung TB¹, Caretti V¹, Noll A¹, Tang Y¹, Nagaraja S¹, Gibson EM¹, Mount CW¹, Polepalli J², Mitra SS³, Woo PJ¹, Malenka RC², Vogel H⁴, Bredel M⁵, Mallick P⁶, Monje M⁷.

Abstract

Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.

Copyright © 2015 Elsevier Inc. All rights reserved.