modest clinical significance, and moreover will require validation in another independent data set.

Jim Paul
Cancer Research UK Clinical Trials Unit, Division of Cancer Sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom

Sharon Marsh
Division of Oncology, Washington University School of Medicine, St Louis, MO

Howard L. McLeod
UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC

Robert Brown
Department of Oncology, Imperial College London, Hammersmith Hospital, London, United Kingdom

ACKNOWLEDGMENT
Supported by Grant No. R21 CA113491 (St Louis, Chapel Hill, Glasgow, London), CRUK programme Grant No. C536/A2662 (Glasgow and London), and the Pharmacogenetics Research Network Grant No. U01 GM63340 (St Louis, Chapel Hill).

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The author(s) indicated no potential conflicts of interest.

REFERENCES
DOI: 10.1200/JCO.2007.15.9012

TREATMENT OF VENOUS THROMBOSIS IN PATIENTS WITH INTRACRANIAL MALIGNANCIES

TO THE EDITOR: Although carefully worded, I believe that the American Society of Clinical Oncology guideline for prophylaxis and treatment of venous thromboembolism (VTE) in patients with cancer gives the wrong message in regard to patients with intracranial malignancy.1 The guideline suggests that in the absence of active intracranial bleeding, anticoagulation is not absolutely contraindicated, and that heparin and warfarin “have been shown to effectively reduce the risk of VTE without an increase in rates of intracranial bleeding.” However, that assessment is based on several very small case studies, most of which contained few patients with brain metastases using anticoagulation regimens of various intensity and duration. The largest study that included patients with brain metastases had a rate of intracranial hemorrhage of 7% among 42 patients, which gives a 95% CI of 1.5% to 19.5%.2 The risk for patients with specific tumor types with a propensity for hypervascularity, such as melanoma and renal cell carcinoma, might be even higher. I think a more cautious statement for a guideline would be that devastating intracranial hemorrhage has been reported in patients with intracranial malignancies treated with anticoagulation, especially those with brain metastases in whom supratherapeutic levels of anticoagulation were obtained. The safety of low molecular weight heparin in this setting is untested. The risk of intracranial hemorrhage must be weighed against the risk of death from pulmonary embolism and the complications of inferior vena cava filters. A randomized clinical trial to assess the best treatment for these patients would be warranted.

Carl D. Atkins
South Shore Hematology-Oncology Associates, Rockville Centre, NY

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The author(s) indicated no potential conflicts of interest.

REFERENCES
DOI: 10.1200/JCO.2007.15.9608

<table>
<thead>
<tr>
<th>Table 2. No. of SNPs Meeting the Power to Detect an OR of 2 or 2.5 Using All Data Within Each Study Arm and a Logistic Regression-Based Test for Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Toxicity Incidence (%)</td>
</tr>
<tr>
<td>OR = 2</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

NOTE: A total of 26 SNPs were examined. One percent level of statistical significance for test for trend. Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio.
†For example, 14% versus 28.9% versus 50.4%.
© 2008 by American Society of Clinical Oncology