Human umbilical cord blood-derived mesenchymal stem cells and their effect on gliomas

SK Shankar
Professor of Neuropathology, Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India

Correspondence Address:
S K Shankar
Professor of Neuropathology, Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore-560 029 India

Glioblastoma in adults and pediatric brain tumors have become one of the favored vehicles for cancer stem cell hypothesis. There is compelling evidence that human glioblastoma is a heterogeneous tumor composed of lineage committed tumor cells and a subpopulation of cancer stem cells. These tumor-initiating stem cells have a high tumorigenic potential and low proliferation rate. [1],[2],[3],[4],[5] Glioma stem cells are found to be essentially similar to normal stem cells expressing CD133 stem cell marker. Cancer stem cells derived from human tumors and cell lines are capable of recapitulating original polyclonal tumor when transplanted into immunodeficient nude mice, indicating the synergistic influence of immune suppression on tumor implantation. It is well recognized that cancer stem cells can be enriched and harvested from many human tumor biopsy specimens using the CD133 (Prominin -1) as a cell surface marker. Yet a subpopulation of CD133 negative stem cells exist with low turnover rate and tumorigenic propensity. [4],[6],[7] These cancer stem cells contribute to tumor radio/chemo resistance by an increase in DNA repair capacity through preferential activation of DNA damage response check points. [8] Bao et al, have shown that L1CAM (neural cell adhesion molecules - L1, CD 171, which regulates neural cell growth, survival, migration, axonal outgrowth and neurite outgrowth) is essential for growth and survival of CD133 positive glioma stem cells, both in vivo and in vitro, thus suggesting to be a possible therapeutic target to suppress the tumor growth. [9]

Prior to the discovery of replication competent neural progenitor/stem cells in the postnatal brain [10] mature astrocytes or committed astrocyte progenitors were thought to be the only cells capable of replication in the post natal brain and thus susceptible for malignant transformation. Although this concept is doubted, it is now shown that a genetic cocktail of a few transcription factors can convert normal mature skin cells to totipotent embryonic stem cells [11] and a tumor. Targeting the early cortical astrocytes with oncogenes or activated signal-generating proteins can produce tumors in animals. These transformation competent astrocytes can be generated from neonatal cortex, but not from the adult cortex. [12] Brain tumors formed from these stem cells not only form masses, but also infiltrate deep along fiber tracts and form small tumorlets detached from the main tumor body. Because of this wide unpredictable distribution of neoplastic cells, stem cell therapy needs to
Human umbilical cord blood-derived mesenchymal stem cells and their ... use these as therapeutic targets only to deliver tumor suppressor molecules, cytokines, genetic modulators and drugs. Serendipitously, to the utter surprise of the investigators, the angiogenic MSCs in critical limb ischemia were found to of low angiogenic potential and yet cytotoxic to glioma cells in vivo and in vitro. This has transformed into a field of intense study for the treatment of brain tumors. Kang et al, showed significant cytotoxicity to U87MG human malignant glioma cell line in vitro, with or without activation by cytokines. [24]
CD133 positive glioma tumor cells. [27] The important message of the studies is the ability to target the intracranial tumors by intravenous administration of MSCs derived from different sources without entering the cranium.

The mechanics of cytotoxicity of these MSCs appears to be divergent. In the case of Kaposi sarcoma, an angiogenic AIDS associated neoplastic lesion, inhibition of Akt pathway (which requires cell to cell contact between the neoplastic cells and the MSCs mediated through E-Cadherin is essential for antitumorogenic effect. [22] On the other hand, the cytotoxic effect of umbilical cord mesenchymal cells appears to be mediated by down regulation of Cyclin D 1 (as demonstrated in the article published in this issue) whose expression correlated with degree of malignancy, tumor progression and invasion. In addition enhanced production of immune response related proteins secreted by the MSCs following stimulation by cytokines indicate participation of autocrine and paracrine mechanisms in mediating cytotoxicity.

Although the potential of using MSCs derived from various sources to suppress and kill the glioma stem cells is encouraging, all the workers uniformly indicated that more work is needed to understand the basic biology and possible potential of adverse biological effects in the long term. Because of the homing property of MSCs to the site of injury, Andreef cautioned that “patients receiving the MSCs as a therapeutic modality, could not have recent surgery, pneumonia, catheters or wounds, [14] as the injected progenitor cells are found to share the tumor homing potential of MSCs. Labeling these endothelial cells with supermagnetic iron oxide nanoparticles and infusing them into mice and imaging by MRI, revealed the incorporation of the bone marrow-derived endothelial cells into areas of neovascularisation but not to quiescent vessels. This observation forms another potential drug delivery target and studying the progression of tumor by imaging.[29]

As a scientific study, various observations are exciting and have tremendous potential. However, it takes some more time before the MSC transfusion becomes a useful therapeutic strategy to human subjects.

References

