Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation
Marc C. Chamberlain
Neurology 2014;82;2147-2148
DOI 10.1212/01.wnl.0000451452.30826.6b

This information is current as of June 9, 2014

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.neurology.org/content/82/23/2147.2.full.html
Editors’ Note: Is synthetic cannabis more likely than pure cannabis to be associated with stroke? McSherry raises an interesting question. Chamberlain points out that the glioma biomarker $ATRX$ (α-thalassemia/ment retardation syndrome X-linked) gene was not mentioned in the study by Wick et al. on the value of methylguanine methyltransferase (MGMT) in gliomas. The authors respond and discuss the role of $ATRX$ and its interaction with $MGMT$ and $IDH1$ (isocitrate dehydrogenase 1).

—Chafic Karam, MD, and Robert C. Griggs, MD

SPICE, POT, AND STROKE
Joseph W. McSherry, Burlington, VT: In the last paragraph of his editorial, Dr. Brust1 seemed doubtful of anecdotal reports of stroke in marijuana users, given common cannabis usage and lack of reports. Freeman et al.2 reported 2 persons using spice with associated vascular events. In the future, it will be important to clarify when a stroke in a cannabis user may be due to use of synthetic CB1 agonists. The paucity of cannabis stroke articles in the 1960s and 1970s contrasts to recent articles showing enhanced stroke risk in "cannabis" users. Those using both the natural plant and synthetic forms may be at risk as the synthetic form is not detected on typical drug screens. The unavailability of pure cannabis may lead to increased strokes and a public health problem.

© 2014 American Academy of Neurology

PROGNOSTIC OR PREDICTIVE VALUE OF MGMT PROMOTER METHYLATION IN GLIOMAS DEPENDS ON IDH1 MUTATION
Marc C. Chamberlain, Seattle: Wick et al.1 determined that the interaction of molecular markers (methylguanine methyltransferase [$MGMT$], isocitrate dehydrogenase 1 [$IDH1$], and loss of chromosomes 1p and 19q) in anaplastic gliomas (AG) was a hypothesis-generating analysis. This is because examination of interactive biomarkers was never prespecified as an endpoint in the NOA-04 trial.2

Biomarker determination segregates AG into 2 categories based on presence or absence of 1p19q codeletion.3 $MGMT$ methylation or $IDH1$ mutation does not modify the prognostic and predictive value of 1p19q codeletion. The suggested interaction is novel between $IDH1$ and $MGMT$ in the larger cohort of AG that is not codeleted. In $IDH1$ wild-type AG, patients with $MGMT$ promoter methylation derive greater benefit from temozolomide, whereas patients without $MGMT$ methylation derive greater benefit from radiotherapy.4

The authors did not mention the glioma biomarker $ATRX$ (α-thalassemia/ment retardation syndrome X-linked) gene, which regulates chromatin remodeling. It is mutated in gliomas of astrocytic lineage, is mutually exclusive with 1p19q codeletion, and may be both prognostic and predictive.5 Determining the interaction of $ATRX$ with $IDH1$ and $MGMT$ will provide further insight into the utility of these glioma biomarkers.

Author Response: Wolfgang Wick, Michael Platten, Heidelberg; Guido Reifenberger, Düsseldorf, Germany; Michael Weller, Zurich: In the NOA-04 biomarker cohort, loss of $ATRX$ expression is seen in anaplastic astrocytomas (45%) (AA), oligoastrocytomas (AOA) (27%), and oligodendrogliomas (AO) (10%). It is mainly restricted to IDH mutant tumors and almost mutually exclusive to the 1p/19q codeletion.6 It is inversely correlated with hotspot mutations in the promoter region of telomerase reverse transcriptase ($TERT$).7

$ATRX$ may be suitable to regroup AOA into 2 distinct entities with favorable prognosis. Clinically, AOA with $ATRX$ loss are similar to AA with good prognosis, whereas AOA carrying 1p/19q codeletion are indistinguishable from AO. AA with the IDH mutation are further stratified by $ATRX$, with the loss providing a better prognosis.6

While fitting these data into the interaction term used for the $MGMT/IDH$ analysis is formally restricted due to the high number of necessary events for this triple interaction, we see a need for IDH testing in AG. For clinical decision-making, we assess O6-$MGMT$ status
in the IDH wild-type group. In the IDH mutated group, the ATRX status allows a prognostic subclassification. These markers plus 1p/19q codeletion argue for a molecularly based definition of all AG, with AOA no longer considered as a separate category.

© 2014 American Academy of Neurology

CORRECTION
A Survey of Cluster Headache (CH) Sufferers Using Vitamin D3 as a CH Preventative (P1.256)

In the abstract “A Survey of Cluster Headache (CH) Sufferers Using Vitamin D3 as a CH Preventative (P1.256)” by Peter Batcheller (Neurology 2014;82:P1.256), there is an error in the disclosures. It should have read: “Mr. Batcheller has nothing to disclose.” The AAN staff regrets the error.
Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation
Marc C. Chamberlain
Neurology 2014;82:2147-2148
DOI 10.1212/01.wnl.0000451452.30826.6b

This information is current as of June 9, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/82/23/2147.2.full.html

References
This article cites 7 articles, 3 of which you can access for free at:
http://www.neurology.org/content/82/23/2147.2.full.html##ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures, tables)
or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus