Diffuse Astrocytoma Initially Presenting as a Massive Intracerebral Hemorrhage: Case Report

Takao NOZAKI,¹ Haruhiko SATO,² Tomohiro YAMAZOE,¹ and Hiroki NAMBA¹

¹Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka;
²Department of Neurosurgery, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka

Abstract

We report the case of a 58-year-old woman with low-grade astrocytoma, who developed massive intracranial hemorrhage as the first presentation of this disease, and become comatose and subsequently underwent an emergency craniotomy. A small amount of tumor-like tissue was observed on the wall of the hematoma cavity. Histological analysis of the resected specimen indicated diffuse astrocytoma [World Health Organization (WHO) grade II]. The patient was discharged without neurological deficits 2 weeks after the operation. A non-enhanced tumor-like nodule was observed on magnetic resonance imaging 3 months after the operation, which was monitored carefully but was not treated by adjuvant therapy. The tumor grew gradually, and a second operation was performed 3 years after the first, in which the tumor was completely resected. Histological analysis of the resected specimen again indicated diffuse astrocytoma (WHO grade II). Although rare, brain tumors, including low-grade astrocytoma, should be considered a possible cause of subcortical hemorrhage in patients without risk factors for intracranial hemorrhage.

Key words: low-grade astrocytoma, diffuse astrocytoma, hemorrhage, stroke

Introduction

Brain tumors are an important cause of intracerebral hemorrhage. The incidence of intratumoral hemorrhage in gliomas is reported to be 3.7–12%, and the likelihood of hemorrhage in these cases depends mainly on the tumor histology. Intratumoral hemorrhages usually occur in high-grade gliomas and rarely in low-grade ones (< 1%). A massive hematoma as an initial manifestation of low-grade astrocytoma is also extremely rare. All reported cases of intratumoral hemorrhage have been observed in cases of pilocytic astrocytomas,¹⁻³ and no previous study has reported this type of hemorrhage in cases of diffuse astrocytoma. Here we report a case of diffuse astrocytoma manifesting as a large and expansive subcortical hemorrhage mimicking a stroke.

Case Report

A 58-year-old woman with a sudden onset of headache was admitted in a somnolent state, without focal signs. Computed tomography (CT) scan revealed a massive subcortical hemorrhage in the right frontal lobe, mimicking a stroke (Fig. 1). Enhanced CT scan and digital subtraction angiography (DSA) did not indicate abnormal vessels or tumor stains (not shown). The patient had neither a history of hypertension nor a bleeding tendency. After undergoing the imaging procedures, she became comatose and subsequently an emergency craniotomy was performed. A small amount of tumor-like tissue was observed on the wall of the hematoma cavity. Histological analysis of the resected specimen indicated diffuse astrocytoma (WHO grade II; Fig. 1). Two weeks postoperatively, the patient was discharged without neurological deficits. Magnetic resonance imaging (MRI) scan 3 months after the operation revealed a small residual tumor on the hematoma cavity (Fig. 2), which was monitored carefully although no adjuvant therapy was administered.

The tumor grew gradually (Fig. 3), and a second operation was performed 3 years after the first, in which the tumor was completely resected. Histological diagnosis of the resected specimens again revealed a diffuse astrocytoma [WHO grade II, GFAP+, IDH1+, p53 mutation+, mind-bomb homolog 1 (MIB-1) labeling index: 4–5%; Fig. 3C]. Postoperative irradiation was delivered to the right frontal lobe.
The cause of hemorrhage in low-grade astrocytoma remains unclear. Even in pilocytic and pilomyxoid astrocytomas, which have higher vascularity, intratumoral hemorrhages are still rare. Possible causes may include...
abnormal vessels with thin walls, endothelial proliferation with vascular obliteration, invasion of a vessel wall by the tumor, tumor necrosis, increased venous pressure associated with raised intracranial pressure, or an encased aneurysm or vascular malformation. In the present case, histological examination of the specimens did not show vessel wall invasion, endothelial proliferation, or necrosis. We did not find any aneurysm or other vascular malformation in the histological examination of the specimen obtained from the hematoma. The bleeding may therefore have been a result of structural abnormalities in the tumor vessels and/or increased regional venous pressure associated with tumor expansion. Although rare, brain tumors, including low-grade astrocytoma, should be considered a possible cause of subcortical hemorrhage in patients without risk factors for intracranial hemorrhage.

Conflicts of Interest Disclosure

The authors declare that they have no conflict of interest. All authors who are the members of The Japan Neurosurgical Society (JNS) have registered online Self-reported COI Disclosure Statement Forms through the website for JNS members.

References


Address reprint requests to: Takao Nozaki, MD, PhD, Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.

e-mail: tnozaki@hama-med.ac.jp