Valproate in Adjuvant Glioblastoma Treatment

To the Editor: We are a group of clinicians and researchers who have been studying the effect of sodium valproate (VPA) in glioblastoma (GBM) since 2010. The study recently published in Journal of Clinical Oncology by Happold et al.1 pooled a number of trial data sets to study a variety of interventions for glioblastoma in which patients had taken anticonvulsants, including VPA. The study concluded that VPA showed no benefit on survival. The motivation for the publication may be to dissuade clinicians from using VPA in the absence of a randomized prospective phase III trial that shows evidence of progression-free or overall survival benefit. However, the analysis may prematurely discourage other groups from studying the interaction between VPA and chemoradiotherapy as well as clinical outcomes with older drug therapies.

This type of analysis typically suffers from bias because the included trials were not equipped to answer the question of whether VPA improves survival in GBM. Without identification and control of confounders, the significance of the findings is compromised. An example of a biased GBM study that led to potentially poor practice is the recommendation to avoid VPA as an anticonvulsant around the time of surgery based on reports of increased incidence of bleeding. However, sicker patients with larger or more aggressive tumors were more likely to have received VPA because of their increased likelihood of having seizures. A large tumor cavity itself,

Table 1. Previous Literature That Examined VPA

<table>
<thead>
<tr>
<th>First Author</th>
<th>Included Here</th>
<th>Cohort Size</th>
<th>HR (95% CI)</th>
<th>Definition</th>
<th>VPA Negative</th>
<th>VPA Positive</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felix²</td>
<td>No</td>
<td>22</td>
<td>0.31 (0.14 to 0.7)</td>
<td>To 2006 No VPA</td>
<td>2007 onward 10-15 mg/kg/day as prophylactic anticonvulsant (Routinely)</td>
<td>Multiple childhood tumors No TMZ Sometimes RT As above but brainstem tumors only</td>
<td></td>
</tr>
<tr>
<td>Felix²</td>
<td>No</td>
<td>16</td>
<td>0.42 (0.16 to 0.97)</td>
<td>To 2006 No VPA</td>
<td>2007 onward 10-15 mg/kg/day as prophylactic anticonvulsant (Routinely)</td>
<td>ՄԱՍՈՒՄԱՆՎԱՐ ՁԱՅԻՆ ԹՈՒՐՍՆԵՐ ՑՈՒՑՆԵՐ No TMZ ԿԱՇԱՎՈՂ ՑՈՒՑՆԵՐ</td>
<td></td>
</tr>
<tr>
<td>Barker³</td>
<td>No</td>
<td>29</td>
<td>0.67 (0.27 to 1.07)</td>
<td>Five other AEDs Phenytion Levetiracetam Carbamazepine Phenobarbital VPA during RT Dose unknown</td>
<td>GBM with seizures RT TMZ use and nonuse Controlled confounders: RTOG RPS class, concurrent TMZ, seizure history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barker³</td>
<td>Yes</td>
<td>12</td>
<td>0.54 (0.09 to 1.17)</td>
<td>Five other AEDs Phenytion Levetiracetam Carbamazepine Phenobarbital VPA during RT Dose unknown</td>
<td>GBM with seizures TMZ + RT Cohort split on time period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerkhof³</td>
<td>Yes</td>
<td>108</td>
<td>0.83 (0.43 to 0.92)</td>
<td>No VPA or VPA < 3 months with or without LEV and other therapies VPA > 3 months Maintenance dose of 1,000 mg Raised but usually < 2,000 mg for ongoing seizures</td>
<td>Primary and recurrent GBM with seizures TMZ + RT for primary TMZ + chemotherapy for recurrent Controlled confounders: age, resection extent, and MGMT status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obendorfer³</td>
<td>No</td>
<td>43</td>
<td>Survival data only</td>
<td>No AED (n = 68) or El-AED (n = 43) 600-1,500 mg VPA (n = 32) or other non-El-AED (n = 13) Sometimes with LEV</td>
<td>GBM Chemotherapy + RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weller³</td>
<td>Yes</td>
<td>97</td>
<td>0.67 (0.53 to 0.9)</td>
<td>No AED VPA only Dose unknown</td>
<td>GBM TMZ only MGMT recorded but not controlled for GBM TMZ + RT MGMT recorded but not controlled for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weller³</td>
<td>No</td>
<td>97</td>
<td>0.39 (0.24 to 0.63)</td>
<td>El-AED (four agents) and other comparisons VPA only Dose unknown</td>
<td>GBM Chemotherapy + RT Controlled confounders: age, sex, function, resection extent, steroid use (n = 629) 2% non-El-AEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guthrie¹⁰</td>
<td>No</td>
<td>24</td>
<td>Cox-Mantel log-rank test</td>
<td>No AED El-AEDs VPA Dose unknown</td>
<td>GBM Chemotherapy + RT Controlled confounders: age, sex, function, resection extent, location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaekle¹¹</td>
<td>No</td>
<td>Compare El-AED v none</td>
<td>N/A</td>
<td>N/A</td>
<td>GBM Controlled confounders: age, sex, function, resection extent, steroid use (n = 629) 2% non-El-AEDs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AED, antiepileptic drug; DIPG, diffuse intrinsic pontine glioma; El-AED, enzyme-inducing antiepileptic drug; GBM, glioblastoma multiforme; HR, hazard ratio; KPS, Karnofsky performance status; LEV, levetiracetam; MGMT, O6-methylguanine-DNA methyltransferase; N/A, not available; RPS, recursive partitioning analysis; RT, radiotherapy; RTOG, Radiation Therapy Oncology Group; TMZ, temozolomide; VPA, valproate
irrespective of therapy, predisposes to bleeding. More data do not remove bias, even if prospectively collected.

In addition, the dose and duration of VPA is neither reported nor controlled for. Dose-response curves for the initial effect can be quite different when used for a new application when repurposing drugs. Our in vitro experimental studies on established cell lines and primary human glioblastoma cells clearly showed an interaction between VPA and chemoradiotherapy, but only at the upper end of recommended doses for seizure prevention. VPA dose does not directly relate to CSF concentration in humans, and studies using subtherapeutic doses are of limited clinical relevance.

From reported results (Table 1), three studies that considered patients with GBM treated with temozolomide, and reported hazard ratios were used in a meta-analysis. Some are cited by Happold et al. The studies are not without issue. The analysis is retrospective, and definitions for positive VPA use vary (data source was an included factor). Like Happold et al., dose and protocol were not always reported. Unlike other antiepileptic drugs, VPA consistently had a small, but detectable benefit (Fig 1), not dissimilar to Table A2 in Happold et al.

The definition of VPA positive is critical to avoid obscuring or even eliminating observed beneficial effects (if any) of VPA, especially if mild. The obscuring effect of misallocation was simulated based on reported Kaplan-Meier curves. From 138 patients taking VPA, increasing numbers were randomly reassigned to the 24 VPA-positive patients to simulate inclusion of other antiepileptic drugs. From a baseline hazard ratio of 0.9, which indicated benefit, the hazard ratio decreased to 0 (no benefit) when 32 patients had been reassigned.

We would consider that by controlling for protocol, the types of patients recruited and reasons for taking VPA is critical to analysis. The debate around the use of VPA cannot be resolved by further retrospective studies. There are clearly difficulties in investigating therapies in this uncommon disease (< 1% of cancer diagnoses) and in a heterogeneous patient group. However, a prospective analysis is not onerous because it simply requires the use and dose of VPA to be reported in forthcoming prospective studies with a placebo group and matched for confounders such as promoter status, histology, stage, age of patient, and comorbidities. Although less ideal than a randomized controlled trial, it certainly would provide better evidence than the work to date.

In conclusion, we suggest that the clinical effectiveness of VPA in adjuvant glioblastoma treatment has yet to be definitively investigated. A research bias exists toward new molecules over new applications of old drugs, many with proven anticancer efficacy and safety. Given our limited progress in improving GBM survival, it would be regrettable to eliminate these by holding them to the higher standard of demonstrating efficacy in the face of uncontrolled confounders.

Michael F. Fay
University of Newcastle; Genesis Cancer Care; Calvary Mater Hospital; Newcastle, New South Wales; University of Queensland, Brisbane, Queensland, Australia

Richard Head
University of South Australia, Adelaide, South Australia, Australia

Peter Sminia
VU University, Amsterdam, the Netherlands

Nicholas Dowson
CSIRO, Brisbane, Queensland, Australia

Leah Cosgrove
CSIRO, Adelaide, South Australia, Australia

Stephen E. Rose
CSIRO; University of Queensland, Brisbane, Queensland, Australia

Jenny H. Martin
University of Newcastle; Calvary Mater Hospital, Newcastle, New South Wales; University of Queensland, Brisbane, Queensland, Australia

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at www.jco.org.

REFERENCES

![Forest plot that shows a meta-analysis of three studies of VPA use specifically with the exclusion of enzyme-inducing antiepileptic drugs in glioblastoma multiforme with concurrent temozolomide and radiotherapy. HR, hazard ratio; VPA +/−, taking/not taking valproate.](image-url)

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Valproate in Adjuvant Glioblastoma Treatment

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Michael F. Fay
Employment: Genesis Care
Stock or Other Ownership: Genesis Care, HealthSCOPE, Respiratory Innovations, ImpediMed
Consulting or Advisory Role: Pharmacology Associates (I)
Research Funding: Merck
Travel, Accommodations, Expenses: Genesis Care

Richard Head
No relationship to disclose

Peter Sminia
No relationship to disclose

Nicholas Dowson
Patents, Royalties, Other Intellectual Property: The CSIRO has patents, provisional patents, and patent applications related to analyzing and interpreting medical image data, which I have coauthored. None of these are related to the submission. Neither I nor family members receive royalties from these patents, or will they (Inst)

Leah Cosgrove
No relationship to disclose

Stephen E. Rose
No relationship to disclose

Jenny H. Martin
No relationship to disclose