This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood brain and spinal cord tumors. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

General Information About Childhood Brain and Spinal Cord Tumors

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2010, childhood cancer mortality decreased by more than 50%.[1] Childhood and adolescent cancer survivors require close monitoring because cancer therapy side effects may persist or develop months or years after treatment. Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors.

Primary brain tumors are a diverse group of diseases that together constitute the most common solid tumor of childhood. Brain tumors are classified according to histology, but tumor location and extent of spread are also important factors that affect treatment and prognosis. Immunohistochemical analysis, cytogenetic and molecular genetic findings, and measures of proliferative activity are increasingly used in tumor diagnosis and classification.

Incidence

Primary central nervous system tumors are a diverse group of diseases that together constitute the most common solid tumor in childhood. The Central Brain Tumor Registry of the United States (CBTRUS) estimates that approximately 4,300 U.S. children are diagnosed each year.[2]

References

Classification of Central Nervous System Tumors

The classification of childhood central nervous system (CNS) tumors is based on histology and location.[1] Tumors are classically categorized as infratentorial, supratentorial, parasellar, or spinal. Immunohistochemical analysis, cytogenetic and molecular genetic findings, and measures of proliferative activity are increasingly used in tumor diagnosis and classification and will likely affect classification and nomenclature in the future.

Primary CNS spinal cord tumors comprise approximately 1% to 2% of all childhood CNS tumors. The classification of spinal cord tumors is based on histopathologic characteristics of the tumor and does not differ from that of primary brain tumors.[1]

Infratentorial (posterior fossa) tumors include the following:
1. Cerebellar astrocytomas (most commonly pilocytic, but also fibrillary and less frequently, high grade).
2. Medulloblastomas (including classic, desmoplastic/nodular, extensive nodularity, anaplastic, or large cell variants).
3. Ependymomas (papillary, clear cell, tanycytic, or anaplastic).
4. Brain stem gliomas (typically diffuse intrinsic pontine gliomas and focal, tectal, and exophytic cervicomedullary gliomas are most frequently pilocytic astrocytomas).
5. Atypical teratoid/rhabdoid tumors.
6. Choroid plexus tumors (papillomas and carcinomas).
7. Rosette-forming glioneuronal tumors of the fourth ventricle.

Supratentorial tumors include the following:

1. Low-grade cerebral hemispheric astrocytomas (grade I [pilocytic] astrocytomas or grade II [diffuse] astrocytomas).
2. High-grade or malignant astrocytomas (anaplastic astrocytomas and glioblastoma [grade III or grade IV]).
3. Mixed gliomas (low- or high-grade).
4. Oligodendrogliomas (low- or high-grade).
5. Primitive neuroectodermal tumors (PNETs) (cerebral neuroblastomas, pineoblastomas, and ependymoblastomas).
6. Atypical teratoid/rhabdoid tumors.
7. Ependymomas (anaplastic or RELA fusion–positive).
10. Tumors of the pineal region (pineocytomas, pineoblastomas, pineal parenchymal tumors of intermediate differentiation, and papillary tumors of the pineal region), and germ cell tumors.
11. Neuronal and mixed neuronal glial tumors (gangliogliomas, desmoplastic infantile astrocytoma/gangliogliomas, dysembryoplastic neuroepithelial tumors, and papillary glioneuronal tumors).
12. Other low-grade gliomas (including subependymal giant cell tumors and pleomorphic xanthoastrocytoma).
13. Metastasis (rare) from extraneural malignancies.

Parasellar tumors include the following:

1. Craniopharyngiomas.
2. Diencephalic astrocytomas (central tumors involving the chiasm, hypothalamus, and/or thalamus) that are generally low-grade (including astrocytomas, grade I [pilocytic] or grade II [diffuse]).
3. Germ cell tumors (germinomas or nongerminomatous).

Spinal cord tumors include the following:

1. Low-grade cerebral hemispheric astrocytomas (grade I [pilocytic] astrocytomas or grade II [diffuse] astrocytomas).
2. High-grade or malignant astrocytomas (anaplastic astrocytomas and glioblastoma [grade III or grade IV]).
4. Ependymomas (often myxopapillary).

References

General Approach to Care for Children with Brain and Spinal Cord Tumors

Important concepts that should be understood by those treating and caring for a child who has a brain tumor or spinal cord tumor include the following:

1. The cause of most childhood brain tumors remains unknown.[1]

2. Selection of an appropriate therapy can only occur if the correct diagnosis is made and the stage of the disease is accurately determined.

3. Children with primary brain or spinal cord tumors represent a major therapy challenge that, for optimal results, requires the coordinated efforts of pediatric specialists in fields such as neurosurgery, neuropathology, radiation oncology, pediatric oncology, neuro-oncology, neurology, rehabilitation, neuroradiology, endocrinology, and psychology, who have special expertise in the care of patients with these diseases.[2,3] For example, radiation therapy of pediatric brain tumors is technically demanding and should be performed in centers that have experience in this area.

4. For most childhood brain and spinal cord tumors, the optimal treatment regimen has not been determined. Children who have brain and spinal cord tumors should be considered for enrollment in a clinical trial when an appropriate study is available. Such clinical trials are being carried out by institutions and cooperative groups. Survival of childhood cancer has advanced as a result of clinical trials that have attempted to improve upon the best accepted therapy available. Clinical trials in pediatrics are designed to compare new therapy with therapy that is currently accepted as standard. This comparison may be done in a randomized study of two treatment arms or by evaluating a single new treatment and then comparing the results with those previously obtained from existing therapy. Information about ongoing clinical trials is available from the NCI website.

5. While more than 70% of children diagnosed with brain tumors will survive for more than 5 years after diagnosis, survival rates are wide-ranging depending on tumor type and stage. Long-term sequelae related to the initial presence of the tumor and subsequent treatment are common.[4-6] Debilitating effects on growth and neurologic development have frequently been observed after radiation therapy, especially in younger children. Secondary tumors have increasingly been diagnosed in long-term survivors.[7] For this reason, the role of chemotherapy in allowing a delay or reduction in the administration of radiation therapy is under study, and preliminary results suggest that chemotherapy can be used to delay, limit, and sometimes obviate, the need for radiation therapy in children with benign and malignant lesions.[8-10] Long-term management of these patients is complex and requires a multidisciplinary approach.

(Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information about possible long-term or late effects.)

6. Guidelines for pediatric cancer centers and their role in the treatment of pediatric patients with cancer have been outlined by the American Academy of Pediatrics.[11]

References

Stage Information and Treatment of Newly Diagnosed and Recurrent Childhood Brain Tumors

Presently, there is no uniformly accepted staging system for most childhood brain tumors. These tumors are classified and treated based on their histology and location within the brain (see Table below). However, with advances in molecular data, it is conceivable that genomic factors will refine classification approaches for certain groups of tumors, such as medulloblastomas [1,2] and low-grade gliomas.[3,4]

Newly Diagnosed or Recurrent Tumor Type and Its Related PDQ Treatment Summary

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Pathologic Subtype</th>
<th>Related PDQ Treatment Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrocytomas and Other Tumors of Glial Origin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Grade Astrocytomas</td>
<td>Diffuse fibrillary astrocytoma</td>
<td>Childhood Astrocytomas Treatment</td>
</tr>
<tr>
<td></td>
<td>Gemistocytic astrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligoastrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligodendroglioma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilocytic astrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilomyxoid astrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleomorphic xanthoastrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protoplasmic astrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subependymal giant cell astrocytoma</td>
<td></td>
</tr>
<tr>
<td>High-Grade Astrocytomas</td>
<td>Anaplastic astrocytoma</td>
<td>Childhood Astrocytomas Treatment</td>
</tr>
<tr>
<td></td>
<td>Anaplastic oligoastrocytoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic oligodendroglioma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giant cell glioblastoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glioblastoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gliomatosis cerebri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gliosarcoma</td>
<td></td>
</tr>
<tr>
<td>Tumor Type</td>
<td>Pathologic Subtype</td>
<td>Related PDQ Treatment Summary</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Brain Stem Glioma</td>
<td>Diffuse intrinsic pontine glioma</td>
<td>Childhood Brain Stem Glioma Treatment</td>
</tr>
<tr>
<td></td>
<td>Focal or low-grade brain stem glioma</td>
<td></td>
</tr>
<tr>
<td>CNS Embryonal Tumors</td>
<td>Anaplastic</td>
<td>Childhood CNS Embryonal Tumors Treatment</td>
</tr>
<tr>
<td>– Medulloblastomas</td>
<td>Classic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desmoplastic/nodular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medulloblastoma with extensive nodularity</td>
<td></td>
</tr>
<tr>
<td>– CNS Primitive Neuroectodermal Tumors (PNETs)</td>
<td>CNS ganglioneuroblastoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CNS neuroblastoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ependymoblastoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medulloepithelioma</td>
<td></td>
</tr>
<tr>
<td>– Pineal Parenchymal Tumors</td>
<td>Pineoblastoma</td>
<td></td>
</tr>
<tr>
<td>– CNS Atypical Teratoid/Rhabdoid Tumor</td>
<td>Childhood CNS Atypical Teratoid/Rhabdoid Tumor Treatment</td>
<td></td>
</tr>
<tr>
<td>CNS Germ Cell Tumors</td>
<td>Immature teratoma</td>
<td>Childhood CNS Germ Cell Tumors Treatment</td>
</tr>
<tr>
<td>– Germinomas</td>
<td>Mature teratoma</td>
<td></td>
</tr>
<tr>
<td>– Teratomas</td>
<td>Teratoma with malignant transformation</td>
<td></td>
</tr>
<tr>
<td>– Non-Germinomatous Germ Cell Tumors</td>
<td>Choriocarcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embryonal carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed germ cell tumor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yolk sac tumor</td>
<td></td>
</tr>
<tr>
<td>Craniopharyngioma</td>
<td></td>
<td>Childhood Craniopharyngioma Treatment</td>
</tr>
<tr>
<td>Ependymoma</td>
<td>Subependymoma (WHO Grade I)</td>
<td>Childhood Ependymoma Treatment</td>
</tr>
<tr>
<td></td>
<td>Myxopapillary ependymoma (WHO Grade I)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ependymoma (WHO Grade II)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ependymoma, RELA fusion–positive (WHO Grade II or Grade III)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic ependymoma (WHO Grade III)</td>
<td></td>
</tr>
<tr>
<td>Tumors of the Choroid Plexus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNS = central nervous system; WHO = World Health Organization.
Recurrence is not uncommon in both low-grade and malignant childhood brain tumors and may occur many years after initial treatment. Disease may occur at the primary tumor site or, especially in malignant tumors, at noncontiguous central nervous system (CNS) sites. Systemic relapse is rare but may occur. At time of recurrence, a complete evaluation for extent of relapse is indicated for all malignant tumors and, at times, for lower-grade lesions. Biopsy or surgical re-resection may be necessary for confirmation of relapse; other entities, such as secondary tumor and treatment-related brain necrosis, may be clinically indistinguishable from tumor recurrence. The determination of the need for surgical intervention must be individualized based on the initial tumor type, the length of time between initial treatment and the reappearance of the lesion, and the clinical picture.

Early-phase therapeutic trials may be available for selected patients via Children's Oncology Group phase I institutions, the Pediatric Brain Tumor Consortium, or other entities.

References

Stage Information and Treatment of Newly Diagnosed and Recurrent Childhood Spinal Cord Tumors

There is no uniformly accepted staging system for childhood primary spinal cord tumors. These tumors are classified and treated based on their location within the spinal cord and histology. Refer to the following PDQ summaries for more information on the staging and treatment of newly diagnosed and recurrent childhood spinal cord tumors:

- Childhood Astrocytomas Treatment.
- Childhood Central Nervous System Embryonal Tumors Treatment.
- Childhood Ependymoma Treatment.

Changes to This Summary (08/17/2016)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Stage Information and Treatment of Newly Diagnosed and Recurrent Childhood Brain Tumors

Revised Table to include RELA fusion–positive ependymoma as a pathologic subtype of ependymoma.

This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.

About This PDQ Summary

Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood brain and spinal cord tumors. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

- be discussed at a meeting,
- be cited with text, or
- replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Childhood Brain and Spinal Cord Tumors Treatment Overview are:

- Kenneth J. Cohen, MD, MBA (Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital)
- Louis S. Constine, MD (James P. Wilmot Cancer Center at University of Rochester Medical Center)
- Roger J. Packer, MD (Children's National Medical Center)
- Malcolm A. Smith, MD, PhD (National Cancer Institute)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.
Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Copyright Notice

Bookshelf ID: NBK66018 PMID: 26389453