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Abstract
Purpose  Stereotactic radiosurgery (SRS) is a method of delivering conformal radiation, which allows minimal radiation 
damage to surrounding healthy tissues. Adjuvant radiation therapy has been shown to improve local control in a variety of 
intracranial neoplasms, such as brain metastases, gliomas, and benign tumors (i.e., meningioma, vestibular schwannoma, 
etc.). For brain metastases, adjuvant SRS specifically has demonstrated positive oncologic outcomes as well as preserving 
cognitive function when compared to conventional whole brain radiation therapy. However, as compared with neoadjuvant 
SRS, larger post-operative volumes and greater target volume uncertainty may come with an increased risk of local failure 
and treatment-related complications, such as radiation necrosis. In addition to its role in brain metastases, neoadjuvant SRS 
for high grade gliomas may enable dose escalation and increase immunogenic effects and serve a purpose in benign tumors 
for which one cannot achieve a gross total resection (GTR). Finally, although neoadjuvant SRS has historically been deliv-
ered with photon therapy, there are high LET radiation modalities such as carbon-ion therapy which may allow radiation 
damage to tissue and should be further studied if done in the neoadjuvant setting. In this review we discuss the evolving role 
of neoadjuvant radiosurgery in the treatment for brain metastases, gliomas, and benign etiologies. We also offer perspective 
on the evolving role of high LET radiation such as carbon-ion therapy.
Methods  PubMed was systemically reviewed using the search terms “neoadjuvant radiosurgery”, “brain metastasis”, and 
“glioma”.  ‘Clini​caltr​ials.​gov’ was also reviewed to include ongoing phase III trials.
Results  This comprehensive review describes the evolving role for neoadjuvant SRS in the treatment for brain metastases, 
gliomas, and benign etiologies.  We also discuss the potential role for high LET radiation in this setting such as carbon-ion 
radiotherapy.
Conclusion  Early clinical data is very promising for neoadjuvant SRS in the setting of brain metastases.  There are three 
ongoing phase III trials that will be more definitive in evaluating the potential benefits.  While there is less data available 
for neoadjuvant SRS for gliomas, there remains a potential role, particularly to enable dose escalation and increase immu-
nogenic effects.
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Brain metastases

Surgical resection and adjuvant radiation therapy

Brain metastases affect approximately 200,000 patients in 
the United States each year [1]. Historically, patients with 
a single accessible brain metastasis often underwent surgi-
cal resection; however, resection without adjuvant radiation 
therapy still results in a local recurrence rate of nearly 50% 
[2]. WBRT, though effective at reducing recurrence rates, 
is also associated with significant cognitive side effects. 
Multiple randomized trials have demonstrated that SRS is 
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associated with improved rates of cognitive preservation 
without compromising overall survival when compared to 
WBRT [2–6]. For example, in 2017, a phase 3 trial was 
completed involving 194 patients who underwent surgical 
resection of a brain metastasis and were randomized to ste-
reotactic radiosurgery (SRS) or WBRT [7]. The study dem-
onstrated a 52% versus 85% overall cognitive deterioration 
rate in favor of the SRS arm (p = 0.00031).

Postoperative SRS, however, has its drawbacks. The irra-
diated volume of normal brain is increased, which is associ-
ated with an increased risk of treatment-related complica-
tions, such as radionecrosis [8, 9]. This is because there is 
typically a 1–2 mm CTV expansion to address microscopic 
disease and often a requirement for target volumes to cover 
the surgical tract, with a margin along the bone flap [10]. In 
addition, the risk of leptomeningeal disease (LMD) is higher 
in patients undergoing postoperative SRS, likely due to sur-
gical perturbation or seeding of metastatic cells, compared 
to WBRT with rates as high as 45% [5, 11–14]. Finally, 
adherence rates with postoperative SRS are often suboptimal 
due to variable postoperative clinical courses [15]. If there is 
a prolonged surgical recovery, increased intervals between 
surgical resection and postoperative SRS are associated with 
worse local control [7, 16].

Neoadjuvant stereotactic radiosurgery

To address the limitations of postoperative SRS, neoadju-
vant radiosurgery has increasingly been adopted in various 
disease sites to improve local control and decrease toxicity 
[17–20]. This rationale is now being applied to radiosurgery 
for brain metastases. Some potential advantages are improv-
ing local control by improving target delineation and oxy-
genation ratio, decreasing leptomeningeal disease by steri-
lization, decreasing the volume of normal brain irradiated 
(and resection of irradiated tissue), as well as improving 
systemic control by decreasing time to systemic therapy.

Radiosurgery in combination with immune 
checkpoint inhibitors (ICIs)

With the expansion in the number of systemic therapy 
agents, it is important to consider the potential interac-
tion with radiosurgery. The rationale is that radiation may 
increase anti-tumor immunity, which has been demonstrated 
in many studies. MSKCC published a retrospective study 
evaluating outcomes of patients treated with combined 
SRS and ipilimumab for melanoma with brain metastases 
[21]. A survival advantage was reported for patients who 
received concurrent SRS delivery compared to those who 
received SRS before and after administration of ipilumumab. 
A different retrospective study conducted at the University 
of Virginia demonstrated similar results, with one-year OS 

improved for SRS prior to or concurrent with ipilumumab 
[22]. An excellent review by Lehrer et al. summarizes the 
data combining radiosurgery with ICIs [23]. It remains a 
question if systemic therapy could be used in conjunction 
with radiosurgery in the neoadjuvant setting.

Treatment planning

Preoperative SRS simplifies target delineation and reduces 
uncertainty when contouring an intact brain metastasis. This 
is because with postoperative SRS, there is a need to recreate 
a tumor bed and include portions of the surgical tract. Con-
touring guidelines for post-operative SRS frequently result 
in larger treatment volumes. In contrast, preoperative SRS 
targets the intact brain metastasis volume when it is clearly 
defined—meaning there is no requirement for margin expan-
sion due to uncertainty—and includes less normal brain tis-
sue inside the PTV. Dosimetric studies have illustrated a 
reduction in the irradiated volume of normal brain tissue in 
hypothetical neoadjuvant plans compared to postoperative 
plans [24].

Patient outcomes

While not currently the standard of care, there have been 
numerous studies supporting the use of neoadjuvant SRS 
in brain metastases. A case series comprising 117 patients 
treated between 2005 and 2016 underwent neoadjuvant 
radiosurgery approximately two days before resection [25]. 
The 1-year local control rate was 80.1%, and the 1-year 
distant intracranial control rate was 54.7%. One-year over-
all survival was 60.6% with a median overall survival of 
17.2 months.

When retrospectively compared to those who received 
adjuvant radiosurgery, there were no significant differences 
in tumor volume, number of lesions treated, or location 
between the two groups [26]. There was no compromise 
in local or distant control, however with improvements in 
overall survival (17.1 versus 13.5 months), leptomeningeal 
disease (3.2% versus 8.3%), and radiation necrosis (1.5% 
versus 14.6%). When compared to adjuvant WBRT, pre-
operative SRS showed no significant difference in 1-year 
overall survival and 2-year local control or leptomeningeal 
disease [27].

Neoadjuvant SRS, adjuvant SRS, and SRS alone have 
also been compared [28]. Local control was 77.5%, 80.9%, 
and 63.3%, respectively, with a significant decrease in con-
trol for SRS alone. This translated to a difference in overall 
survival. Importantly, significantly higher rates of radiation 
necrosis were observed in the adjuvant SRS cohort com-
pared to the neoadjuvant SRS and SRS alone groups (22.6%, 
12.3%, 5.0%,). At 2-years, leptomeningeal disease for the 
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three groups was 16.1% for adjuvant SRS, 5.9% for neoad-
juvant SRS and 5.0% for SRS alone.

While the data presented above single fraction SRS, there 
is a retrospective series of 20 patients looking at 5 fractions 
prior to surgical resection [29]. No patients got radiation 
necrosis, one (5%) with leptomeningeal disease, and one 
(5%) with local failure. This series, among others, demon-
strated that fractionated stereotactic radiotherapy (FSRT) 
may be safe and effective. The thought is spreading the dose 
over multiple fractions may increase the therapeutic ratio.

Taking into account these promising retrospective data 
shown in Table 1, there are phase II/III trials underway 
shown in Table 2. The first Phase III trial is NRG BN012, 
which will randomize patients to the standard arm of surgi-
cal resection followed by adjuvant SRS within 10–30 days, 
or to the experimental arm with SRS followed by surgical 
resection within 7 days. The second is MC167C, a Mayo 
Clinic trial with estimated completion in November 2025, 
with similar standard and experimental arms albeit differ-
ent timelines (adjuvant SRS must be delivered within two 
weeks of surgery; neoadjuvant SRS must be delivered within 
4 weeks of surgery). The third is NCT03741673, an MD 
Anderson trial which will also allow radiosurgery within 
a month of surgical resection. NCT03741673 is unique in 
that it will allow up to 5 fractions for treatment, which may 
provide interesting results, particularly in reducing toxici-
ties. The results of these three trials together will be useful to 
analyze both fractionation and timing of neoadjuvant SRS.

Delayed systemic therapy

It has been observed that up to 20% of patients may expe-
rience some complications within 30 days after resection, 
which could delay indicated adjuvant therapy, with 20% 
also unable to undergo planned SRS after resection [14]. 
In contrast, neoadjuvant SRS presents fewer obstacles for 
patients to proceed with the resection, as less than 3% of 

patients requiring hospitalization within 2 weeks after treat-
ment [34, 35]. Postponing adjuvant SRS may lead to even 
longer delays in starting systemic therapy.

Gliomas

Introduction

High-grade gliomas encompass a group of aggressive 
and malignant primary brain tumors, with glioblastoma 
(GBM) being the most prevalent subtype. GBM is known 
for its aggressive behavior and high resistance to treatment, 
resulting in a dismal prognosis with a median overall sur-
vival (OS) of 15–21 months. The most effective treatment 
approach for GBM patients typically encompasses a gross 
total resection, followed by RT with concurrent TMZ, fol-
lowed by adjuvant TMZ with tumor treating fields [36–40].

Surgery

Maximal tumor resection while preserving neurological 
function stands as a fundamental aspect of glioblastoma 
treatment, significantly influencing treatment decisions. 
Beyond providing tissue for definitive pathological diagno-
sis, resection allows rapid improvement in neurologic func-
tion through tumor debulking and reduction of mass effect. 
Studies have shown that achieving 98% or more extension 
of resection (EOR) results in a median OS of 13 months, 
compared to only 8.8 months in those with less extensive 
surgery [41–44].

Adjuvant therapy

In 2005, a phase 3 randomized trial by Stupp et al. marked 
a significant shift in the treatment paradigm. It showed that 
the addition of concurrent and adjuvant TMZ to RT and 

Table 1   Summary of completed series for neoadjuvant SRS

Series Study type/
status

N Median dose Fractionation Timing of RT Radionecrosis Leptomeningeal 
disease

Local control

Prabhu, RS [30] Retrospective, 
published

117 15 Gy 1 fraction Within 2 days 5.1% at one year 4.3% at one year 80.1% at one year

Patel, AR [31] Retrospective, 
published

12 16 Gy 1 fraction Within 1 day 0% 10% 81.6%, 49.1% 
at 6 months, 
12 months

Vetlova E [32] Retrospective, 
published

19 18 Gy 1 fraction Within 2 days 0% 9% (one patient) 91% at 6 months

RAD 1002 [33] Phase I, com-
pleted

20 12–15 Gy 1 fraction Within 30 days 0% 5% (one patient) Not published

Shoichi, Degu-
chi [29]

Retrospective, 
published

20 30 or 35 Gy 5 fractions Within 4 days 0% 5% (one patient) 5% (one patient)
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surgery resulted in a noteworthy improvement in median OS 
from 12.1 to 14.6 months [37]. Subsequently, this regimen 
has become the standard of care therapy due to its success 
and minimal treatment-related toxicity. The optimal RT dose 
has been a subject of investigation. Dose escalation up to 
60 Gy/30 fractions has shown beneficial outcomes, but mul-
tiple studies have shown further escalation to 70 Gy does not 
confer additional advantages [45]. Importantly, these stud-
ies were done prior to TMZ being added to the treatment 
regimen and is being re-visited in the current era. A single-
arm phase I study conducted at the University of Michigan 
demonstrated promising results with safe dose escalation to 
75 Gy/30 fx with concurrent/adjuvant TMZ, with a median 
OS of 20.1 months [46].

Adjuvant SRS

There is growing interest in exploring dose escalation with 
stereotactic SRS while minimizing treatment-related toxicity 
[47, 48]. The only level I evidence evaluating the efficacy of 
stereotactic SRS as boost therapy with EBRT in newly diag-
nosed GBM comes from the RTOG 9305 randomized trial 
[49]. This study involved 203 patients with GBM, who were 
randomized to receive 60 Gy in 30 fractions with BCNU 
chemotherapy, with or without the addition of postopera-
tive SRS boost. At 61 months follow up, the median OS did 
not differ between the SRS and non-SRS groups (13.5 vs. 
13.6 months). Importantly, however, the generalizability of 
the findings from this study to contemporary practice are 
limited by the chemotherapy chosen and the lack of standard 
molecular characterization and stratification.

Neoadjuvant SRS

Pre-operative SRS offers several advantages over postopera-
tive SRS. First, it enables the use of more compact radiation 
target volumes, reducing radiation exposure to surrounding 
healthy tissues. Second, intact tissues have higher oxygen 
concentrations prior to surgery, potentially leads to more 
effective induction of double-stranded breaks. Third, it 
allows for post-irradiation tissue analysis, potentially allow-
ing for personalized treatment strategies [50, 51].

Currently, there are no available published studies on the 
utilization and clinical outcomes of neoadjuvant SRS in pri-
mary glioma. The administration of preoperative SRS can 
be challenging in certain scenarios, such as when patients 
with GBM present with significant mass effect requiring 
urgent surgical intervention and decompression. The large 
size of GBM tumors can also make precise SRS delivery 
challenging while maintaining tolerable doses for nearby 
healthy tissues. Performing SRS without histologic con-
firmation remains controversial [52, 53]. The NeoGlioma 
trial (NCT05030298) is currently investigating the role of Ta
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preoperative SRS in the management of GBM and high-
grade glioma.

There is also promise for preoperative SRS to increase 
immunogenic effects. Preclinical studies have demon-
strated that RT can act as an anti-tumor vaccine by releasing 
tumor-associated antigens and facilitating adaptive immune 
responses. Ablation of dividing cells in GBM, could also 
induce senescence in non-ablated cells. These responses 
counteract the immunosuppressive tumor microenvironment 
in GBM, enhancing neo-antigen presentation, promoting 
dendritic cell maturation, and downregulating Fas ligand 
expression. In combination with ICIs, this may amplify the 
anti-tumor immunity [23, 54].

Treatment planning

In the NeoGlioma Study, a gross tumor volume (GTV) was 
contoured with a recommended planning target volume 
(PTV) margin of 3 mm. SRS dose of 10 Gy is prescribed 
to the PTV. A clinical target volume (CTV) margin was not 
employed. Surgical resection is scheduled within 14 days 
following SRS.

The PreOperative Brain Irradiation in Glioblastoma 
(POBIG) phase I clinical trial in Manchester, UK, is aiming 
to assess the safety and feasibility of single-fraction preoper-
ative RT utilizing VMAT for newly diagnosed glioblastoma 
patients. Eligible participants will receive a single fraction of 
radiotherapy (ranging from 6 to 14 Gy) targeted at the high-
est risk area for postoperative residual disease (hot spot). 
The remaining part of the tumor (cold spot) will remain unir-
radiated for diagnostic sampling. POBIG presents a valuable 
opportunity for translational research by comparing irradi-
ated and unirradiated tissue.

High LET radiation

Linear Energy Transfer (LET), the average energy depos-
ited per length of a radiation track, is the determining factor 
of the biological potency of a radiation modality. Photon 
beams, which constitute SRS, exhibit a low LET, character-
ized by ionization reliant on the indirect effect of oxygen free 
radical formation to cause DNA lesions. In contrast, High 
LET radiation induces damage via direct ionization, and 
has the potential to enlist more potent systemic anti-tumoral 
immune responses via induction of smaller cleaved DNA 
fragments with greater disposition for cytosolic leakage.

In this way a neoadjuvant SRS approach may be of the 
most benefit. This is because it may also allow the high-
dose component of the tumor to be resected after carbon 
ion radiotherapy to analyze the biologic response of the tis-
sue, which could be done on a per-patient basis. The most 
interesting question is whether patients exposed to carbon 

ions demonstrate different biomarkers compared to con-
ventional radiotherapy [55]. As it stands currently, there 
is little genomic data analyzing the response of tissue to 
carbon ion therapy, however the data available does show 
differences between radiation modalities (i.e., protons and 
photons). In vitro studies suggest that carbon ion irradia-
tion reduce angiogenesis and metastasis [56]. While the role 
of high LET radiation is speculative, with the opening of 
Mayo Clinic Florida’s carbon ion center as the first in North 
America, we may see this application in the near future.

Benign and low grade intracranial tumors

Historically, the primary role for radiation therapy and SRS 
for benign tumors (i.e., meningioma, vestibular schwan-
noma, pituitary adenomas etc.) has been in the inoperable or 
the adjuvant setting. In tumors where a gross total resection 
(GTR) is not achieved, tumor recurrence is more likely with-
out adjuvant therapy. For example, a retrospective review 
from a cohort of 581 Mayo Clinic patients who underwent 
surgical resection for meningioma, 5- and 10-year PFS was 
61% and 39% for incomplete resection, but 88% and 75% 
with a GTR [57]. There are, however, cases in which a GTR 
cannot be achieved without significant deficits—for exam-
ple, low grade glioma involving eloquent cortex or vestibular 
schwannoma grossly adherent to the facial nerve—in which 
adjuvant SRS can be anticipated preoperatively. In these spe-
cific cases, neoadjuvant SRS to the unresectable component 
may prove to be beneficial in the future. This would serve 
to reduce normal tissue dose, reduce rates of progression, 
and allow for biologic study of the irradiated tissue. It would 
also deliver radiation when the margin of the target tumor 
as well as the critical structures around it are well defined. 
In addition, if the SRS were delivered in a short time frame 
with respect to the resection to follow, the risk of scar tissue 
formation at the tumor margins should be minimal thereby 
allowing the resection to be unimpeded by post-SRS changes 
at the brain-tumor interface.

Conclusion

In this review, it was first described how preoperative SRS 
may be superior to adjuvant radiosurgery for brain metas-
tases, particularly to reduce toxicity and improve both local 
and intracranial control. Three randomized Phase III trials 
are underway which will help us further understand the ideal 
timing, dose, and fractionation of neoadjuvant therapy. We 
also discussed how it may be a potential option for gliomas, 
which may offer benefits such as precise radiation target-
ing, higher oxygen concentrations for more effective DNA 
damage, and potential immunogenic effects. In the setting 
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of benign tumors, neoadjuvant SRS could potentially be 
utilized in cases in which a gross total resection is not pos-
sible or prudent and a subtotal resection is instead planned. 
Finally, we discussed how high LET radiation, such as car-
bon ion therapy, may prove advantageous due to tightly clus-
tered DNA damage, efficacy against cancer stem cells, and 
potential immunogenicity. Utilizing these high LET radia-
tion modalities in the neoadjuvant setting may also allow the 
field the move forward by further analysis of the irradiated 
tissue, which could be done to analyze a patient-specific 
response.
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