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Abstract 
 

 

Glioblastoma (GBM) is an aggressive and devastating primary brain cancer which 
responds very poorly to treatment. The average survival time of patients is only 14–

15 months from diagnosis [1, 2] so there is a clear and unmet need for the 
development of novel targeted therapies to improve patient outcomes. The 
multifunctional cytokine TGFβ plays fundamental roles in development, adult tissue 

homeostasis, tissue wound repair and immune responses. Dysfunction of TGFβ 
signalling has been implicated in both the development and progression of many 

tumour types including GBM, thereby potentially providing an actionable target for its 
treatment. This review will examine TGFβ signalling mechanisms and their role in the 
development and progression of GBM. The targeting of TGFβ signalling using a 

variety of approaches including the TGFβ binding protein Decorin will be highlighted 
as attractive therapeutic strategies. 
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Introduction  

 
Glioblastoma (GBM)  

A significant proportion of the human brain is made up of glial cells comprising four 

main subtypes: astrocytes, microglia, oligodendrocytes and their precursors NG2-
glia [3]. Originally, glial cells were thought to function as a molecular scaffold 
responsible for neuronal structural integrity. However, more recent studies have 

identified wider functions of glial cells in neuronal guidance, survival, and 
myelination, as well as the formation and regulation of synapses (reviewed in [4]).  

Tumours that originate from glial tissue are termed glioma. Diagnosis and 
classification of subtypes of malignant gliomas are determined by histological 
features, which identify glioblastoma (GBM) as the most common glioma subtype 

(about 15% of all brain tumours), affecting about 3 individuals per 100000 people [5, 
6].  

 
While GBM can affect any age group, the highest prevalence is observed in 
individuals aged between 55 and 60 years old and in males. Clinical presentation of 

GBM is broadly subdivided into primary and secondary GBM, the majority (90%) 
being primary GBM which generally occurs in older patients (≥45 years old).  Primary 

GBM develops rapidly without prior clinical evidence of a less malignant precursor 
lesion, while secondary GBMs typically develop through transformation of lower 
grade pre-existing astrocytomas. Secondary GBM, which account for the remaining 

10% of cases, have better prognosis, and predominantly occur in younger patients 
(≤45 years). Despite the differences in age of onset and clinical histories, primary 

and secondary GBM are histologically indistinguishable, with common phenotypes 
being uncontrolled proliferation, high invasiveness and frequent resistance to both 
chemo and radiation therapy [7]. However, sequencing of GBM tumours has 

identified different molecular profiles of primary and secondary GBM tumours. 
Primary GBM are characterised by frequent amplification of the gene encoding the 

epidermal growth factor receptor (EGFR) (34%) and loss or mutation of phosphatase 
and tensin homolog gene, PTEN (24%), while secondary GBM frequently carry 
mutations in TP53 (65%) and IDH1 (at least 70%) [8]. Recent data indicate that IDH 

mutations are the most reliable biomarker of secondary GBM [9].   
 

 
Currently, there is no conclusive evidence linking GBM to common environmental 
carcinogens such as smoking. The only recognised risk factor is prior exposure to 

ionising radiation [10], and although neurotropic viruses have been implicated, 
evidence to support a viral aetiology for GBM is also currently inconclusive[11, 12]. 

Given the lack of known predisposing factors, the vast majority of GBM cases are 
therefore considered to have arisen spontaneously. While the aetiology of the 
majority of GBM remains elusive, approximately 5% of all cases are the result of 

hereditary predisposition [13] caused by genetic disorders such as neurofibromatosis 
(types 1 and 2), tuberous sclerosis (TSC), von Hippel-Lindau disease (VHL), 

Cowden disease, Li-Fraumeni, and Turcot's, and Gorlin's syndromes. Within the 
remaining familial cases, the underlying hereditary cause, presumably combined with 
shared environmental influences, has not been delineated [14] although there is 

potential evidence for dominant inheritance of the disease [15]. However, genome-
wide single nucleotide polymorphism linkage analysis looking at the predisposition to 

develop gliomas specifically identified a susceptibility locus at 17q12-21.32 [16] and 
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certain risk alleles (eg in TERT and RTEL1) have subsequently been associated with 
specific tumour molecular phenotypes [17]. Interestingly, meta-analysis has shown a 

marked reduction in glioma risk in those suffering from atopic and infectious 
diseases, suggesting that increased immune-surveillance might be protective against 

GBM [18, 19].  
 
 

With the advent of more advanced sequencing and transcriptional profiling 
technology, it has become apparent that GBM cells exhibit significant inter- and intra-

tumour heterogeneity [20-24] and that the overarching general classification of 
primary and secondary GBM can be refined into several different subtypes [21-24]. 
Four molecular subtypes have been proposed, based on characteristic somatic 

alterations and gene expression signatures that are reminiscent of different tissue 
types [23]: neural progenitor cells (termed proneural (PN)), neurons (termed neural 

(NL)), mesenchymal tissues (mesenchymal (MES)) or proliferating cells and receptor 
tyrosine kinase activation (classical (CL)). Tumours in the PN subgroup, which has 
the highest percentage of occurrence in younger patients, exhibit an increased 

frequency of mutations in IDH1, TP53 and PIK3CA/PIK3R1 and amplifications and 
overexpression of PDGFRA [23]. Consistent with the younger age group three 

quarters of the PN subtype sequenced were secondary GBM. The N subtype is 
characterised by elevated levels of neural markers (such as NEFL, GABRA1, SYT1 
and SLC12A5). Despite having elevated mutation frequencies in the EGFR, TP53, 

and PTEN genes, the NL subtype displays no unique genetic alterations to 
distinguish it from other sub classes [23]. The MES subtype is associated with poor 

overall survival in patients and exhibits focal hemizygous deletion and mutations in 
NF1, and loss of IDH1, PIK3R1 and PDGFRA. The MES subtype also expresses 
mesenchymal markers MET and CHI3L1 [22], as well concurrent high level 

expression of components of the NFκB pathway such as RELB [23].Tumours of the 
CLA subtype display EGFR amplification and overexpression and may also express 

a constitutively active version of the gene (EGFR vIII) caused by deletion of exons 
2–7. This subtype also exhibits homozygous deletion of CDKN2A [23]. Thus, despite 
the different GBM tumour subtypes being histologically very similar, it is now clear 

there is a substantial genetic variation between the different sub-classes. It should 
also be noted, however, that cells from different regions of a single tumour can 

exhibit genetic features of more than one, and sometimes all, of these proposed 
subtypes [25]. 
 
GBM cancer stem cells 

 

Inter- and intra-tumour heterogeneity of GBM at the cellular, genomic and 
transcriptional levels is thought to be due, in part, to the presence of a subpopulation 
of cancer stem cells (CSC). The CSC model proposes that tumour cells possess 

some of the characteristics associated with untransformed, ‘normal tissue’ stem cells 
and consequently have the ability to self-renew and to give rise to all of the different 

cell types found within a tumour [26]. In GBM, glioma stem cells (GSC) [27-29] share 
many capacities associated with neural stem cells, including scope to self-renew, 
differentiate and the ability to form 3 dimensional neurosphere structures [30]. On 

their cell surface, GSC express a number of different neural stem cell antigen 
markers including CD133, Sox2 and nestin [31]. They also exhibit increased 

resistance to ionising radiation, which is thought to be a consequence of 
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upregulation of DNA-damage response proteins (ATM, ATR and CHK1) which 
presumably results in enhanced DNA damage repair [28, 32, 33]. Despite 

undergoing treatment, within a few months the vast majority of GBM patients 
experience tumour recurrence that is often localised at, or near, the site of initial 

treatment [34]. It has been postulated that GSCs are responsible for tumour 
recurrence [27-29] and are therefore a key target for potential new therapies.    
 
Treatment of GBM 

 

Current standard of care for GBM comprises maximal safe neurosurgical resection 
followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ) 
chemotherapy [35]. Despite this multimodal therapeutic intervention, GBM responds 

very poorly to treatment, with patients surviving an average of only 12-18 months 
from diagnosis and  5  and 10 year survival rates at around 5.5% and 2.9% 

respectively [6].  Age and performance status are the most powerful predictors of 
survival, with older patients generally experiencing shorter survival [36, 37].    
 

The ongoing failure to improve outcomes for GBM patients is multifactorial. Some 
areas of the brain are simply inoperable and this, combined with the highly infiltrative 

nature of GBM, inevitably results in incomplete resection and a significant burden of 
residual tumour cells [34].   Indeed, one of the main factors correlating with long term 
survival is the extent of tumour resection [38, 39]. Another major limiting factor in the 

effective treatment of GBM is the inability of many compounds to traverse the blood-
brain barrier [40], which prevents the use of many cytotoxic agents that are effective 

against other solid cancers [41, 42]. TMZ, a DNA alkylating agent, is the only drug 
that has shown clinical efficacy and is a key component of standard of care for GBM. 
However, the majority of GBM tumours exhibit high expression of O6-methylguanine 

methyltransferase (MGMT), which efficiently reverses the guanine methylation of 
DNA caused by TMZ treatment, thereby greatly reducing its efficacy [43]. Moreover, 

tumours that initially respond well to treatment with TMZ frequently become resistant, 
particularly when TMZ is administered as a monotherapy possibly through enhanced 
emergence of drug resistant subclones [34]. In support of this theory, acquired 

resistance to TMZ has been frequently observed in vitro in GBM derived cell lines 
[44].  

 
Other potential avenues for the treatment of GBM include molecular targeted 
therapies such as gene therapy, antiangiogenic treatments, immune-based 

approaches like chimeric antigen receptor (CAR) T-cell immunotherapy and 
therapeutic vaccines [45, 46]. However, at the time of writing this review, many of 

these alternative therapies had either not made the transition from the laboratory to 
the clinic or have failed to show efficacy in clinical trials. 
 
TGFβ Signalling in glioma 
 

Dysregulation of cytokine production and release has long been known to play an 
essential role in glioma progression by modulating the local tumour 
microenvironment to promote tumour cell proliferation and invasion, angiogenesis, 

and immune evasion. Cytokines known to be upregulated in glioma include a 
number of interleukins (IL-6, IL-8, Il-10 and IL-12), TNFα, HIF-1 and VEGF while 

those downregulated include the interferons IFN-α, -β and -γ and interleukins IL-2 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



5 

 

and IL12 [47, 48]. This key role of cytokine signalling cascades in glioma 
pathogenesis has made them an attractive target for potential new therapies, 

although none to date have proved effective in a clinical setting. 
 

Work carried out in the 1990s suggests that the cytokine TGFβ plays a role in the 
progression of glioma [49]. In the central nervous system, production of TGFβ has 
been observed in several cell types, including neurons, astrocytes, and microglia 

[50]. Under normal physiological conditions TGFβ is expressed at low basal levels 
[51]  undetectable by Immunohistochemical  staining [52], however, upon brain injury 

a significant increase in expression of TGFβ is evident. The importance of this 
response is illustrated by observations that  loss of TGFβ signalling results in 
increased neuronal death [51] [53]. Thus, it has been proposed that TGFβ has a 

protective role within the brain. Malignant gliomas like GBM express high levels of 
TGFβ [54-56] and these elevated cytokine levels correlate with poor prognosis. 

TGFβ can induce proliferation of gliomas [57] and addition of TGFβ to glioma cell 
lines can mediate an invasive glioma phenotype [58, 59]. Overall, there is increasing 
evidence to suggest that inhibition of TGFβ signalling might provide novel 

therapeutic options for GBM in tumours where TGFβ is acting to promote 
proliferation and survival.  

 
TGFβ Signalling Mechanisms 

 

The TGFβ superfamily consists of a large number of multifunctional cytokines which 
play fundamental roles in development, adult tissue homeostasis, regulation of 

tissue, wound repair and immune responses. The superfamily includes activins, 
inhibins and bone morphogenetic proteins (BMP) [60] as well as the three isoforms 
of TGFβ (TGFβ1, β2, β3). In vivo, the vast majority of cells express at least one 

isoform of TGFβ. TGFβ is secreted as a Large Latent Complex (LLC) which can 
subsequently be targeted to the extracellular matrix (ECM) [61]. Following proteolytic 

and/or integrin mediated release from the LLC, TGFβ initiates signalling (illustrated in 
Figure 1) by binding a hetero-tetramer of two type I and type II TGFβ receptor 
serine/threonine kinases (TGFBRI and TGFBRII). The constitutively active TGFBRII 

in close proximity to TGFBR1 trans-phosphorylates TGFBRI in its regulatory GS 
domain [62, 63] hence activating the kinase domain of TGFBRI and initiating the 

canonical SMAD pathway to regulate gene expression [62, 63]. TGFβ also signals 
via non-canonical (SMAD-independent) pathways, in a cell type and context 
dependent manner, utilising a plethora of other cellular pathways including Nuclear 

Factor κB (NF-κB), Phosphatidylinositol-3-Kinase (PI3K)/AKT, Rho-like GTPase and 
Mitogen-Activated Protein Kinase (MAPK) pathways including MAPK1/3 (ERK2/1), 

MAPK8 (JNK1) and MAPK14 (p38)) [64, 65].  
 
When dysregulated, TGFβ signalling plays a major role in the pathophysiology of 

many diseases, including several different types of cancer. Paradoxically, in cancer 
TGFβ can act as either a tumour suppressor or a tumour promoter dependent upon 

genetic and epigenetic changes present within the tumour cells [66, 67]. Generally, 
the tumour-suppressing effects associated with TGFβ are thought to occur within 
normal cells and early-stage tumours. Within this context, TGFβ negatively regulates 

both cell survival and proliferation. TGFβ inhibits cell cycle progression through 
induction of the cyclin dependent kinase inhibitors CDKN2B (p15) and CDKN1A 

(p21) while concurrently reducing expression of MYC (C-Myc) and ID1-3. Activation 
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of the TGFβ pathway also promotes genetic stability by enhancing expression of 
TP53 and CHK2, and may induce apoptosis via the up regulation of death-

associated protein kinases (DAPK) and BCL2 family members such as PUMA [68-
71]. 

 
Conversely, in the context of a more advanced tumour, TGFβ becomes an 
oncogenic factor promoting many of the hallmarks of cancer. These include 

excessive proliferation, increased cell survival, a stem cell like phenotype, 
immunosuppression, angiogenesis, epithelial to mesenchymal transition (EMT) 

(reviewed in [72]), tumour invasion and ultimately metastasis [73, 74]. 
 
The apparent paradox associated with the roles of TGFβ in cancer development and 

progression makes targeting the pathway for therapeutic use challenging. TGFβ’s 
specific role in a tumour needs to be ascertained prior to commencement of 

treatment. In tumours that are addicted to TGFβ signalling for growth and/or require 
it for dissemination, inhibition of the pathway may prove beneficial. However, where 
TGFβ acts in a tumour suppressor role, inhibition of the pathway could be 

detrimental.  Therefore, in a therapeutic setting it is clearly important that the precise 
nature of TGFβ signalling within a specific tumour should be delineated to inform the 

potential use of TGFβ inhibitors.    
 
The Role of TGFβ Signalling in GBM 

 
Tumour cell autonomous TGFβ signalling 

 

Malignant glioma cells reportedly express autocrine TGFβ1 and TGFβ2 [75, 76]. 
Elevated levels of TGFβ2 and TGFβ3 have also been observed within tumour tissue, 

with hyper-activation (measured by phosphorylated-SMAD2 of the canonical 
TGFβ/SMAD pathway) correlating with poor patient prognosis [57, 77]. In vitro 

however, consistent with the notion of a TGFβ paradox, the functional outcome of 
TGFβ signalling may vary. Thus, TGFβ has been demonstrated to both positively 
and negatively regulate growth both in glioma cell lines [78-82] and in primary 

tumour cells derived from patient biopsies [57]. Additionally, loss of the TGFβ growth 
inhibitory response has been observed in glioma cells of a higher grade [83, 84]. 

Glioma cell lines can be broadly classified in 3 groups based on whether TGFβ 
inhibits (U87 MG), promotes (U373 MG) or has no major effect on proliferation [57, 
80-82, 85]. In cell lines that are either growth promoted or inhibited by TGFβ, 

inhibition of TGFβ signalling markedly reduces or increase cellular proliferation, 
respectively [57]. Whether elevated levels of TGFβ can promote proliferation may, at 

least in part, be due to epigenetic changes within the tumour.  For example, TGFβ 
can induce expression of pro-proliferative PDGF-B, but only in gliomas with an 
unmethlyated PDGFB gene promoter [57]. The methylation status of the PDGFB 

promoter, may be partially predictive in determining the response of a GBM tumour 
to TGFβ, and hence the aggressiveness of the tumour.        

 
Additionally, TGFβ also promotes the upregulation of microRNA182 (MIR182), which 
subsequently inhibits the activity of the deubiquitinase enzyme ubiquitin carboxyl-

terminal hydrolase (CYLD). Under normal cellular conditions active CYLD helps to 
dampen down NFκB signalling. The NFκB pathway plays an important role in the 
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development of cancer (reviewed in [86]). Briefly, increased NFκB signalling 
promotes the ability of cells to proliferate and undergo EMT, whilst also suppressing 

cellular apoptosis and stimulating angiogenesis. The reduction of CYLD activity 
caused by TGFβ-mediated induction of MIR182, therefore, results in sustained 

constitutive activation of NFκB in human glioma cells [87-89]. NFκB-mediated EMT is 
thought to contribute to the radiation resistance observed in tumour cells [90].   

Interestingly, standard treatment of GBM (surgery and chemo-radiotherapy) may 

also result in increased TGFβ signalling. TGFβ’s role in modulating a wound 
response has been well described in detail elsewhere [91]. It is highly likely that 

these pathways are also activated by tumour resection. In support of this notion, 
enhanced expression of TGFβ1 was observed after localised brain injury in rats [92]. 
In patient derived GBM cell lines, treatment with TMZ resulted in a dose-dependent 

increase in gene expression and cellular levels of TGFβ [93]. Exposure of cells to 
ionising radiation (IR) is also known to activate TGFβ [94] and in GBM this has the 

potential to enhance invasiveness via activation of MMP-2 [95, 96].  Additionally, 
after IR treatment, TGFβ seems to confer a protective effect against radiation 
induced damage [97]. Conversely, inhibition of TGFBRI has been shown to enhance 

radiosensitivity [98] in a variety of cancer cell lines including GBM [82, 99].  It would 
be of interest to examine if cellular levels of TGFβ ligands and downstream 

biomarkers of pathway activation also increase in a dose dependent manner in GBM 
patients treated with radiotherapy.  

Hence, conventional therapy may increase TGFβ levels at the site of treatment.  

Given that local recurrence of GBM generally occurs at, or adjacent to, the treatment 
volume, it is tempting to speculate that the treatment induced increases in TGFβ 

signalling may contribute to tumour recurrence. In certain contexts, TGFβ has well-
established pro-oncogenic effects, and therefore may play a fundamental role in the 
development of GBM’s highly malignant phenotype. 

 
Pro-invasive TGFβ signalling 

One of the characteristics of, and major challenges in treating, GBM is the highly 
invasive nature of the tumours. Invasion of malignant cells requires digestion of the 
extracellular matrix (ECM) by matrix metalloproteinases (MMPs). TGFβ modulates 

the cellular levels of several MMP proteins including MMP-2 and MMP-9 [100, 101]. 
In parallel, TGFβ also decreases the level of tissue inhibitors of MMPs (TIMPs) 

consequently promoting ECM degradation and facilitating cellular invasion [102, 
103]. All three TGFβ isoforms also have the capacity to induce EMT in epithelial cells 
[104-106] where cells exhibit decreased expression of epithelial markers such as E-

cadherin, and enhanced expression of mesenchymal markers such fibronectin and 
vimentin [104]. The junctions connecting adjacent cells are removed and cells lose 

their polarity cues. TGFβ has been reported to induce features of the EMT-
associated MES subtype in GBM cells through upregulation of transcriptional factors 
ZEB1, TWIST1 and SNAIL1 [107-109]. Additionally, TGFβ also has the potential to 

induce MIR10a/b and MIR182, which can enhance invasion of GBM cells via PTEN 
suppression and TGFβ/MIR182/NFκB crosstalk respectively [95, 110]. RNAi-

mediated knock down of TGFBR2 severely impairs glioma invasion and 
tumourgenicity [76], thus, TGFβ signalling via its receptors can contribute to the 
migration and invasion of GBM tumour cells.   
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TGFβ in the maintenance of Glioma Stem Cells (GSC) 

GSCs express a higher level of TGFβ2 than differentiated glioma cells [111] and 

autocrine TGFβ signalling is crucial in the maintenance of GSC tumorigenicity [112]. 
The TGFβ/SMAD pathway can induce the transcription of leukaemia inhibitory factor 

(LIF) which, in turn, activates JAK-STAT signalling, promotes GSC self-renewal and 
ultimately prevents differentiation [113]. Canonical SMAD-dependant TGFβ 
signalling also directly induces the expression of SYR box 4 (SOX4) which increases 

expression of the transcription factor SOX2 [112] and thus promotes a stem cell like 
phenotype in embryonic and neural stem cells [114]. Through these signalling 

pathways, TGFβ can significantly increase the self-renewing capacity while limiting 
the differentiation of GSCs.  

TGFβ signalling within the tumour microenvironment.  

TGFβ signalling and angiogenesis in GBM 

New blood vessel formation, or angiogenesis, is critical for growth beyond a tumour 

mass of approximately 2mm3 [115]. At larger sizes, a lack of new blood vessels limits 
availability of oxygen and nutrients and hinders tumour growth. In vivo, TGFβ1 can 
induce angiogenesis both directly [116, 117] and also indirectly via enhanced 

expression and activity of various pro-angiogenic proteins such as vascular 
endothelial growth factor (VEGF). VEGF is essential for increasing the permeability 

and proliferation of endothelial cells in vessel walls. Studies indicate a synergistic 
relationship between TGFβ signalling and hypoxia in VEGF transcriptional regulation 
[118].  In GBM the transcription of VEGF is controlled by TGFβ [119, 120]. GBM cells 

also exhibit elevated HIF levels [121] which enhance the transcription of VEGF [122], 
thus, the control of VEGF transcription could be modulated via cross-talk between 

HIF and TGFβ. TGFβ secreted by GBM tumour cells can also promote angiogenesis 
by increasing the expression of insulin like growth factor-binding protein 7 (IGFBP7) 
[123]. In a human GBM cell zebrafish xenograft model, TGFβ1 enhanced the 

induction of angiogenesis which could be repressed by the addition of a JNK (c-Jun 
N-terminal kinase) inhibitor [124]. Therefore, TGFβ probably contributes to 

modulation of angiogenesis resulting in the highly vascularised tumours that are 
characteristic of GBM.  

Modulation of Immune responses by TGFβ in GBM 

Recent studies indicate that TGFβ signalling can influence the tumour 
microenvironment and contribute to cytotoxic T cell exclusion and immune evasion in 

metastatic urothelial cancer and experimental models of breast and colon cancer 
[125, 126].  Similar mechanisms may also operate in GBM and this clearly warrants 
further investigation. As mentioned previously, activation of immunosurveillance has 

been implicated as a protective mechanism against GBM [18, 19] however, local and  
systemic suppression of the immune system has been well documented in GBM 

patients [127] [128]. The elevated levels of TGFβ ligands observed within the GBM 
tumour microenvironment are thought to contribute to this immunosuppression. 
TGFβ specifically prevents production of granzyme A/B, interferon gamma and 

perforin, molecules that are directly involved in T and Natural Killer (NK) cell-
mediated tumour cytotoxicity [129]. Additionally, TGFβ1 downregulates the NK group 

2D activating receptor on NK cells as well as the corresponding ligand on GBM 
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tumour cells, which aids evasion from T and NK cells. TGFβ2 reduces expression of 
the human leukocyte antigen (D related) on malignant GBM cells [130-132],promotes 

the production of FoxP3+ T regulatory cells and stimulates macrophages of the M2 
phenotype to produce IL-10, all of which have an immunosuppressive effect and are 

associated with poor prognosis in GBM [133, 134]. To summarise, TGFβ has the 
capacity to influence a number of factors that contribute to a microenvironment that 
supports tumour progression and growth, ultimately leading to treatment failure [68].  

Inhibition of TGFβ as a therapeutic treatment in GBM 

Given the multiple lines of evidence indicating that TGFβ can act in a pro-

tumourigenic manner in GBM (summarised in Figure 2) it follows that TGFβ 
signalling may be a promising therapeutic target for its treatment. In support of this 
strategy, genetic approaches to knock down expression of TGFβ or TGFβ receptors 

in glioma cells have been shown to limit migration, invasion and tumourigenicity [76, 
135].  

Several different inhibitors modulating TGFβ signalling at different points in the 
pathway have been developed (Figure 3). The first class regulates TGFβ signalling 
by limiting the availability of free ligand, thereby preventing receptor binding and 

activation and inhibiting subsequent downstream pathways. These include antisense 
oligonucleotides targeting TGFβ mRNAs, blocking monoclonal antibodies and 

receptor ectodomain-based ligand traps that sequester the TGFβ ligand. A second 
class of inhibitors do not prevent binding of TGFβ to its receptor but inhibit receptor 
kinase activity, halting the downstream signal transduction pathway [85, 136]. 

Building on the abundance of clinical and experimental data suggesting a role for 
TGFβ signalling in the progression of GBM, a variety of these inhibitors have been 

tested both in vitro and in vivo in preclinical models of glioma [82, 85, 99, 136-139].   

The first class of inhibitors, which limits ligand availability, includes trabedersen (or 
AP12009), an antisense oligonucleotide complementary to the human TGFβ2 mRNA 

sequence. In patient-derived glioma cells, treatment with trabedersen significantly 
reduces TGFβ2 protein secretion compared to the controls [139]. A phase II clinical 

trial examined the effectiveness of two different doses of trabedersen (10 and 80 M) 

compared to standard chemotherapy in the treatment of recurrent GBM or anaplastic 

astrocytoma (AA) [140]. In GBM, both doses of trabedersen used within the study, 
were equivalent to standard chemotherapy.  Interestingly in AA patients, trabedersen 
did show sufficient promise to justify a follow-up phase III trial (NCT00761280). 

However, this trial was halted due to insufficient recruitment of patients [140]. In 
mouse models of glioma, use of a pan-TGFβ neutralising antibody (1D11) yielded 

contradictory results depending on the immune context, with complete remission 
only observed in immunocompetent mice [141]. A human monoclonal antibody 
neutralising all TGFβ isoforms GC1008A (also known as fresolimumab) was 

evaluated in a small Phase II study in recurrent high-grade glioma patients which 
included 9 patients with primary and 1 with secondary GBM. While fresolimumab 

was able to efficiently pass the blood brain barrier and penetrate the tumour mass, 
the trial was halted after 12 participants due to lack of any discernible clinical benefit 
[142]. P144 is a peptide encompassing amino acids 730-743 from the membrane-

proximal ligand-binding domain of betaglycan and acts as ligand trap for TGFβ [143]. 
In vitro treatment of GBM cell lines with P144 results in decreased proliferation, 

migration, invasiveness, and tumorigenicity and, in vivo, P144 was reported to impair 
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tumour growth resulting in a concurrent increase in survival [144]. Similarly, the 
expression of a soluble version of TGFBR2 in glioma cells, results in a reduction of 

the phosphorylation of SMAD2 and ultimately led to a delay in growth [145].  

The kinase inhibitor class, targeting TGFβ receptors, includes LY2109761 which 

inhibits both TGFβ receptors. In vitro, LY2109761 reduced the survival of glioma cell 
lines and increased their sensitivity to radiation. In vivo, it significantly reduced 
tumour growth and invasion resulting in prolonged survival [99] [138]. SB-431542 is 

another small molecule kinase inhibitor with high specificity for TGFBR1 [146]. In 
glioma cell lines, treatment with SB-431542 results in inhibition of both 

phosphorylation and subsequent nuclear translocation of the SMAD 2/3/4 complex 
[85]. Expression of VEGF and PAI-1, both downstream targets for TGFβ signalling 
are also reduced [85]. The TGFBR1 kinase inhibitor galunisertib (LY2157299 

monohydrate) has exhibited an acceptable safety profile in clinical trials and, as 
such, is considered to be one of the most promising TGFβ inhibitors for clinical use. 

A phase I trial that included GBM patients indicated promising activity in this setting 
[147] but unfortunately the follow-up phase II trial indicated that galunisertib did not 
improve overall survival, either as a single agent or in combination with lomustine 

[148]. Recurrent GBM is notoriously challenging to treat however, with tumour cells 
exhibiting high levels of resistance to therapy. Indeed, the lack of any clinical benefit 

observed in clinical trials of the other TGFβ inhibitors described above, may also be 
a consequence of their use in recurrent GBM as opposed to use as an adjuvant or in 
combination with standard first line therapies. Galunisertib in combination with TMZ 

and radio/chemotherapy is currently being trialled in patients with newly diagnosed 
malignant glioma (NCT01220271), however, at the time of preparing this review, no 

clinical outcome information was available. 
Despite promising in vitro data demonstrating that TGFβ inhibition could be an 
amenable target for treatment of GBM, no TGFβ pathway inhibitors tested so far 

have proven of clinical benefit to GBM patients. The reasons for this are likely 
manifold. Firstly, many preclinical in vitro and in vivo models used in the past fail to 

recapitulate the complexity of human disease and treatment, potentially giving rise to 
results that lack biological or clinical relevance. This is perhaps evident from the 
number of promising therapies identified in pre-clinical studies that have failed to 

translate into the clinic. Indeed, there has been no successful addition of a 
chemotherapeutic to GBM standard of care since TMZ. However, there is increasing 

development and use of more sophisticated and biologically relevant model systems, 
such as using 3D cell culture and patient derived cell lines in place of commercial 
lines [149]. The use of pre-clinical imaging modalities and small animal targeted 

radiotherapy platforms is also becoming more widespread, allowing for improved 
treatment planning and delivery in in vivo studies. Applying these strategies to TGFβ 

research may lead ultimately to more clinically translatable results.  For instance, 
radiotherapy (RT) is standard of care for all GBM patients. However, radiation has 
been widely demonstrated to modulate cell signalling to produce a more aggressive 

and invasive phenotype in GBM cells and, importantly, to stimulate TGFβ secretion 
[150-155], potentially augmenting therapeutic response. The incorporation of state-

of-the-art pre-clinical RT technologies that allow image guided, targeted delivery of 
multiple, clinically relevant fractions in combination with orthotopic models using 
primary cell lines in pre-clinical TGFβ studies may aid the identification and selection 

of promising therapies and predictive biomarkers in the future. 
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Poor patient response may also be in part due to insufficient delivery of therapeutic 
agents to the tumour bulk and invasive margins across the blood brain barrier, one of 

the major challenges in glioblastoma research. Although systemic administration of 
chemotherapy has been traditionally the preferred route, the combination of poor 

delivery, dose limiting side effects and short serum half-life has restricted progress 
and lead to researchers searching for alternative delivery methods. Recent studies 
have indicated that local delivery of chemotherapeutic agents through application of 

hydrogels or polymeric wafers into the resection cavity following surgery have the 
potential to enhance patient survival [156]. This approach allows maximum delivery 

and continuous slow release of therapeutic reagent to the remaining tumour cells 
while avoiding unwanted toxicity. Glioma cells are highly infiltrative however and this 
local application may not be sufficient to penetrate the brain parenchyma to reach 

the invading cells, thus the need for systemic administration may be unavoidable. 
The recent development of targeted delivery of chemotherapeutics across the BBB 

using receptor- mediated nanoparticle technology have so far produced promising 
results in the pre-clinical setting [157-159]. 

Despite the current challenges, there is clear scope for the development and 

application novel strategies for the targeting of TGFβ signalling. One potential new 
therapeutic avenue is the use of the glycoprotein decorin (DCN).      

Decorin as a Potential Anti-Cancer Therapy in Glioblastoma 

 
Mammalian DCN is the prototypical protein of the small leucine-rich repeat 

proteoglycan (SLRP) family. These proteins comprise a vital constituent of the ECM. 
The DCN gene resides on chromosome 12q21.33 and produces a primary 

translation product that is 329 amino acids in length, with a predicted native size of 
42 kDa. As a glycoprotein DCN undergoes extensive post-translational modification, 
with specific residues of the protein covalently linked to a glycosaminoglycan chain 

of either chondroitin or dermatan sulphate. Consequently, the apparent molecular 
weight of the protein can vary considerably from the predicted size. The specific type 

of modification seems to be contingent on tissue type [160]. DCN is thought to have 
four functional domains [161, 162] and consists of 12 repeats of a globular protein 
core which is made up of tandem leucine-rich repeats (LRRs) flanked by cysteine-

rich disulphide domains [163]. The LRR repeats form a curved solenoid structure 
[160] allowing interaction with a number of different substrates, including TGFβ, 

fibronectin, collagen, EGFR and VEGFR [164] (reviewed in [165]). DCN is 
predominantly synthesised and secreted by fibroblasts and mesenchymal stromal 
cells and is also found in the cytoplasm of epithelial cells (including neurons and 

astrocytes of the brain) [166, 167]. The first work characterising the function of DCN, 
suggested that it acted exclusively as a matrix proteoglycan, binding to type I, II and 

IV collagens to regulate fibrillogenesis [161]. In mouse models, DCN-null mice 
exhibit abnormal collagen morphology and skin fragility confirming a role linked to 
fibrillogenesis [168].  

 
With respect to TGFβ signalling, at development stage E12, DCN null mice exhibit 

an increase in levels of TGFβ, SMAD2, SMAD3, and phosphorylated SMAD2/3 
indicative of elevated activation of the canonical TGFβ signalling pathway. At E18, 
TGFβ is no longer elevated, while levels of SMAD2/3 are significantly reduced in 

DCN null mice compared to control mice [169].  A separate study also observed that 
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knockout mice exhibit increased expression of TGFβ1 and a concurrent increase in 
phosphorylation of ERK1/2 and SMAD3 but, interestingly, not SMAD2 [170].  This 

work suggests that within the context of foetal development, DCN can modulate the 
expression of TGFβ, SMAD2 and SMAD3, acting as both a negative and positive 

regulator of signalling.     
   
Subsequently, DCN has been implicated in a number of other important biological 

processes including cell proliferation, differentiation, migration, metastasis, 
autophagy, inflammation, immunomodulation, and wound repair [162, 171]. Of 

interest, DCN can act as a tumour suppressor through inhibition of tumour growth 
and angiogenesis [172]. In metastatic breast cancer, loss of DCN correlates with an 
increased incidence of progressive disease and is associated with poor prognosis 

[173]. 
 

Decorin and TGFβ  
 
The core region of DCN allows interaction with a number of different proteins. 

Through this domain, DCN has the capacity to bind to all 3 active isoforms of TGFβ 
[164, 174].  In CHO cells, exogenous DCN was sufficient to arrest TGFβ-induced 

proliferation [175]. The affinity DCN has for TGFβ may suppress signalling by 
competing for binding to the ligand with its appropriate receptor [176].   
 

DCN may also modulate TGFβ signalling via an alternative pathway that does not 
directly prevent the binding of active isoforms of TGFβ to the appropriate receptor 

complex. This alternative regulatory pathway involves the Ca2+/calmodium-
dependent kinase II phosphorylation of a negative regulatory site on SMAD2 (serine-
240) [177]. In the absence of additional TGFβ, DCN induced the formation and 

nuclear translocation of the SMAD2/SMAD4 complex. The authors speculated that 
DCN could regulate canonical TGFβ signalling via sequestration of the cytoplasmic 

pool of co-SMAD4 to the nucleus, thereby limiting its availability for TGFβ receptor 
initiated SMAD signalling [177]. 

Additionally, given that DCN is an ECM protein and that DCN-TGFβ-binding is 

reversible, DCN has been proposed to act as a reservoir for TGFβ [174]. TGFβ 
stimulates the upregulation of DCN which may, in turn, directly inhibit the expression 

of TGFβ mRNA, acting as part of a negative feedback loop [178, 179]. Therefore, 
DCN has the potential to modulate TGFβ signalling at multiple different levels and is 
considered to be a naturally-occurring antagonist of TGFβ which may have potential 

therapeutic uses in TGF-driven disease.  

 

Regulation of TGFβ signalling by Decorin 

The therapeutic potential of DCN to regulate TGFβ signalling was first examined in a 

rat model of kidney inflammation. The fibrosis observed in the kidney is a 
consequence of elevated levels of TGFβ1, and this process is markedly reduced by 
addition of DCN [179].  TGFβ signalling is also involved in the wound healing 

response. In this context, the addition of recombinant DCN downregulates TGFβ1 
and TGFβ signalling in models of hypertrophic scarring in skin [180, 181]. Acute and 

chronic adult lung disease is also associated with excessive TGFβ signalling levels 
[182] and expression of exogenous DCN within the airway epithelium is sufficient to 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



13 

 

dampen down elevated signalling [183]. In DCN null mice, abnormal regulation of 
TGFβ signalling is rescued by addition of exogenous DCN [169].  

Given the significant body of evidence implicating elevated TGFβ signalling in glioma 
progression, the effect of DCN on GBM has also been investigated. Ectopic 

expression of DCN in human and rat glioma cell lines inhibits mRNA transcription 
and bioactivity of TGFβ1 and TGFβ2 and also results in significant tumour 
regression of C6 glioma cells in vivo [167]. DCN treatment is also associated with 

decreased cell migration and infiltration [184, 185]. Animals receiving an intracranial 
injection of DCN expressing cells survive significantly longer than those injected with 

control tumour cells [186]. These studies also suggest that DCN contributes to 
reduced TGFβ pathway activity by preventing the synthesis and release of TGFβ1 
and TGFβ2 [167, 186]. Tumours treated with DCN, regress after an initial period of 

growth. The regression is marked by increased infiltration of T and B immune cells 
into the tumour, which can be reversed by suppression of the immune system. This 

suggests that DCN abrogates the TGFβ-induced immunosuppressive state [167], 
suppresses TGFβ synthesis and promotes GBM tumour regression.   
 

While this review has focused on using DCN to regulate TGFβ signalling, it should 
be noted that the biological effects of DCN are not solely limited to modulation of 

TGFβ function [165]. As shown in Figure 4, DCN also interacts with a myriad of 
different signalling molecules via direct binding to receptor tyrosine kinases such as 
EGFR, IGFR and VEGFR. DCN therefore has the potential to regulate a number of 

disparate pathways involved in inflammation, angiogenesis, autophagy and 
mitophagy [172, 187-189]. One of the major challenges in the chemotherapeutic 

treatment of malignant tumours is the ability of tumour cells to adapt and develop 
resistance to the drugs used, which is acutely problematic when chemotherapy 
options are limited. However, in mouse models, resistance of tumours to cisplatin or 

cyclophosphamide can be restored by intravenous injection of DCN [190, 191]. 
Therefore, the ability of DCN to restrict tumour cell adaption by simultaneously 

targeting a number of pathways may be its greatest asset as an adjuvant therapy. 

However, as a note of caution, although several independent studies have 
demonstrated that DCN inhibits TGFβ’s bioactivity [192, 193], DCN can also 

increase TGFβ-TGFβRII binding, with a consequential increase in TGFβ signalling 
[194]. In GBM, floating GSC neurospheres exhibit increased expression of DCN 

alongside increased resistance to TMZ [195]. More intriguingly, in GBM patients, 
high levels of DCN in tumours seem to correlate with shorter survival, which 
contradicts DCN’s perceived role as a tumour suppressor [196]. Therefore, 

modulation of cell signalling may not be simply a function of DCN’s role as a ligand 
trap but may be more reminiscent of TGFβ itself with its ability to either positively or 

negatively affect pathways being context dependent. 

Concluding Remarks 

 

GBM is the most predominant and aggressive primary brain cancer and currently 
remains incurable with a devastating prognosis of 14–15 months survival after 

diagnosis. The current treatment regime involves surgical resection followed by 
adjuvant radiotherapy and temozolomide chemotherapy, however in many cases, 
treatment only extends patient survival by a few months. Treatment failure can be 
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attributed to the invasive nature of GBM, substantial tumour heterogeneity and the 
presence of GSC populations. In the last decade, the search for new treatments for 

GBM has been a major focus of cancer research. Oncogenic TGFβ is known to drive 
GBM carcinogenesis and because of this growth factor addiction, TGFβ inhibitors 

could be ideal targeted therapies. Current understanding identifies DCN, a naturally-
occurring TGFβ antagonist, as having the capacity to prevent GBM growth and brain 
infiltration. However conflicting research has also implicated DCN in enhancing 

TGFβ bioactivity and consequently promoting carcinogenesis. Given the uncertainty 
about the specific biological effects of TGFβ and DCN in the context of GBM, further 

study and the development of appropriate biomarkers to help identify which patients 
may benefit from treatment with TGFβ inhibitors (such as DCN) would aid a precision 
medicine approach. Additionally, future clinical trials of TGF inhibitors should be 

designed to test their efficacy in the first line settings and in combination with 
immune checkpoint blockade regimens.  

 
 

 
Figure legends  

 

 
Figure 1. TGFβ SMAD canonical and non-SMAD signalling pathways. TGFβ is 

released from its extracellular ligand trap and activated by either: proteolysis by 
matrix metalloproteinases or plasmin, integrins like αvβ6 or αvβ8, reactive oxygen 
species or Thrombospondin. Free TGFβ then binds to a heterotetrameric receptor 

complex composed of TGF R1 and TGFBR2, enabling TGFBR2 to phosphorylate 
TGFBR1. The activation of TGFBR1 allows for the recruitment and subsequent 

phosphorylation of SMAD2 or SMAD3 (pSMAD). pSMAD2/3 then associates with 
SMAD4 in a heterotrimeric complex which translocates to the nucleus where, along 
with other co-factors and transcription factors, it binds to target gene promoters to 

positively or negatively regulate their expression. In addition, less well characterised 
non-canonical SMAD-independent pathways via PI3K, MAPK, SHC, TRAF, NFκB 

and RHO may be activated to regulate a number of cellular pathways.        
Abbreviations: Transforming Growth Factor Beta Receptor 1 (TGFBR1), 
Transforming Growth Factor Beta Receptor 2 (TGFBR2), Small Mothers Against 

Decapentaplegic (SMAD), Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), 
Mechanistic target of rapamycin kinase (mTOR), ribosomal protein S6 kinase B1 

(S6K), growth factor receptor bound protein 2 (GRB2), Son of Sevenless 
(SOS), TNF receptor-associated factor (TRAF), Transforming growth factor -

activated kinase 1 (TAK1), Mitogen-activated protein kinase kinase (MKK), c-Jun N-
terminal kinase (JNK), p38 mitogen-activated protein kinase (p38), par-6 family cell 
polarity regulator alpha (PAR6), Smad-Ubiquitin Regulatory Factors (SMURFs), Rho-

associated protein kinase (ROCK), LIM domain kinase (LIMK), IκB Kinase (IKK) and 
nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). 

 
Figure 2. In GBM, pro-tumourigenic TGFβ signalling promotes tumour 
aggressiveness. TGFβ can promote: angiogenesis, cancer stem cell phenotypes, 

tumour cell migration and invasion, and immune-suppression thus contributing a 
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tumour micro environment that is supportive of chemo- and radio-therapy resistant 
cells.   

  
 
Figure 3. Summary of TGFβ inhibitors. Trabedersen (or AP12009) an antisense 

oligonucleotide complementary to the human TGFβ2 mRNA sequence, helps 
prevent translation of TGFβ2.  Fresolimumab (GC1008A) is a TGFβ neutralising 

antibody, while P144 is a short peptide that has a strong affinity for TGFβ and acts 
as ligand trap. These three different compounds limit the bio-availability of free TGFβ 

ligand that is able to bind to the receptor, preventing ligand dependent activation of 
the TGFβ signalling pathway. The second class of inhibitors are small molecules 
inhibit the kinase activity of the receptor, therefore halting the downstream signal 

transduction pathway.    
 
Figure 4. Modulation of other signalling pathways by Decorin. A. Decorin (DCN) 

is a proteoglycan named after its ability to ‘decorate’ extracellular matrix proteins 
such as collagen. DCN is heavily modified by glycosaminoglycans allowing the 

protein to bind to a wide variety of cellular targets. Decorin has four domains. I: 
signal and propeptide. II: amino terminus (of mature protein). III: core protein. IV: 

carboxyl terminus.Decorin can act as a ligand for a number of receptor tyrosine 
kinases, modulating the associated downstream pathways.   Abbreviations: Decorin 
(DCN), Epidermal growth factor receptor (EGFR), Insulin-like growth factor (IGFR), 

Vascular endothelial growth factor receptor 2 (VEGFR2), Hepatocyte growth factor 
receptor (Met), Peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC1α), Trichoplein keratin filament binding (TCHP)/Mitostatin, TIMP 

metallopeptidase inhibitor 3 (TIMP3), catenin beta 1 (CTNNB1)/β-Catenin, hypoxia 
inducible factor 1 subunit alpha (HIF1α), vascular endothelial growth factor A 

(VEGFA), protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2)/AMPK, 
mTOR (mechanistic target of rapamycin kinase), MAPK (Mitogen-activated protein 

kinase), p21 (cyclin dependent kinase inhibitor 1A), RHOA (ras homolog family 
member A), ROCK1 (Rho associated coiled-coil containing protein kinase 1) and 

THBS1 (thrombospondin 1). 
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This review highlights the complex roles of TGFβ signaling in glioblastoma. 
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