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A B S T R A C T

Objectives: Nowadays, several techniques have been developed in order to guide neurosurgeons during intended
maximal safe resection of high-grade gliomas (HGG). Fluorescence-guided microsurgery using 5-aminolevulinic
acid (5-ALA) is one of these. A large amount of studies have been performed evaluating benefits in newly
diagnosed HGG. However, little is known about the safety, accuracy and efficacy in recurrent HGG.

The primary objective of this thesis is to examine the value of 5-ALA in patients with recurrent HGG con-
cerning diagnostic accuracy, extent of resection (EOR), safety and survival compared to white-light resection. As
a secondary objective, we compared these results with current literature concerning 5-ALA in newly diagnosed
HGG.
Patients and methods: We performed a systematic review and included eighteen articles obtained from MEDLINE,
EMBASE, Web of Science and TRIP database. Search terms include “glioma” and “aminolevulinic acid”.
Additional studies were identified through checking the reference lists. This study is in conformity with the
PRISMA and BMJ guidelines.
Results: 5-ALA shows similar results regarding diagnostic accuracy in recurrent HGG compared to newly diag-
nosed HGG, although specificity and negative predictive value seem lower. It shows complementary value in
identifying tumor boundaries compared to MRI-neuronavigation. Diagnostic accuracy is not influenced by
previous chemo- or radiotherapy. New neurological deficits proved to be similar and were in general mainly
temporary. However, adverse events overall were more common. Therefore, indications for repeat surgery
should be followed strictly. 5-ALA might increase overall survival in recurrent gliomas, but has no clear impact
on progression-free survival.
Conclusion: 5-ALA should be regarded as a useful and safe intraoperative tool in recurrent glioma surgery.
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• What is already known on this subject

Since the first publication on the usage of 5-aminolevulinic acid (5-
ALA) in the treatment of glioblastoma multiforme by the ALA-Glioma
Study Group, many reviews have been published on this subject. It is
already known that the extent of tumor resection is correlated with an
increase in survival. Intraoperative 5-ALA fluorescence has a very fa-
vourable diagnostic accuracy during the treatment of newly diagnosed
high-grade gliomas (HGG).

• What this systematic review adds

Although studies evaluating the application of 5-ALA in the treat-
ment of recurrent HGG have been performed in current literature, most
of these studies are characterised by a small study size. Therefore, this
article forms a comprehensive systematic review analysing benefits of
5-ALA in recurrent HGG concerning diagnostic accuracy, extent of re-
section, safety and survival.

1. Introduction

High-grade gliomas (HGG) constitute the most common newly di-
agnosed malignant brain tumor in adults. Of these, glioblastoma mul-
tiforme (GBM) is the most prevalent [1–3]. Invasiveness is a hallmark of
these tumors, impeding the intraoperative distinction between normal
and pathological tissue [4–7]. As a consequence, recurrence is a major
concern [8]. Nevertheless, extent of resection (EOR) is correlated with a
gain in progression-free survival (PFS) [9–18], mainly in newly diag-
nosed HGG [10,14,15,19–21]. Therefore, according to the Stupp pro-
tocol, microsurgical resection followed by concomitant chemor-
adiotherapy forms the gold standard [1,22,23].

Nowadays, several techniques have been developed in order to
guide neurosurgeons during maximal safe resection. One of these
techniques is fluorescence-guided surgery (FGS) using 5-aminolevulinic
acid (5-ALA) (Fig. 1). The first publication by the ALA-Glioma Study
Group in 2006 in patients with GBM was a breakthrough in FGS re-
search [24]. A significantly higher incidence of gross total resection
(GTR) was achieved compared to conventional white-light resection
(WLR).

5-ALA is a relatively recent tool in the brain surgery repertoire
[4,25–27]. Until now, it is the only fluorescent tumor-cell specific agent
that has been tested in a multicenter randomised controlled trial [28].
5-ALA is the first metabolite in the heme-biosynthesis-pathway, both in
normal and pathological tissues [29]. After mitochondrial uptake, it is
metabolized into protoporphyrin IX (PPIX) [27,30]. In contrast to the
non-fluorescent amino acid 5-ALA, PPIX owns a strong fluorescent ca-
pacity [26]. Furthermore, 5-ALA seems to have a radio-sensitizing ef-
fect [31]. The last step in the heme-biosynthesis-pathway is the in-
corporation of iron into PPIX, regulated by the enzyme ferrochelatase.
PPIX accumulation can be visualized as red fluorescence using a mod-
ified microscope with blue-violet illumination [25–27,32].

Despite multiple hypotheses, it is still not completely clarified why
PPIX is preferentially accumulated in HGG. CPOX upregulation [33],

ferrochelatase downregulation [33,34], increased cell density [35] and
distortion of normal blood-brain-barrier (BBB) are the most common
encountered theories in current literature [36–39]. The latter seems
reasonable, since the hydrophilic molecule cannot cross the intact BBB
[26]. This underlines the need for a damaged BBB for PPIX to accu-
mulate within tumor cells. It has been proven that 5-ALA accumulates
in other tissues as well, such as low-grade gliomas (LGG), choroid
plexus, ependymomas, meningiomas and intracerebral metastases
(MET) [40–44]. It also seems to occur in anaplastic foci, making these
lesions visible intraoperatively [45–47]. In contrast, normal brain tissue
shows a very limited amount of accumulation. Accumulation is more
pronounced in the solid tumor part, but is also present in the infiltration
zone. Removal of the solid part has the greatest influence on survival
rate [48–50].

The absence of fluorescence does not always indicate the absence of
malignant cells [51]. One explanation is photo-bleaching, in which
fluorescence deteriorates under the influence of light [32]. This phe-
nomenon probably only plays a minor role. Another cause is delayed 5-
ALA administration prior to surgery [5]. However, a sufficient amount
of fluorescence was observed even twelve hours after oral application
[5,32]. On the other hand, positive fluorescence not always proves the
existence of HGG, since fluorescence has been observed in benign le-
sions as well, such as abscesses or vasculitis [52–56]. Even in the ab-
sence of PPIX, many tissues show some fluorescence caused by auto-
fluorescence [54]. Rarely, it can even been detected in normal brain
tissue [57–62]. Nevertheless, intensity of intraoperative fluorescence
correlates well with tumor cellularity, both in newly diagnosed and
recurrent HGG, making it an ideal predictor for malignancy [15,62,63].

5-ALA is administered orally three to four hours prior to anesthesia.
Target cells are almost immediately reached, with maximal con-
centrations after six hours. Within three to four hours, the substance has
been excreted. A maximum dose of 20mg/kg is most commonly used
[30,32]. Higher doses are associated with an increase in adverse events
(AE) [64]. Hypotension, liver dysfunction and skin photosensitivity are
occasionally encountered [4,21,61,62,65,66]. Metabolic AE (e.g. in-
creased liver enzymes) and changes in biochemical parameters (e.g.
renal dysfunction) resolve spontaneously within the first twenty-four
hours [67]. Since 5-ALA is a diagnostic – rather than a therapeutic –
tool, much attention should be paid to safety and compound-related AE.
However, since it has little intrinsic activity on normal brain tissue,
neurological AE should be attributed to surgery, rather than the com-
pound itself.

Although repeated surgery may be beneficial in recurrent HGG,
there are some important hazards. Due to gliosis in the previously
manipulated brain, anatomical landmarks are affected, making the
boundary between normal and abnormal brain tissue even more dis-
torted. Furthermore, there is an increased risk of causing neurological
deterioration caused by over-resection. Therefore, 5-ALA should be
used with caution. Main clinical observations in the usage of 5-ALA in
the treatment of recurrent HGG are depicted in Fig. 3.

Since the approval of 5-ALA in HGG resection by the European
Medicines Agency and recently by the Food and Drug Administration, a
large amount of studies have been performed evaluating benefits in

Fig. 1. Intraoperative 5-ALA fluorescence during (A) and after (B) resection of a high-grade glioma.
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newly diagnosed HGG. However, little is known about long-term sur-
vival and postoperative results in recurrent HGG. Therefore, the pri-
mary objective of our review is to analyse benefits of 5-ALA in recurrent
HGG concerning diagnostic accuracy, EOR, safety and survival com-
pared to conventional WLR. As a secondary objective, we compared our
results with current literature regarding 5-ALA usage in newly diag-
nosed HGG. Therefore, this article forms a comprehensive systematic
review analysing benefits of 5-ALA in recurrent HGG concerning diag-
nostic accuracy, extent of resection, safety and survival.

2. Methods and materials

2.1. Research protocol

We performed a systematic review in which intraoperative 5-ALA
usage was compared with conventional WLR in patients with recurrent
HGG. This review was conform the 27-item checklist of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement and the British Medical Journal guidelines [68,69].

The primary objective was to analyse benefits of 5-ALA in patients
with recurrent HGG concerning diagnostic accuracy, EOR, safety and
survival compared to WLR. As a secondary objective, we compared our
results with current literature concerning 5-ALA usage in newly diag-
nosed HGG and looked for notable differences.

2.2. Search strategy, eligibility criteria, data extraction and quality
assessment

2.2.1. Search strategy
An adequate research question was formulated (Appendix A). The

used model was depending on the examined objective. We used the
Patient-Intervention-Comparison-Outcome model for the objectives
“survival” and “safety”, while “diagnostic accuracy” and “extent of
resection” were investigated using the Patient-Index-test-Reference-
test-Target-condition model (Table 1). According to these models, we
derived corresponding Medical Subject Headings (MeSH-terms). Due to
the limited available literature regarding 5-ALA usage in recurrent
HGG, we used a minimal amount of MeSH-terms, reducing the risk of
overlooking relevant literature. The following methodological filters
were used to exclude irrelevant literature: “full text only” and “human
studies”. First and last searches were performed on 31st of March and 1st

of November 2018, respectively. SB was responsible for database
searches, abstract screening and quality assessment. Final inclusion was
done after discussion with and approval by the senior author.

2.2.2. Information sources
We used the MEDLINE (PubMed), EMBASE, Web of Science and

Turning Research Into Practice databases. Reference lists were also
checked for additional studies. Ongoing clinical trials were checked
using the International Standard Randomised Controlled Trial Number
registry and PROSPERO. Grey literature (research published in non-
commercial form) was not examined due to arbitrary methodological
reliability.

2.2.3. Eligibility criteria
We considered the most reliable study types according to the wa-

terfall principle of the 6S Evidence Pyramid of Haynes and DynaMed
[70,71]. Both retrospective and prospective studies were taken into
account. Case reports, comments, reviews and technical notes were
ignored.

Secondly, studies were screened on title and abstract, in which we
focused on: “5-aminolevulinic acid”, “recurrent”, “protoporphyrine IX”,
“photosensitizing agents”, “extent of resection”, “Karnofsky
Performance Scale”, “overall survival”, “progression-free survival”,
“safety”, “intraoperative care”, “fluorescence-guided surgery”, “con-
ventional white-light resection”, “neuronavigation”, “glioma surgery”,
“brain neoplasms”, “high-grade glioma”, “glioblastoma multiforme”
and “malignant glioma”. Studies that did not fit our research question,
incomplete and duplicate studies were excluded.

Thirdly, all studies were subjected to our predetermined inclusion
and exclusion criteria (Table 2). It should be noted that not only studies
on GBM were considered, but other malignant tumors according to the
2016 World Health Organization classification as well.

Lastly, unlike other systematic reviews, we were especially inter-
ested in the evaluation of 5-ALA in recurrent HGG. Therefore, we ex-
cluded studies focusing exclusively on newly diagnosed HGG.
Remaining studies were evaluated in full-text and checked in more
detail.

2.2.4. Quality and risk of bias assessment
Quality assessment was performed according to the guidelines of the

Enhancing the Quality And Transparency Of health Research network.
Systematic reviews, diagnostic and cohort studies were evaluated ac-
cording to the PRISMA-, STARD- and STROCSS-statement, respectively
[72–74]. Since no randomised controlled trials were included, the Risk-
Of-Bias-In-Non-randomised-Studies-of-Interventions (ROBINS-I) tool
was used to evaluate the risk of bias [75]. Funnel plots were examined
to detect publication bias [76]. Other forms of bias that were explicitly
mentioned were also taken into account. Corresponding figures were
made using Review Manager 5.3. We excluded studies that were not
consistent with our quality assessment or those with an unacceptable
risk of bias. All assessments can be obtained at any time by contacting
the corresponding author without any costs attached.

2.2.5. Reference point
We searched for an appropriate reference point to compare 5-ALA in

recurrent and newly diagnosed HGG. We used six systematic reviews
that analysed 5-ALA usage in newly diagnosed HGG (Table 3). Checking
ongoing literature yielded one additional systematic review that will be
published soon [77]. The PRISMA-statement was used to make sure our
reference point complied the highest amount of methodological relia-
bility. The PRISMA-statement can be obtained at any time by contacting
the corresponding author without any costs attached.

2.3. Statistical analysis

2.3.1. Database
An inventory database was created using data that could be

Table 1
PICO-model and PIRT-model.

Survival and safety Diagnostic accuracy and extent of resection

P Patient P Patient Recurrent high-grade glioma (WHO grade III or IV)
I Intervention I Index test 5-aminolevulinic acid guided surgery+ adjuvant chemotherapy and/or radiotherapy
C Comparison R Reference test ➢ Conventional WLR+ adjuvant chemotherapy and/or radiotherapy

➢ Newly diagnosed high-grade glioma (WHO grade III or IV)
O Outcome T Target condition Diagnostic accuracy, extent of resection, safety and survival

Table showing the PICO-model that was used for the objectives “survival” and “safety”, as well as the PIRT-model that was used for “diagnostic accuracy” and “extent
of resection”. WHO=World Health Organization; WLR=White-Light Resection.
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retrieved directly from the included studies, as well as additional in-
formation extracted from the database of Mansouri et al. [21]. Irre-
trievable information was left blank, meaning that authors were not
contacted in case of incomplete or missing data.

2.3.2. Meta-analysis
Due to obvious heterogeneity and methodological variability across

included studies, we deliberately decided not to perform a meta-ana-
lysis. Another reason was the poor reporting of results encountered in
some of the included studies (e.g. no clear description of how primary
endpoints were measured). Pooling individual studies could therefore
create misleading results.

3. Results

3.1. Study selection

The sequence of consecutive steps used in our systematic review is
depicted by the QUORUM flow chart (Fig. 2) [78]. A total of eighteen
studies met the final inclusion criteria
[8,15,49,50,53,57,61–63,79–87]. 229 studies were excluded for rea-
sons provided in Fig. 2.

3.2. Characteristics of included studies

Characteristics of included studies are summarised in Appendix D.
All articles are written in English. Twelve and five studies are pro-
spective and retrospective, respectively, while one study relates to a
histological examination. All studies are unicentric, except for one. All
studies are non-randomised. Our review encompasses two case-control
studies [63,80], two single-arm uncontrolled phase II studies [57,62]
and one systematic review [87]. Publication year and recruitment time
varies from 2007 to 2018 and 2003 to 2018, respectively. Follow-up
ranges from 6 to 43 months.

Patient characteristics, treatment protocols and additional tools are
heterogeneous. In total, 552 grade IV, 146 grade III, 17 grade II, two
transformations from a LGG and 19 MET are included. Of these, 455
newly diagnosed and 276 recurrent tumors are included. 1064 biopsy
specimens were taken. Mean age varies from 22 to 63 years.

Fourteen studies provided a breakdown of sex ratios (370 males,
242 females). All patients received 20mg/kg 5-ALA orally two to four
hours preoperatively.

3.3. Risk of bias within included studies

3.3.1. Risk of bias in systematic reviews
We evaluated bias in systematic reviews concerning 5-ALA in newly

diagnosed gliomas using the ROB-tool (Appendix B). Bias encountered
was mostly inevitable. The study design did not allow for double-
blinding, since neurosurgeons could not be blinded prior to surgery.
Many studies did not mention any usage of random sequence genera-
tion. Therefore, this tool probably reflects an overestimation of the
actual amount of bias.

3.3.2. Risk of bias in non-randomised studies
We evaluated bias in non-randomised studies concerning 5-ALA in

recurrent gliomas using the ROBINS-I-tool (Appendix C.). Significant
risk of selection bias was found in only one study, because three pa-
tients were excluded after start of intervention based on negative
fluorescence [50]. Most studies did not report blinding of radiologists
and pathologists. The adjustments that could have result into bias were
explicitly stated prior to statistical analysis. Therefore, the overall risk
of bias was substantial but anticipated and acceptable.

3.4. Diagnostic accuracy

Fourteen studies are reported on diagnostic accuracy in recurrent
HGG [8,15,49,50,53,57,61–63,79,81,83,85,86]. Results are sum-
marised in Appendix E. A comparison with newly diagnosed HGG is
shown in Appendix I.

3.4.1. Sensitivity and specificity to detect tumor tissue
Although study designs are heterogeneous, most studies report an

80–85% sensitivity [8,53,61,62,79]. Two studies even report a 100%
sensitivity, although one study only included three recurrent HGG
[82,85]. When comparing fluorescence with conventional MRI-neuro-
navigation in regard to tumor boundary identification, most studies
report superiority of 5-ALA in both newly diagnosed and recurrent tu-
mors [4,82,83]. The added value is even higher in recurrent compared
to newly diagnosed GBM [82,88]. One study indicates that a

Table 2
Inclusion and exclusion criteria.

INCLUSION CRITERIA EXCLUSION CRITERIA

• HGG (WHO grade III or IV) • Solely LGG

• Recurrent HGG • Solely newly diagnosed HGG

• Brain neoplasms • Other than brain neoplasms (e.g. metastases, abscess, cavernoma, aneurysm)

• 5-aminolevulinic acid guided surgery

• Conventional white-light resection
• Solely radiotherapy or chemotherapy

• Solely radiotherapy-chemotherapy

• Age 18 – 85 years • Pediatric population

• Inappropriate STARD- or STROCCS-statement

• Inappropriate ROBINS-I-tool

• Duplicate records

• Review / comment / report / technical note / in vitro study / animal study

• Language other than English

• Other photosensitizing agents than 5-aminolevulinic acid

• Inaccessible databases

Table showing the inclusion and exclusion criteria. Studies that did not fulfil our inclusion criteria were excluded. HGG = High-Grade
Glioma; LGG=Low-Grade Glioma; WHO=World Health Organization; STARD=Standards for Reporting Diagnostic Accuracy;
STROCSS= Strengthening the Reporting of Cohort Studies in Surgery; ROBINS-I= Risk Of Bias In Non-randomised Studies of Interventions.

Table 3
Systematic review reference point.

Systematic review Publication year Number of included studies

Shiguang et al. 2013 10
Hadjipanayis et al. 2015 9
Eljamel et al. 2015 20
Ferraro et al. 2016 22
Mansouri et al. 2016 43
Senders et al. 2016 105

Table showing systematic reviews used as a reference point to compare results
of 5-ALA in recurrent HGG.
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combination of 5-ALA and MRI-neuronavigation lowers sensitivity, but
increases specificity [54].

Sensitivity seems higher in newly diagnosed HGG compared to re-
current HGG [83], although not every study confirms this statement
[61]. Moreover, no randomised case-control trial has ever confirmed
this tendency. Grade IV gliomas are more often fluorescent with respect
to grade III gliomas [8], although not every study confirms this state-
ment [61]. No significant difference in fluorescence was observed in
gliomas that were provided with adjuvant treatment after primary

surgery [8].
One prospective analysis examines differences between 5-ALA and

18F-FET-PET in HGG and LGG [86]. 18F-FET-PET sensitivity seems
significantly higher than 5-ALA fluorescence. Therefore, as suggested
by the authors, 5-ALA-guided resection should not be initiated in pa-
tients with negative 18F-FET-PET uptake. However, when examining
recurrent gliomas in more detail, the sensitivity seems to be equal. It
should be noted that 17 out of 30 patients suffered from a LGG, blurring
the results. These results are in contrast to another study, in which 5-

Fig. 2. The Quality of Reporting of Meta-analyses (QUORUM) flow chart illustrating the consecutive steps that were followed during our systematic review. Reasons
for exclusion are also mentioned. HGG = High-Grade Glioma.

Fig. 3. Summary of common clinical observa-
tions when using 5-aminolevulinic acid in the
treatment of recurrent high-grade gliomas.
HGG = High-Grade Glioma;
PPIX=Protoporphyrin IX; BBB=Blood-
Brain-Barrier; LGG=Low-Grade Glioma;
NPV=Negative Predictive Value;
OS=Overall Survival; PFS= Progression-Free
Survival.
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ALA seems more sensitive in predicting tumor remnants than 18F-FET-
PET [49]. Timing was the main difference in both studies, in which 18F-
FET-PET was performed preoperatively in the former, while post-
operatively in the latter.

One prospective non-randomised study evaluates sensitivity and
specificity of both 5-ALA and Gd-DTPA intraoperative MRI (iMRI) in
HGG and brain MET [89]. When focusing on HGG, sensitivity of 5-ALA
is significantly higher than iMRI. However, specificity shows opposite
results. When focusing on brain MET, no differences concerning sensi-
tivity and specificity can be obtained. Therefore, iMRI shows no addi-
tional advantages compared to 5-ALA in brain MET.

Multiple meta-analyses of newly diagnosed gliomas show sensitiv-
ities of 80–95% and specificities of 60–65% [4,5,90–93]. Therefore,
sensitivities seem similar, while specificities seem higher in newly di-
agnosed gliomas [62]. However, it should be noted that most meta-
analyses included both newly diagnosed and recurrent gliomas, blur-
ring the results.

3.4.2. Positive and negative predictive value (PPV and NPV)
Most studies report a mean PPV of 90% [57,61,62]. PPV is higher in

areas appearing pathological under white-light compared to areas that
appear normal [57]. A correlation between PPV and fluorescence-in-
tensity was found, in which areas with strong fluorescence show higher
PPV as opposed to areas with weak fluorescence, both in newly diag-
nosed and recurrent gliomas [4,5,15,57,61–63,90–93]. Prior chemo- or
radiotherapy did not alter PPV [38,57,85]. On the other hand, no
fluorescence seems to have lower NPV in recurrent HGG [15,57,61–63].
Moreover, IDH1 and IDH2 mutations seem to be associated with low
NPV, both in newly diagnosed and recurrent HGG [8,94]. PPV and NPV
of 5-ALA and iMRI did not significantly differ [89]. When looking at 5-
ALA in newly diagnosed gliomas, PPV and NPV amount to 90–100%
and 40–50%, respectively [58,62,87]. While PPV in newly diagnosed
and recurrent HGG (mean value of 93%) look similar, NPV of absence
of fluorescence seems to be lower in recurrent HGG (mean value of
31%) [4,5,62,90–93]. Therefore, both in newly diagnosed and re-
current HGG, presence of strong fluorescence indicates a very high
probability of tumor presence, while absence of fluorescence does not
predictably indicates absence of tumor, especially in recurrent HGG.(62)

3.4.3. False positives and false negatives (FP and FN)
Absence of tumor cells in fluorescent tissue (FP), is more common in

the tumor boundary compared to tumor bulk [53]. Moreover, FP is
higher in recurrent (mean value of 35%) as opposed to newly diagnosed
tumors [53,62]. It is fairly common in recurrent HGG and brain MET,
but relatively rare in newly diagnosed HGG [53]. This could be the
result of an intense infiltration of neutrophils, reactive astrocytes and
macrophages after adjuvant therapies, as well as radiation necrosis
[87]. Peritumoral edema probably plays an important role in brain
MET. Absence of fluorescence in tumor tissue (FN) was rather high in
recurrent gliomas (mean value of 62%) [62]. This could be reduced by
combining 5-ALA and iMRI [79].

3.5. Extent of resection (EOR)

EOR in recurrent gliomas was assessed in eleven studies
[8,15,57,61,63,79–82,84,85]. Results are summarised in Appendix F. A
comparison with newly diagnosed HGG is shown in Appendix I. It
should be noted that there is a high variability concerning criteria and
intraoperative adjuvant tools between different studies, making a direct
comparison delicate and should be done with caution.

3.5.1. Gross total resection (GTR)
GTR was most commonly defined as absence of contrast-enhance-

ment on MRI within 72 h postoperatively [15,57,61,63,79–81]. Other
studies defined GTR as contrast-enhancement< 0.175 cm3 [84], or<
0.28ml. [85]. Two studies accomplished GTR in all patients [79,85].

However, it should be noted that one study includes only three re-
current GBM, in which all patients received neoadjuvant radio- and
chemotherapy. Other studies report lower rates, ranging from 19 to
89%. Lowest percentage is 19.4%. This was due to tumor infiltration in
viable structures (e.g. pyramidal tract, corpus callosum, basal ganglia)
[57]. Most meta-analyses on 5-ALA in newly diagnosed HGG show GTR
of 83–94% [4,5,21,90–93]. As expected, GTR is lower in eloquent brain
tumors, ranging from 64 to 74% [5,91]. Most studies report higher GTR
in newly diagnosed with respect to recurrent gliomas, although not
significantly [81]. However, one study shows a higher GTR in recurrent
gliomas [15]. In this study, newly diagnosed GBM was defined as pa-
tients who underwent first resection or had previous biopsy or partial
resection in another center, but no previous chemo- or radiotherapy.
Another study used the same database and looked at mitotic index and
nestin immunostaining [63]. A significant positive correlation between
mitotic index and fluorescence was seen.

One study evaluates GTR in patients undergoing 5-ALA-guided mi-
crosurgery combined with iMRI, in which residual tumor was seen in
52% [61]. According to another study, focusing on newly diagnosed
HGG, but methodologically criticized [95], iMRI is superior to 5-ALA
regarding total resection rates, particularly in eloquently located tu-
mors [96]. However, other studies conclude that 5-ALA and iMRI have
synergistic effects in tumor resection [97,98]. Finally, different tumor
grades showed no significant difference in GTR [81].

3.5.2. EOR > 98%
EOR > 98% was an objective frequently encountered [8,63,82].

Most studies report higher rates in newly diagnosed with respect to
recurrent GBM, although one study shows opposite results [82]. This
observation is not significant, however. There is a significant difference
between grade III and grade IV HGG, with higher rates in the latter
[82]. Although fluorescence improves EOR > 98% (58% vs. 50%), this
was not significant [8]. Finally, EOR > 98% is not influenced by age or
gender. [8].

3.6. Safety, adverse events (AE) and neurological outcome

Safety, AE and neurological outcome in recurrent HGG were as-
sessed in thirteen studies [8,15,49,57,61–63,79–81,84–86]. Results are
summarised in Appendix G. A comparison with newly diagnosed HGG is
shown in Appendix I.

3.6.1. Postoperative new neurological deficits (PNND)
Overall amount of PNND ranged from 11 to 36%. Most of these were

temporary, leading to a small percentage of permanent deficits. In one
study, all gliomas with PNND showed fluorescence during microsurgery
[8]. PNND are more often in grade IV with respect to grade III gliomas
[8]. There is a positive correlation between EOR and prevalence of
PNND [8]. Patients without PNND show longer PFS (7.8 vs. 4.6 months)
and OS (13.5 vs. 11.1 months) [8]. Therefore, benefits of repeated
surgery seem to subside when complications occur.

3.6.2. Adverse events (AE)
AE are defined as the combination of PNND and persistence of

preoperative neurological deficits or non-neurological adverse events.
Overall amount ranges from 7 to 58%. In one study, impaired speech
and motor function were the most prevalent [57]. Other AE explicitly
mentioned include: deteriorated hemianopia, status epilepticus, hemi-
paresis, leg paresis, dysphasia and fine motor skills impairment
[15,79,84]. Most studies show no 5-ALA-related AE [57,81,86]. How-
ever, one study reports drug-related AE in four patients: nausea and
vomiting (three patients) and photosensitivity (one patient) [61]. No
relevant shifts in laboratory parameters associated with 5-ALA were
detected [57]. One study shows no significant difference in AE between
recurrent GBM treated with multimodal therapy (5-ALA-guided mi-
crosurgery followed by a combination of high dose brachytherapy and

S. Broekx, et al. Clinical Neurology and Neurosurgery 195 (2020) 105913

6



Temozolomide) and Temozolomide alone [80]. Two studies even show
no AE or declines in neurological status [49,86]. A combination of 5-
ALA and 18F-FET-PET was used in these studies.

AE are higher in the recurrent as opposed to the newly diagnosed
group, as was seen in meta-analyses [4,91,92]. However, PNND seem to
be similar in both study groups [8,57]. First surgery is associated with a
significant lower morbidity and higher postoperative KPS [81].
Therefore, indications for 5-ALA usage in recurrent surgery should be
followed very strictly.

3.6.3. Karnofsky Performance Scale (KPS) and National Institutes of
Health Stroke Scale (NIHSS)

The KPS is frequently used in order to compare pre- and post-
operative neurological status [99]. Preoperative KPS ranges from 60 to
100%. In one study, only one patient shows a KPS deterioration, due to
progression of arm paresis and psychomotor retardation [85]. It should
be noted that only three patients were included in this study. NIHSS is
another way to assess neurological outcome postoperatively. Meta-
analyses show higher rates of deterioration 48 h after surgery in newly
diagnosed gliomas compared to recurrent gliomas [92,93].

3.7. Survival

Five studies report on survival in recurrent HGG [8,15,57,79,80].
Results are summarised in Appendix H. A comparison with newly di-
agnosed HGG is depicted in Appendix I.

3.7.1. Overall survival (OS)
Most studies define OS as “time between surgery and death from

any cause” or “date of last follow-up in case of no documentation of
death” [57]. A non-significant difference between grade III (9.9
months) and grade IV (7.4 months) gliomas is seen in one study [57]. 5-
ALA is associated with a significant increase in OS in retrospective
series [8]. A correlation between resection rates and survival is ob-
served, in which> 98% resection leads to a significant increase in OS
[8].

However, subgroup analyses show that this only applies to grade IV
gliomas and is not observed in grade III gliomas [8]. Kaplan-Meier
survival analyses show a significant increase in OS in patients with
GTR. As already noted, OS and PFS are influenced by PNND, which
predisposes those patients to a lower OS and PFS [8]. One study com-
pares multimodal treatment (5-ALA-guided microsurgery followed by
concomitant high dose brachytherapy and Temozolomide) with Te-
mozolomide alone in patients with recurrent GBM, in which OS in-
creases with a multimodal treatment [80]. Recurrent gliomas have in-
herently less favourable OS and PFS [15]. This is confirmed by meta-
analyses, in which newly diagnosed gliomas show an OS and PFS of
14–15 months and 5–9 months, respectively [4,90–93]. One meta-
analysis shows a gain in OS of 4–6.2 months in newly diagnosed
gliomas with respect to recurrent gliomas [90].

3.7.2. Progression-free survival (PFS)
Progression was most commonly defined according to the Response

Assessment in Neuro-Oncology (RANO) criteria [100–102]. In recurrent
HGG, 5-ALA seems to have a significant influence on OS, although it
does not have an impact on PFS [8]. This is in contrast to newly di-
agnosed HGG, in which 5-ALA appears to have an influence on PFS, but
not on OS [21]. However, this only applied to patients younger than 55
years, since older patients also experience an increase in OS. [21] GTR
is associated with longer PFS, as with OS. Finally, PFS seems to be in-
creased significantly when combining Temozolomide with other treat-
ment modalities [80].

4. Discussion

To our knowledge, this article forms one of the first comprehensive

systematic reviews evaluating benefits of 5-ALA in recurrent HGG
concerning diagnostic accuracy, extent of resection, safety and survival.
In this review, the benefits of 5-ALA in the treatment of recurrent HGG
were evaluated based on eighteen included studies. Our conclusions
are, to a great extent, in line with those encountered in the individual
included studies, as well as the systematic review published by Chohan
et al. [87].

In contrast to Eljamel et al., [83] we found that 5-ALA sensitivity
seems similar in recurrent and newly diagnosed gliomas, although
specificity was lower. It should be noted that most meta-analyses in-
cluded both newly diagnosed and recurrent gliomas, blurring the re-
sults. Della Puppa et al. [82] and Tykocki et al. [85] showed sensitiv-
ities of 100%, although these studies only included a small amount of
patients. In line with the findings of Floeth et al. [86], diagnostic ac-
curacy of 5-ALA was comparable to 18F-FET-PET in recurrent gliomas,
although the former seems superior in detecting tumor remnants, as
stated by Roessler et al. [49]. Sensitivity of 5-ALA was higher compared
to iMRI, although specificity was lower. However, false negative results
of 5-ALA fluorescence can be reduced by combining 5-ALA and iMRI, as
stated by Quick-Weller et al. [79]. Roder et al. [96] conclude that iMRI
is superior to 5-ALA in the resection of eloquently located tumors, al-
though Tsugu et al. [97] and Eyupoglu et al. [98] state that both
techniques have synergistic effects. A positive correlation between the
amount of fluorescence and PPV exists in both recurrent and newly
diagnosed gliomas. PPV in recurrent and newly diagnosed gliomas is
equal, although NPV is lower in the former. Even more in recurrent
gliomas, 5-ALA has a significant advantage in identifying tumor
boundaries over conventional MRI-neuronavigation. Sensitivity, speci-
ficity, PPV and NPV were not influenced by previous chemo- or
radiotherapy. GTR seems higher in newly diagnosed gliomas, although
insignificant. Resection rates did not significantly differ between tumor
grades.

In contrast to the study of Yamada et al., [61] most studies showed
no 5-ALA-related adverse events. Although PNND occurred equally in
recurrent and newly diagnosed gliomas, total amount of adverse events
was higher in recurrent gliomas. Fortunately, most PNND were tem-
porary. Nevertheless, indications for recurrent surgery should be fol-
lowed strictly. Although not significant, PNND were more common in
grade 4 compared to grade 3 gliomas. Both in recurrent and newly
diagnosed gliomas, PNND seem to decrease OS and PFS. Self-evidently,
OS and PFS are less favourable in recurrent gliomas, although amount
of resection is correlated with an increased survival rate in both groups.
5-ALA increases OS in recurrent gliomas, but has no impact on PFS. On
the other hand, 5-ALA increases PFS in newly diagnosed gliomas,
without altering OS.

Our review contains some limitations. Bias was inevitable in some of
our studies. Due to the fact that only published studies and articles
written in English were selected, selection bias was unavoidable. The
study of Coburger et al. [50] showed significant risk of bias because
three patients were excluded after the start of intervention based on
negative fluorescence. Additionally, grey literature was not considered
appropriate, leading to some publication bias. As a consequence of open
label nature of treatment options (FGS or WLR), allocation bias and
read-out related bias to the study group could not be ruled out. Not
every patient received an equal design of treatment modalities, leading
to unavoidable performance bias. Attrition bias was limited, since drop
out and loss to follow-up was minimal.

Secondly, individual studies showed great amount of heterogeneity.
Different doses in different preoperative time intervals, as well as dif-
ferent definitions for GTR were used.

No standardised scale for quantifying the amount of 5-ALA fluor-
escence is available [91]. Therefore, exact connotations of the vague
descriptions “strong” and “weak fluorescence” can differ, making a
comparison of diagnostic accuracy less reliable. This could be partially
compensated by future use of spectroscopy or specialised algorithms to
estimate the concentration of accumulated PPIX. These techniques are
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not used in the included studies, announcing new investigations in fu-
ture research. Data on survival rates are difficult to compare, due to
different treatment modalities and adjuvant tools. Altogether, it should
be noted that great caution should be taken when comparing individual
studies regarding diagnostic accuracy, EOR, safety and survival.

Thirdly, some research questions were not explored. 5-ALA usage in
LGG was not examined, although previous research has already ac-
centuated limited sensitivities with respect to HGG [4]. Sensitivities can
be increased by using fiber optic probes [103–105]. Cost-effectiveness
was not considered a study objective, although this topic has already
been described by other authors [106,107]. Finally, data regarding
safety of re-administration of 5-ALA within a few days is not available.

Fourthly, due to limited amount of literature concerning 5-ALA
usage in recurrent HGG, we were obliged to include a diverse combi-
nation of study designs.

Finally, although systematic reviews are generally accomplished by
two authors lege artis, the search, selection and quality assessment was
performed by only one author.

5. Conclusion

Based on the available literature, it can be stated that 5-ALA forms a
useful intraoperative addition to the repertoire of recurrent glioma
surgery. Diagnostic accuracy of 5-ALA is similar in newly diagnosed and
recurrent HGG, although specificity and negative predictive value seem
lower in the latter. Furthermore, it shows a significant advantage in
identifying tumor boundaries over conventional MRI-neuronavigation.
It should be noted that, due to a lack of RCT’s in current literature and
the unavoidable heterogeneity between included studies, results should
be interpreted cautiously. In future research, additional randomised
studies with a more extensive study population are desirable.
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