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Abstract
Central nervous system (CNS) tumors are the most common solid tumor in pediatrics, accounting for approximately
25% of all childhood cancers, and the second most common pediatric malignancy after leukemia. CNS tumors can be
associated with significant morbidity, even those classified as low grade. Mortality from CNS tumors is dispropor-
tionately high compared to other childhood malignancies, although surgery, radiation, and chemotherapy have
improved outcomes in these patients over the last few decades. Current therapeutic strategies lead to a high risk
of side effects, especially in young children. Pediatric brain tumor survivors have unique sequelae compared to
age-matched patients who survived other malignancies. They are at greater risk of significant impairment in cogni-
tive, neurological, endocrine, social, and emotional domains, depending on the location and type of the CNS tumor.
Next-generation genomics have shed light on the broad molecular heterogeneity of pediatric brain tumors and have
identified important genes and signaling pathways that serve to drive tumor proliferation. This insight has impacted
the research field by providing potential therapeutic targets for these diseases. In this review, we highlight recent
progress in understanding the molecular basis of common pediatric brain tumors, specifically low-grade glioma,
high-grade glioma, ependymoma, embryonal tumors, and atypical teratoid/rhabdoid tumor (ATRT).
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Introduction

Treatments for pediatric malignancies have changed
vastly over the last several decades due to the ability to
analyze tissue on genome-wide scales and no longer
relying on morphology alone for diagnosis [1]. Despite
this, CNS tumors remain the leading cause of cancer-
related morbidity and mortality in children. This is in
part due to the high risk of side effects and therapeutic
resistance. The movement towards risk stratification
with integrated genomic analysis provided insight into
the understanding and treatment of CNS tumors with a
targeted therapeutic approach [2]. In this review, we
highlight recent advances in genetics, epigenetics, and
potential therapeutic approaches for common pediatric
brain tumors, low-grade glioma, high-grade glioma,
ependymoma, medulloblastoma, rare embryonal
tumors, and atypical teratoid/rhabdoid tumor (ATRT).

Low-grade glioma (LGG)

Pediatric low-grade gliomas (pLGGs) are typically clas-
sified as WHO grade I or II, and include pilocytic astro-
cytoma (PA), subependymal giant cell astrocytoma
(SEGA), pilomyxoid astrocytoma (PMA), pleomorphic
xanthoastrocytoma (PXA), low-grade fibrillary astrocy-
toma or diffuse astrocytoma [3–6]. However, this differ-
entiation of morphological entities has limited
implications for prognosis, classification, and treatment.
The majority of pLGGs are driven by alterations in the
MAP kinase (MAPK) pathway, permitting more person-
alized treatment as MAPK pathway inhibitors have
emerged as novel and effective therapies. The pLGGs
are characterized by numerous gene mutations; the most
common alteration results in constitutive activation of
the Ras/MAPK signaling pathway. In neurofibromatosis
type 1 (NF-1) patients, inactivation of the Ras-GTPase
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activating protein neurofibromin leads to Ras activation,
resulting in optic pathway tumors. In non-NF-1 patients,
the most common alteration is fusion of the BRAF pro-
tein with the KIAA1549 protein, resulting in loss of
BRAF regulation and activation ofMAPK [7,8]. In addi-
tion, some pLGGs have BRAF activating point muta-
tions, such as BRAF V600E [9]. The MAPK and
P13K/mTOR pathways may be activated in these tumors
as well through intragenetic duplication of the tyrosine
kinase domain of fibroblast growth factor receptor
1 (FGFR1) [10–12].
BRAF mutations and MAPK pathway activation in

pLGGs have been the driving factor for research and
novel therapeutic approaches in these patients, espe-
cially in recurrent or refractory situations [1,3,9,13–
15]. Selumetinib is a non-ATP competitive inhibitor of
MEK-1/2 that demonstrates tumor regression and pro-
longed event-free survival in xenograft models. It has
also shown promise in adult studies with BRAF abnor-
malities andmore recently in recurrent, refractory or pro-
gressive childhood LGGwith BRAF aberrations andNF-
1-associated pLGG. Sustained responses were noted in
36% of LGG patients with a common BRAF aberration
(KIAA1549–BRAF fusion or BRAF V600E mutation),
with a median follow-up of 36–40 months, and partial
response (PR) was documented in 40% of NF-1 LGG
patients with a median follow-up of 48–60
months [16,17].
BRAFV600E is a potential highly targetable mutation

in pLGGs as it is found in approximately 15–20% of
tumors. Patients with BRAF V600E mutations tend to
exhibit poorer outcomes after chemotherapy and/or radi-
ation therapy, with 10-year progression-free survival
(PFS) of 27% and 60% for BRAF V600E and wild-type
pLGGs, respectively [18]. Dabrafenib is a potent and
selective inhibitor of the V600 mutant form of the BRAF
kinase and serves as a potential therapeutic target in
pLGG [18].
The standard of care for upfront therapy of newly

diagnosed pLGG is surgery, with complete re-
section usually resulting in little to no risk of progres-
sion. Chemotherapy is reserved for those with
symptoms or radiographic progression and results in a
modest PFS of 30–50% [19,20]. Currently planned treat-
ment protocols aim to biologically stratify patients to
receive MEK inhibitors for tumors with BRAF fusions
and either MEK, BRAF or combined inhibitors upfront
for those with BRAF V600E.
Subependymal giant cell astrocytoma (SEGA) is a

WHO grade I pLGG that is commonly associated with
tuberous sclerosis. The majority of patients with SEGA
contain inactivating mutations in TSC1or TSC2 encod-
ing hamartin or tuberin, respectively, which serve as
negative regulators of mTOR and cell growth
[21]. Recent advances and treatment with an mTOR
inhibitor (such as everolimus, a rapamycin analogue)
have shown to be effective in reducing growth of tumors
as well as decreasing seizure frequency in these patients,
especially in those cases where surgical resection carries
substantial morbidity [22–26].

High-grade glioma (HGG)

Pediatric high-grade gliomas (pHGGs) are histologically
identical to adult HGG and are graded according to the
WHO classification of CNS tumors. pHGGs include
glioblastoma [glioblastoma multiforme (GBM) (WHO
grade IV)], anaplastic astrocytoma (WHO grade III),
gliomatosis cerebri, and diffuse intrinsic pontine glio-
mas (DIPGs). GBM is classified as grade IV and charac-
teristically displays high mitotic activity, extensive
neovascularization, and intratumoral necrosis [6]. This
disease confers a long-term survival rate of less than
10% and remains one of the few incurable pediatric
cancers.

Hemispheric pHGG
pHGGs are unique in comparison to their adult counter-
parts, as less than 5% are IDH1/2 mutated tumors in
pediatrics. The same holds true for 1p/19q deletion,
commonly found in adult oligodendroglioma and rarely
seen in children. In adult neuro-oncology, HGGs lacking
either aberration display a similar aggressive clinical
course to GBM, even without the morphological fea-
tures such as necrosis and microvascular proliferation
that are commonly required for diagnostic purposes
[27]. The overall genomic landscape of pHGG is quite
disparate from adult HGG, including mutations in his-
tone variants and targetable fusions including NTRK,
ALK, and ROS. Similar to adult IDH1 wild-type HGGs,
the most commonly altered pathway in cell cycle regula-
tion (noted in 83% of pediatric GBM samples in one
study) involves mutations in TP53 or PPM1D, or homo-
zygous deletion of CDKN2A or CDKN2B. Other genetic
changes resulting in activated receptor tyrosine kinase
(RTK) PI3K–MAPK signaling, with activating muta-
tions in RTKs (such as EGFR) or downstream proteins
such as NRAS, KRAS, BRAF, and PIK3CA, and gene
amplification of EGFR, PDGFR/KIT orMET have been
identified in pHGGs [28]. PDGFRA or MET amplifica-
tion and TP53 mutations are found in both pediatric
and adult HGGs [1,29–31].H3F3Amutations, including
G34 mutation, with loss of ATRX and ALT have been
observed in 20% of pHGGs [32].

IDH1 mutations are rare in younger children and
become more frequent in late adolescence and in those
with cancer predisposition syndromes. However, unlike
the adult IDH1-mutant HGGs that harbor R132H muta-
tions, non-R132H IDH1 mutations are found in 66% of
pediatric hemispheric glioma patients [33]. These pedi-
atric IDH1 variants were associated with germline
TP53 mutations in 43% (3/7) of patients in one study,
two with IDH1 R123G and one with IDH1 R132C vari-
ant. As such, the presence of these rare IDH1 variants in
pHGGs should prompt further investigations into the
possibility of Li–Fraumeni syndrome [33].

Mutations resulting in changes at G34 (restricted to
H3.3) are mainly found in hemispheric tumors such as
GBM-like tumors or primitive neuro-ectodermal tumor
(PNET) in adolescents. These mutations typically co-
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occur with mutations in alpha thalassemia/mental retar-
dation syndrome X-linked (ATRX), which is believed
to promote alternative telomere lengthening [34].

BRAF V600 mutations have been identified in
approximately 5% of pHGGs, with most harboring con-
current homozygous loss of CDKN2A/B, and morpho-
logically are described as anaplastic pleomorphic
xanthoastrocytomas (PXA-like). Although there are iso-
lated reports of BRAF V600E mutant pHGGs respond-
ing to BRAF inhibitors, it is unclear if BRAF mutant
HGGs harboring loss of CDKN2A will respond to tar-
geted agents [18,35,36]. NTRK1, NTRK2 or NTRK3
gene fusions have been identified in various pediatric
and adult cancers including pHGG. Larotrectinib, a
selective TRK kinase inhibitor, shows promise in tumors
containing TRK fusions in several pan-cancer studies
including pediatric brain and solid tumors [37,38].

K27M mutant diffuse midline glioma and DIPG
DIPG and other histone H3 K27M-mutated diffuse mid-
line gliomas are aggressive and universally fatal pediat-
ric tumors. DIPG tumors are challenging to treat as
surgical interventions are not routinely offered, radiation
therapy offers temporary effects, and no chemotherapeu-
tic agents have shown promise. As surgical approaches
(including biopsy) are not standard of care in pediatric
DIPG, the diagnosis tends to be made on radiological
findings and clinical presentation. Recent advances in
next-generation sequencing have identified two key
molecular alterations in pHGGs: recurrent mutations in
H3F3A and HIST1H3B, coding the histone variants
H3.3 and H3.1. These mutations result in amino acid
substitutions at position K27 (K27 mutant) or G34
(G34R or G34V) and are present in about 80% of mid-
line GBMs or DIPGs in younger children
[33,39,40]. H3K27 alterations are associated with dis-
tinct oncogenic changes and serve as potential therapeu-
tic targets. In addition, H3.1 and H3.3 K27M tumors
differ in age at diagnosis, with H3.1 mutant tumors
found earlier and with a better prognosis compared with
H3.3 mutant tumors [39].

Infant high-grade gliomas
In contrast to childhood and adolescent HGG, infant
HGGs have more favorable outcomes [41]. Recent liter-
ature supports classification of infant gliomas by under-
lying molecular alterations, specifically fusions
[42,43]. Hemispheric RTK-driven tumors, including
ALK, ROS1, NTRK, and MET fusions, exhibit an inter-
mediate clinical outcome with 5-year overall survival
(OS) of 53.8%, 25.0%, and 42.9% for ALK, ROS1,
and NTRK fused tumors, respectively. Hemispheric
Ras/MAPK-driven tumors have the best long-term sur-
vival (10-year OS 93.3%) of these groups, with the sug-
gestion that they require minimal clinical intervention
post-surgery. The last group is midline Ras/MAPK-
driven tumors with relatively poor outcomes after che-
motherapy, with a 5-year PFS of 23.4% [42].

Biallelic mismatch repair deficiency high-grade
gliomas
Biallelic mismatched repair deficiency (bMMRD) is a
childhood cancer syndrome that often results in GBM
with high mutation rates. Immune checkpoint inhibition
has shown success and favorable toxicity profiles in
tumors containing high mutation rates such as bMMRD.
Nivolumab, a human IgG4 anti-PD-1 monoclonal anti-
body, inhibits the PD-1 receptor, permitting enhanced
T-cell immunity. PD-L1 is expressed on the surface of
glioblastoma and can induce T-cell apoptosis by binding
to PD-1. One study showed a durable and profound
radiological response in two pediatric bMMRD siblings
with recurrent multifocal GBM treated with single-agent
nivolumab [44].

Treatment of pHGG
Current treatment approaches include maximal surgical
resection (with the aim of maintaining functional integ-
rity), radiation therapy, and a variety of chemotherapeu-
tic options (Figure 1). Agreement exists regarding
improved patient outcome with total tumor resection.
The Children’s Cancer Group study CCG945 combined
temozolomide with CCNU and demonstrated an
improved 5-year PFS in patients with > 90% re-
section (35 ± 7% compared with 17 ± 4%) [45]. How-
ever, the value of adjuvant chemotherapy specifically
temozolomide with or without the addition of bevacizu-
mab remains unclear, without a clear survival benefit
compared to radiation alone [46,47]. Radiation provides
a benefit and is standard treatment in patients greater
than 3 years of age. To date, no targeted therapy or che-
motherapy has provided a survival benefit for HGG
patients, either alone or in combination with other
modalities [29,48]. Current novel agents targeting key
pathways are underway for pHGG, some of which
include crizotinib for MET fusion tumors, nivolumab
for hypermutant gliomas, dabrafenib and trametinib
for BRAF V600 mutations, GD2/panobinostat for
K27M mutations, veliparib (a PARP inhibitor) with
temozolomide for G34V mutations, and larotrectinib
for tumors with an NTRK fusion (Table 1). The future
stratification of HGG will involve genome and RNA
sequencing to identify somatic events that will further
guide treatment.

Ependymoma

Ependymomas are the third most commonCNS tumor in
children, accounting for 6–12% of pediatric brain
tumors. They can arise throughout the entire neuraxis,
including supratentorial, infratentorial or spinal cord
(Figure 2). In children, approximately 70% of ependy-
momas arise in the posterior fossa [49]. The histological
grading (grade II versus III) plays little role in risk strat-
ification, due to inter-observer variability and a lack of
markers to objectively distinguish histologic grading
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[50]. Over the past 10 years, it has become clear that spi-
nal, supratentorial, and posterior fossa ependymomas are
different diseases (despite looking the same under a
microscope) and should be considered separate entities.
This idea is strengthened by integrated molecular analy-
sis, which classifies ependymomas into nine subgroups.
These have distinct age distributions, locations, and biol-
ogy, suggesting that they are truly different diseases
[51]. In the pediatric population, supratentorial ependy-
moma (ST-EPN) subgroups ST-EPN-RELA and ST-
EPN-YAP1 play a dominant role, as well as posterior
fossa ependymoma (PF-EPN) subgroups PF-EPN-A
and PF-EPN-B [52].
Many ST-EPNs contain fusion of RELA with the

uncharacterized gene C11orf95. The C11orf95–RELA
fusion protein serves to drive aberrant NF-κB transcrip-
tion and results in tumor formation in preclinical models
[53,54]. This may serve as a potential therapeutic target.
YAP1-fused ST-EPNs are rare, but appear enriched in
infants with a superior prognosis and may represent the
rare group that can be treated with surgery alone or sur-
gery followed by chemotherapy [54]. The failure to iden-
tify a RELA or YAP1 fusion should prompt a more
detailed investigation using DNA methylation-based
classifiers to rule out a morphological mimic [2,55].
PF-EPN-A do not exhibit the DNA rearrangements

that are seen in supratentorial tumors; instead, they have
been characterized by lack of DNA copy number abnor-
malities and absence of recurrent DNA mutations, with

the exception of EZHIP/CXorf67 mutations in 20%
[56–58]. Additional studies have shown that there is sig-
nificant heterogeneity within PF-EPN-A and PF-EPN-B,
with nine subtypes of PF-EPN-A and five subtypes of
PF-EPN-B [59,60]. PF-EPN-A are characterized by a
poor prognosis group enriched for chromosome 1q gain,
termed PFA1c, and loss of chromosome 13q may repre-
sent a marker of poor prognosis in PF-EPN-B. Interest-
ingly, gain of chromosome 1q seems to have no
prognostic value in PF-EPN-B [60]. PF-EPN-B occur
in older children and adults and are characterized by
multiple arm-level copy number aberrations. There are
profound differences in prognosis between PF-EPN-A
and PF-EPN-B, whereby PF-EPN-B have an excellent
outcome [61,62]. Upfront gross total resection and focal
radiation are required to treat PF-EPN-A, with survival
rates still less than 50%; a proportion of PF-EPN-B
could potentially be treated with gross total re-
section alone [61]. The role of surgery and radiation in
ST-EPN is unclear, although those patients with YAP1
fusions may have a more favorable prognosis [54].

The management of ependymoma, particularly PF-
EPN, has changed over the last three decades, leading
to significant improvements in patient outcomes
[62]. The role of radiation was evaluated in the Chil-
dren’s Oncology Group ACNS0121 study, showing that
outcomes are excellent in children as young as 1 year of
age with complete surgical resection and focal radiother-
apy. This study showed prospectively that PF-EPN-A

Figure 1. Historical and current treatment approaches to high-grade and low-grade gliomas. mut: mutation; RT: radiation therapy; TMZ:
temozolomide; GTR: gross total resection; bMMRD: biallelic mismatch repair deficiency; DMG: diffuse midline glioma; IDH: isocitrate
dehydrogenase.
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Table 1 Common mutations/alterations in pediatric CNS tumors with potential therapeutic targets
Tumor Alteration/pathway involved Specific gene mutation/alteration Targeted treatment

Low-grade gliomas
pLGG MAPK pathway- Activation of

RAS/MAP signaling pathway
BRAF V600E point mutation Dabrafenib +/− trametinib (BRAF/

MEK inhibitor)
BRAF–KIAA1549 fusion Selumetinib/trametinib (MEK1/2

inhibitor)
MAPK pathway and PI3K/mTOR
pathway

FGFR1 AZD4547 (FGFR1,2,3 inhibitor)
Selumetinib/trametinib (MEK1/2
inhibitor)

pLGG-NF1 Inactivation of RAS-GTPase resulting
in RAS activation

NF1 Selumetinib/trametinib (MEK1/2
inhibitor)

SEGA mTOR TSC1 or TSC2 inactivating mutation Everolimus (mTOR inhibitor)
High-grade gliomas

HGG Receptor tyrosine kinases NTRK1/2/3 gene fusions
MET amplification/fusion
ALK fusions
ROS1 fusions
PDGFRA amplification

Entrectinib (NTRK, ALK, ROS1
inhibitor)

Crizotinib/foretinib (MET
inhibitor)

Larotrectinib (NTRK inhibitor)
Ras/MAPK signaling BRAF V600E Dabrafenib +/− trametinib (BRAF/

MEK inhibitor)
bMMRD POLE and others Immune checkpoint inhibitors

(Nivolumab/pembrolizumab)
Metabolic IDH1/2 Ivosidenib (IDH1 inhibitor)

Enasidenib (IDH2 inhibitor)
Cell cycle CDKN2A/B deletion Ribociclib/palbociclib (CDK4/6

inhibitor)
Other Somatic and germline TP53

DMG (thalamic
and pontine)

Histone 3.1 and 3.3 mutation GD2 CAR T-cell
Panabinostat (HDAC inhibitor)

Ependymoma
Supratentorial C11orf95–RELA fusion, YAP1 fusion None
PF-EPN-A/B Somatic SNV: EZHIP

CNV: 1q gain
None

PF-EPN-B Multiple arm-level CNV None
Medulloblastoma

WNT Somatic: CTNNB1 mutations
Germline: APC mutations
CNV: Monosomy 6

Therapy de-escalation

SHH Somatic: PTCH, SMO, SUFU, TP53, U1, TERT
Germline: PTCH, SUFU, TP53
CNV: MYCN, 9q deletion, 2p gain, PTEN loss

SMO antagonist (vismodegib)

Group 3 SNV: KBTBD4
CNV: isochromosome 17q,MYC amplification, GFI1
activation, PVT1–MYC fusions

Gemcitabine, pemetrexed
(SJMB12)

Praxisertib (CHK1 inhibitor
SJELIOT)

Ribociclib/palbociclib (CDK4/6
inhibitors – SJDAWN)

Panobinostat (HDAC inhibitor)
Group 4 SNV: KDM6A

CNV: SNCAIP duplication, isochromosome 17q,
MYCN amplification, CDK6 amplification

Gemcitabine, pemetrexed
(SJMB12)

Praxisertib (CHK1 inhibitor
SJELIOT)

Ribociclib/palbociclib (CDK4/6
inhibitors – SJDAWN)

Other
ATRT Germline and somatic SMARCB1 (hSNF5/INI1)

mutations
Tazemetostat (EZH2 inhibitor)

ETMR CNV: C19MC amplification
SNV: DICER1 mutation

None

ATRT, atypical teratoid/rhabdoid tumor; ch, chromosome; DIPG, diffuse intrinsic pontine glioma; DMG, diffuse midline glioma; EPN, ependymoma; ETMR, embryonal
tumor with multilayered rosettes; GBM, glioblastoma multiforme; HGG, high-grade glioma; NF1, neurofibromatosis type 1; PF, posterior fossa; pLGG, pediatric
low-grade glioma; SEGA, subependymal giant cell astrocytoma.

Molecular classification of pediatric brain tumors 253

© 2020 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

J Pathol 2020; 251: 249–261
www.thejournalofpathology.com

 10969896, 2020, 3, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.5457 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


with 1q gain have dismal outcomes despite complete
resection. Incomplete surgical resection resulted in poor
outcomes in both PF-EPN and ST-EPN [63]. Consider-
ing the significance of achieving a complete re-
section safely, treatment at a high volume pediatric
neurosurgical center is highly recommended for all
patients. The role of chemotherapy in ependymoma is
yet to be defined; some studies have shown no survival
advantage [64,65], whereas other studies suggest a role
for chemotherapy to delay radiation. Objective
responses are rarely observed [66–68]. Recurrent epen-
dymomas have a dismal prognosis; surgery and radiation
may provide benefit in palliation, with some data

suggesting that craniospinal irradiation may be of value
[69,70]. As such, in the era of molecular diagnostics,
complete resection followed by upfront involved field
radiation represents the highest likelihood of treatment
success [59]. Treatment outside surgery and radiation
has been disappointing.

Medulloblastoma

Medulloblastoma accounts for 15–20% of pediatric
brain tumors and can occur at any age from infancy to

Figure 2. Molecular-based classification of ependymoma. FISH: fluorescence in situ hybridization.
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adulthood; it is most commonly seen in children between
3 and 9 years of age [71]. The term medulloblastoma
was historically used to describe all small round blue cell
tumors (SRBC) of the cerebellum. Despite prior knowl-
edge about histological variations such as classic and
nodular desmoplastic, most patients have traditionally
been treated with a similar approach [72]. The finding
of SMARCB1 mutations (hSNF5/INI1) in ATRT pro-
vided evidence that not all SRBC tumors were the same
entity [73]. Further studies have differentiated medullo-
blastoma from other types of CNS SRBC tumors, such
as embryonal tumor with multilayered rosettes
(ETMR), and separated them from embryonal tumors
that were formerly classified as CNS-PNET. These are
now distinguishable from medulloblastomas [74,75]
through novel techniques, such as demonstrating recur-
rent amplified fusion between embryonal gene THY1
and a primitive specific microRNA cluster on chromo-
some 19 (C19MC) for ETMR [76] (Figure 3).

Not only have other SRBCs been identified and
reclassified, studies have shown that distinct sub-
types of medulloblastoma exist with unique charac-
teristics specific to each category (Figure 3).
Unbiased genomic analyses have revealed that
medulloblastoma actually comprises at least four
distinct molecular variants. These are often termed
WNT (wingless), SHH (Sonic Hedgehog), group
3, and group 4 [77]. These subgroup classifications
enhance or replace our reliance on histopathological
classification, as outlined in the 2016 revised WHO
classification [6]. The four groups have different
cells of origin, with WNT tumors arising from the
brainstem, SHH from the external granular layer of

the cerebellum, and group 4 tumors arising from uni-
polar brush cells [78–80]. The histological variants
retain some degree of prognostic significance but
suffer from extreme inter-observer variability and
lack of biological insight, making way for molecular
classification that harbors more robust biological
and prognostic insights. Recently, it has been shown
that multiple subtypes exist within each subgroup,
with characteristically unique demographics, struc-
tural alterations, epigenomics, transcriptomes, and
outcomes.
WNT tumors are typically seen in older children and

teenagers; this group compromises approximately 10%
of tumors, which have an excellent prognosis with a
greater than 95% 10-year event-free survival
[81,82]. The most common somatic mutations in the
WNT subgroup occur in exon 3 of CTNNB1 encoding
β-catenin and can be identified by direct sequencing or
nuclear immunopositivity for β-catenin. The 10% of
WNT tumors withoutCTNNB1mutations usually harbor
germline mutations in the adenomatous polyposis coli
(APC) gene [82–85]. Approximately 80% have a dele-
tion of one copy of chromosome 6 (monosomy 6)
[86]. WNT tumors arise from the developing lower
rhombic lip of the brainstem rather than the cerebellum
and frequently invade the lateral recess [80,87,88].
The SHH group affects patients from infancy to adult-

hood and accounts for approximately 30% of medullo-
blastomas [89]. SHH signaling is linked to binding to
the receptor Patched1 (PTCH1), leading to derepression
of smoothened (SMO) activity and activation of GLI1
transcription factors [90]. Mutations in the pathway
commonly occur in PTCH1, but alterations in SMO

Figure 3.Molecular-based classification of small round blue cell tumors. ETMR: embryonal tumor with multilayered rosettes; ATRT: atypical
teratoid/rhabdoid tumor.
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and suppressor of fused (SUFU) have also been
described, as well as deletions of 9q in this group
[77,91]. In infants, there are two predominant types of
SHH medulloblastoma, termed SHHβ/SHH-I and
SHHγ/SHH-II, with stark differences in outcome.
SHHβ/SHH-I are enriched for metastatic disease, SUFU
mutations, PTEN loss, and 2p gain, and without intensi-
fied therapy have dismal outcomes. SHHγ/SHH-II have
excellent outcomes regardless of therapy; they have a
bland genome and may be suitable candidates for de-
escalation of therapy. In older children, SHHα predomi-
nates and those with TP53mutations, particularly germ-
line, have highly unstable genomes and dismal
outcomes, and comprise very-high-risk disease not pre-
dicted to respond to SMO antagonists such as vismode-
gib. In adults, the predominant form of
medulloblastoma is SHH, and tumors are characterized
by frequent PTCH and SMO mutations, with TERT pro-
moter mutations present in the majority of cases. In
50–60% of cases, SHH recurs locally in the tumor bed.
SHH tumors arise from the external granule layer and
almost always are found within the cerebellum itself,
not the fourth ventricle [78,79,92]. Suzuki et al reported
recurrent hotspot mutations (r.3A>G) of U1 spliceoso-
mal small nuclear RNA (snRNA) in 50% of SHHmedul-
loblastomas [93]. They were found in 97% of adults
(SHHδ) and 25% of adolescents (SHHα) but are absent
in infants. SHHα patients are thought to represent a
high-risk group and the splicing mediated by mutant
U1snRNA, which inactivates tumor suppressor PTCH1
and activates oncoproteins GLI2 and CCND2, may rep-
resent a target for therapy [93].
Group 3 medulloblastomas account for 25% of cases;

arise exclusively in children; frequently metastasize; and
have a poor prognosis, with approximately 50% OS at
5 years. These tumors are characterized by an increased
frequency of copy number alterations, including loss of
chromosome 17p and gain of 17q to generate an isochro-
mosome 17q andMYC amplification in 20% [94]. Given
the poor prognosis of this group of tumors, there is con-
siderable interest in improved treatment options. Apply-
ing combined DNA methylation and gene expression,
three subtypes of group 3 have been identified: 3α, 3β,
and 3γ, where group 3γ tumors have a poor survival
and are enriched for MYC amplification. Similar groups
have been identified using DNA methylation, with a
poor prognosis group enriched for MYC and rarely
MYCN [83,95,96]. Cross-species high-throughput
screening identified medications such as gemcitabine,
pemetrexed, and panobinostat as potential agents, which
are being tested prospectively in the SJMB12 clinical
trial (NCT018788617) [97]. Group 3 tumors, particu-
larly those that are irradiated, recur almost exclusively
with metastatic dissemination [98].
Group 4 medulloblastomas are the most common but

a poorly understood subgroup; they account for 35% of
cases. These tumors also have a high degree of chromo-
some copy number aberrations, including 80% harbor-
ing isochromosome 17q (i17q). They are characterized
by amplification ofMYCN in a small subset, and somatic

nucleotide variants in the histone demethylase KDM6A.
Applying integrated clustering, three group 4 subtypes
have been identified. Group 4α are enriched for CDK6
amplification, 7q gain, 8p loss, and i17q; group 4β are
enriched for tandem duplications in SNCAIP, and i17q
represents the only copy number aberration; and group
4γ are enriched for MYCN amplification, 7q gain, 8p
loss, and i17q. In addition, tandem duplication of the
Parkinson’s gene SNCAIP on chromosome 5 is identi-
fied in a subset of group 4 medulloblastomas
[99,100]. Similar groups using DNA methylation have
been described. The cells of origin for group 4 medullo-
blastoma are unipolar brush cells and they frequently
present with a lack of gadolinium enhancement on
MRI [78,79].

A meta-analysis of three subtyping efforts suggests
that additional heterogeneity exists at the level of DNA
methylation across group 3 and 4 medulloblastomas,
with eight groups being described [95]. The clinical rel-
evance of this new classification is still a work-in-pro-
gress; however, there seem to be subgroups with an
excellent prognosis beyond just group 4 with chromo-
some 11 loss and 7q gain. Group 3 and 4 tumors show
in-frame insertions in KBTBD4, a BTB-BACK-Kelch
domain ubiquitin ligase adaptor that facilitates ubiquiti-
nation of target substrates and may serve as a target for
future therapy [83]. In addition, group 3 and 4 tumors
demonstrate genomic structural variants resulting in
activation of growth factor independent 1 family proto-
oncogenes, GFI1 and GFI1B, termed ‘enhancer hijack-
ing’ [83,101]. Approximately one third of group
3 medulloblastomas demonstrate somatic genomic rear-
rangements in association with mutually exclusive GFI1
or GFI1B activation and 5–10% of group 4 medulloblas-
tomas harbor structural variants associated with GFI1/
GFI1B activation, making these poorly understood sub-
groups more identifiable and possibly serving as a tar-
geted therapy approach [101].

The current management of medulloblastoma in older
children (greater than 4 or 5 years of age) includes max-
imal safe surgical resection followed by chemotherapy
and radiation. Those classified as ‘average risk’ are
patients with total (or near-total) resection and no evi-
dence of metastatic disease at the time of diagnosis.
These patients are treated with adjuvant craniospinal
radiation as well as a boost to the tumor bed and chemo-
therapy. Average-risk medulloblastoma patients have a
greater than 80% 5-year event-free survival [102]. Sig-
nificant toxicity associated with surgical resection, radi-
ation, and chemotherapy in the form of cerebellar
mutism, neurocognitive deficits, hearing loss, and endo-
crine abnormalities are known in these patients
[103]. Recent clinical trials are focused on reducing the
dose of craniospinal radiation in an effort to minimize
long-term effects in these patients [104]. Medulloblas-
toma risk stratification consensus utilizing currently
available biomarkers has been established: low risk
(> 90% survival), average (standard) risk (75–90% sur-
vival), high risk (50–75% survival), and very high risk
(< 50% survival) [105]. The WNT subgroup and non-

256 C Cacciotti et al

© 2020 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

J Pathol 2020; 251: 249–261
www.thejournalofpathology.com

 10969896, 2020, 3, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.5457 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


metastatic group 4 tumors with whole chromosome
11 loss or whole chromosome 17 gain are recognized
as low-risk tumors that may qualify for reduced therapy.
High-risk disease is common in patients with metastatic
SHH or group 4 tumors, and in MYCN-amplified SHH.
Very-high-risk patients include MYC-amplified group
3 patients with metastatic disease or SHH tumors with
TP53mutations [105]. Infant and younger children pose
a challenge as radiation therapy tends to be avoided or
delayed in patients under the age of 3; instead, these
patients are treated with surgery and intensive chemo-
therapy as upfront modalities [104,106,107]. In infants,
SHH tumors have an excellent prognosis, while group
3 tumors have a dismal prognosis when applying radia-
tion sparing strategies [107].

Identifying therapeutic targets utilizing molecular
characterization may improve patient care and aim
to reduce toxicities associated with therapy. WNT
tumor patients have an excellent prognosis, which
may suggest a de-intensifying strategy [108], whereas
MYC amplification including the PVT1–MYC fusion
in group 3 has been a difficult area to target. Some
early clinical trials have shown efficacy of the SMO
inhibitor vismodegib in SHH medulloblastoma phase
1 trials, although TP53 mutant SHH and downstream
activation such as SUFU mutations predominate in
the majority of relapses, making this approach
unlikely to work. Vismodegib was found to inhibit
SMO and represses the SHH pathway in one of three
patients with recurrent SHH medulloblastoma, and
was not shown to have an effect in other medulloblas-
toma subtypes [109]. Given the paucity of informa-
tion on group 3 and 4 medulloblastomas, no specific
treatments have been developed to date, although
the near ubiquitous metastatic pattern of relapse sug-
gests that specific treatment of the metastatic com-
partment will be required for cure.

Other embryonal tumors

Other embryonal tumors of the CNS are highly aggres-
sive, poorly differentiated tumors occurring predomi-
nately in young children. Controversy exists regarding
the histogenesis of these tumors and the term PNET
has been removed from the most recent nomenclature,
although some rare entities such as medulloepithelioma
have remained [6]. A molecularly distinct entity,
‘ETMR, C19MC-altered tumors’ has been added,
encompassing embryonal tumor with abundant neuropil
and true rosettes (ETANTR), ependymoblastoma, and
medulloepithelioma [76,110]. ETMRs harbor recurrent
amplifications and fusions of a microRNA cluster on
chromosome 19, frequently fused to TTYH1, and a small
proportion of ETMRswithoutC19MC alterations harbor
DICER1 mutations [111].

A large study of histologically described PNETs [75]
identified four new CNS tumor types by DNA methyla-
tion and transcription profiling: CNS neuroblastoma

with FOXR2 activation (CNSNB-FOXR2), CNS Ewing
sarcoma family tumor with CIC alteration (CNS EFT-
CIC), CNS high-grade neuroepithelial tumor with
MN1 alteration (CNS HGNET-MN1), and CNS high-
grade neuroepithelial tumor with BCOR alteration
(CNS HGNET-BCOR) (Figure 3). Each of these is asso-
ciated with distinct histopathological and clinical fea-
tures as well as genetic alterations, although the clinical
relevance of these new entities is yet to be discerned.
Nevertheless, the study suggests that embryonal tumors
are a diagnosis of exclusion, and supratentorial tumors
morphologically described as ‘PNET’ require extensive
molecular workup to exclude ependymoma, ETMR,
ATRT, and glioblastoma.

Atypical teratoid/rhabdoid tumor

Rhabdoid tumors located within the CNS are classi-
fied as atypical teratoid/rhabdoid tumors (ATRTs),
an aggressive malignancy that is typically identified
in young children. Rhabdoid tumors can also occur
outside of the CNS, predominantly in kidneys, liver
or soft tissues. ATRTs are defined by biallelic
SMARCB1 loss-of-function alterations [112]. About
35% of ATRT patients have heritable SMARCB1
alterations predisposing them to multiple rhabdoid
tumors [113], suggesting the need for genetic
counseling for surveillance and implications in future
pregnancies, although the value of this is yet to be
known [114]. Other studies have shown that loss of
SMARCB4 is critical in ATRT development, but less
frequent [115]. ATRTs encompass three epigenetic
subgroups with distinct genomic profiles and
SMARCB1 genotypes [116]. ATRT-TYR tumors are
more common in the infratentorial regions, ATRT-
MYC tumors are commonly seen in the supratentorial
area, and ATRT-SHH tumors are seen in both infra-
and supra-tentorial areas. Age also differs amongst
these subsets, with very young children (0–1 year)
commonly identifying the TYR group and ATRT-
MYC tending to occur in older children. ATRT-
TYR and to a lesser degree the ATRT-SHH group
are characterized by hypermethylated genomes,
whereas the ATRT-MYC group is not. Studies have
shown different pathway upregulation based on sub-
group, which leads to potential therapeutic targets
for these diseases. ATRT-TYR tumors show upregulation
of melanogenesis, EZH2, DNMTs, CCND1, VEGFA,
and ERBB2, with more tumors showing SMARCB1 dele-
tion constituting a 22q loss, whereas the ATRT-SHH
group tends to exhibit upregulation in SHH pathway,
EZH2, DNMTs, and CDK6, with no aberration in
SMARCB1. The ATRT-MYC subtype upregulates MYC
and HOX, EZH2, DNMTs, and ERBB2, with focal
SMARCB1 deletion predominantly [117].
ATRTs were previously considered incurable,

although outcomes have improved with intensified ther-
apy, particularly multimodal therapy as in the Children’s
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Oncology Group ACNS0333 study, with some sugges-
tion that ATRT-SHH benefit from high-dose chemother-
apy approaches and ATRT-TYR benefit from
radiotherapy [116,118–121]. The EZH2 inhibitor taze-
metostat is a rational approach to target the SWI/SNF
complex and is being investigated in upcoming clinical
trials; however, there is a paucity of early phase human
data at the present time [122].

Conclusion

The molecular classification of pediatric CNS tumors is a
rapidly evolving field and has transformed the knowledge
and approach to pediatric tumors. Our current classifica-
tion schemes date back to the 1920s. The rapid advances
observed over the past 10 years have improved classifica-
tion, identified new entities, and provided the basis for
new diagnostic and treatment paradigms that are more
precise and personalized. Indeed, a plethora of molecu-
larly informed clinical trials are ongoing, including sev-
eral being evaluated in front-line therapies. Unlike
current therapies, particularly radiation and cytotoxic che-
motherapy that result in life-long sequelae, novel targeted
therapeutic agents have shown promise in being more
effective and less toxic. With further advances evolving
rapidly in the molecular era of neuro-oncology, the
approach to pediatric brain tumors is undergoing a major
revolution, with more accurate diagnosis and personal-
ized, biologically informed treatment, which will
undoubtedly result in improved outcomes including
improved quality of life.
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ATRT atypical teratoid/rhabdoid tumor
ATRX alpha thalassemia/mental retardation

syndrome X-linked
bMMRD biallelic mismatch repair deficiency
CAR chimeric antigen receptor
CNV copy number variation
DIPG diffuse intrinsic pontine glioma

ETANTR embryonal tumor with abundant neuropil
and true rosettes

ETMR embryonal tumor with multilayered
rosettes

FGFR1 fibroblast growth factor receptor 1
GBM glioblastoma multiforme
HGG high-grade glioma
LGG low-grade glioma
NF-1 neurofibromatosis type 1
OS overall survival
PA pilocytic astrocytoma
PF-EPN posterior fossa ependymoma
PFS progression-free survival
pHGG pediatric high-grade glioma
pLGG pediatric low-grade glioma
PMA pilomyxoid astrocytoma
PNET primitive neuro-ectodermal tumor
PR partial response
PXA pleomorphic xanthoastrocytoma
RTK receptor tyrosine kinase
SEGA subependymal giant cell astrocytoma
SNV somatic nucleotide variation
SRBC small round blue cell tumor
ST-RPN supratentorial ependymoma
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