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The integrated genomic and epigenomic landscape
of brainstem glioma
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Xin Chen3, Yibo Geng3, Tao Sun3, Yu Sun3, Peng Zhang3, Zhen Wu3, Junting Zhang3, Deling Li3, Yang Zhang3,

Wenhao Wu3, Yu Wang 3, Guangyu Li6, Jie Yang6, Xiaoyue Wang7, Ce Xu6, Sizhen Wang6,

Matthew S. Waitkus 1,2, Yiping He1,2, Roger E. McLendon1, David M. Ashley2, Hai Yan1,2✉ & Liwei Zhang3,4,5✉

Brainstem gliomas are a heterogeneous group of tumors that encompass both benign tumors

cured with surgical resection and highly lethal cancers with no efficacious therapies. We

perform a comprehensive study incorporating epigenetic and genomic analyses on a large

cohort of brainstem gliomas, including Diffuse Intrinsic Pontine Gliomas. Here we report,

from DNA methylation data, distinct clusters termed H3-Pons, H3-Medulla, IDH, and PA-like,

each associated with unique genomic and clinical profiles. The majority of tumors within H3-

Pons and-H3-Medulla harbors H3F3A mutations but shows distinct methylation patterns that

correlate with anatomical localization within the pons or medulla, respectively. Clinical data

show significantly different overall survival between these clusters, and pathway analysis

demonstrates different oncogenic mechanisms in these samples. Our findings indicate that

the integration of genetic and epigenetic data can facilitate better understanding of brainstem

gliomagenesis and classification, and guide future studies for the development of novel

treatments for this disease.
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Brainstem gliomas represent a heterogeneous group of
tumors that arise from the midbrain, pons, or medulla.
Among these tumors, pediatric diffuse intrinsic pontine

glioma (DIPG), with a median overall survival of 9–12 months1,
has been the main research focus for the past five decades due to
the inoperability and resistance to chemotherapy and radio-
therapy2–6. Approximately 80% of pediatric DIPGs harbor K27M
mutations affecting H3F3A or HIST1H3B/C1,7–12. These K27M-
mutant tumors are associated with a particularly poor prog-
nosis13. In the 2016 World Health Organization (WHO) classi-
fication of CNS tumors, the term “diffuse midline gliomas,
H3K27M-mutant” was introduced to represent this DIPG tumor
subset14. However, the molecular characteristics of the non-
pediatric brainstem gliomas, such as midbrain and medulla
oblongata gliomas, remain poorly characterized. Research on
these tumors has been challenging due to the relatively low
incidence rate and the high risks related to surgical resection
resulting in low tissue availability. We collected, to our knowl-
edge, the largest and most comprehensive cohort of brainstem
gliomas, encompassing all age groups and anatomic locations,
including medulla, pons, and midbrain. We performed integrated
whole genome sequencing, RNA sequencing, and array-based
genome-wide methylation analysis to acquire a more compre-
hensive picture of the molecular composition of these brain
tumors. Here, we report methylation-based clusters that identify
brainstem glioma subsets associated with tumor location and
mutation landscape. We present two distinct clusters of H3-
mutant brainstem gliomas, H3-Pons and H3-Medulla, which
despite their similar genetic mutations, differ not only in location,
but in methylation pattern, gene expression, and prognosis.

Results
Patient cohort characteristics. We collected tumor samples and
matched blood from 126 patients (detailed clinical information
listed in Supplementary Table 1). Tumor locations included
midbrain tegmentum (11/126, 8.7%), tectum (5/126, 4.0%),
pontomesencephalic junction (2/126, 1.6%), pons (38/126,
30.2%), middle cerebellar peduncle (7/126, 5.6%), pontomedul-
lary (16/126, 12.6%), medulla (42/126, 33.3%), and midbrain-
thalamus (5/126, 4.0%) (Supplementary Fig. 1; Supplementary
Table 2). Patients were aged from 2 to 62 years, with a median age
of 23 years. Tumors were graded based on the WHO classification
and included 8.7% (11/126) WHO grade I, 41.3% (52/126) WHO
grade II, 31.0% (39/126) WHO grade III, and 19.0% (24/126)
WHO grade IV tumors. The majority of original histopatholo-
gical diagnoses were astrocytoma (59, 46.8%), along with 27
oligoastrocytomas (21.4%), 24 glioblastomas (19.0%), 8 pilocytic
astrocytomas (PA) (6.3%), 3 gangliogliomas (2.4%), 2 pilomyxoid
astrocytomas (PMA) (1.6%), 1 pleomorphic xanthoastrocytoma
(PXA) (0.8%), and 1 oligodendroglioma (0.8%). Among the 38
tumors located in the pons, 33 (86.8%) were diagnosed as diffuse
high-grade midline gliomas, NOS (historically known as DIPG),
and 5 were focal pontine tumors, most likely pilocytic astro-
cytomas (13.2%). To analyze the tumor genomic and epigenomic
characteristics of this tumor cohort, we performed methylation
microarrays (n= 123) and RNA sequencing (RNAseq) (n= 75)
on tumors included in this study, and whole genome (n= 97) and
panel sequencing (n= 21) on paired tumors and normal (germ-
line) controls.

Methylation classification reveals distinct H3 clusters corre-
lated with tumor locations in brainstem gliomas. DNA
methylation status has been utilized for classification of brain
tumors, and could assist diagnosis and prognostication2,13,15–17.
We performed unsupervised hierarchical clustering (linkage

method: WPGMA; distance: Euclidean) using the top 20,000
most variable probes (Supplementary Table 3), excluding
methylation probes on sex chromosomes and common single
nucleotide polymorphisms sites. This approach revealed four
distinct methylation clusters (Fig. 1). The hypermethylated
cluster (methylation cluster IDH) consisted primarily of tumors
bearing isocitrate dehydrogenase 1 (IDH1)mutations. Histone H3
mutant samples formed two different clusters associated with
tumor location (methylation clusters H3-Pons and H3-Medulla)
(Fig. 1). The remaining cluster (methylation cluster PA-like)
consisted largely of lower grade gliomas without detectable IDH1
or H3 mutations. These clusters matched with the DKFZ
methylation classifier by three main classes15, “diffuse midline
gliomas H3 K27M mutant”, “pilocytic astrocytoma”, and “IDH
mutant”. However, our methylation-based clustering analysis
revealed that H3-mutant samples were made up of two distinct
sub-clusters, which correlated with their anatomic localization in
the brainstem of either the pons (methylation cluster H3-Pons)
or medulla (methylation cluster H3-Medulla). Principal com-
ponent analysis of the methylation array probe data using R
packages and functions (ggbiplot and prcomp)18,19 also revealed
distinct groups based on the DKFZ methylation classifier
(Fig. 2a; Supplementary Fig. 2a). When performing PCA speci-
fically for whole probes from tumors within methylation cluster
H3-Pons and H3-Medulla (Fig. 2b), as well as locations in
methylation cluster H3-Pons and H3-Medulla (Supplementary
Fig. 2b), we observed similar trends in these clusters and loca-
tions. The first principal component could explain most of the
variance in the various principal component analyses performed
(96.4% in Fig. 2a and 96.7% in Fig. 2b, Supplementary Fig. 2b),
indicating methylation profiling could provide significant utility
as a classifier of these samples. The four distinct methylation
clusters, corresponding to the H3-Pons, H3-Medulla, IDH, and
PA-like subtypes, could be readily identified. Analysis using
Tumor Map supported these findings by demonstrating a similar
distinction of clusters correlated to tumor location20 (Fig. 2c;
Supplementary Fig. 3).

The top 20,000 variable probes used above were based on
methylation data from all samples, including samples from
methylation clusters IDH and PA-like. To prevent potential
confounding factors for those differential probes mainly for
methylation clusters IDH and PA-like, we selected the top
20,000 variable probes from only the methylation clusters H3-
Pons and H3-Medulla, and we performed hierarchical cluster-
ing on these cases (Supplementary Fig. 4). Heatmap analysis
showed this hierarchical clustering of subclusters indeed
maintained distinct clusters. Most samples from methylation
cluster H3-Medulla are tumors from the medulla, or the nearby
dorsal pontomedullary junction, (23/27, 85.2%) (Supplemen-
tary Table 1, Supplementary Table 2; Supplementary Fig. 1).
Tumors in the methylation cluster H3-Pons are largely pontine
tumors (29 out of 47, 61.7%) and 4 from the nearby middle
cerebellar peduncle (8.5%). Methylation cluster PA-like pri-
marily consisted of medullary tumors (18 out of 34, 52.9%),
along with 12 tumors from midbrain regions (8 from midbrain
tegmentum and 4 from tectum, 35.3%). Unlike other clusters
having focused locations, tumors from cluster IDH were
distributed across brainstem regions, 3 from the pons (20%),
3 from the middle cerebellar peduncle (20%), and 4 from the
medulla (26.7%). Among all 31 DIPG tumors with methylation
data, 27 of them were included in the H3-Pons cluster (87.1%),
with the remaining 4 DIPG cases clustering in the IDH cluster
(12.9%).

All patients in this study were of Asian ethnicity. To evaluate
if these distinct H3 clusters can be found in a predominantly
non-Asian population, we combined our dataset with published
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studies of 28 DIPG samples (Buczkowicz et al.9). From tSNE
results of those selected top 20,000 variable probes, we found
that those DIPG samples grouped closely with our H3-Pons
samples as expected (Supplementary Fig. 5), indicating that
classification according to the methylation cluster H3-Pons may
be robust across ethnicities. Notably, of the 6 DIPG cases from
Buczkowicz et al. that clustered toward the PA-like group, 4
were H3WT and all were previously classified in either the
“silent” or “MYCN” methylation clusters of that study.

Tumors of distinct methylation clusters display different
genomic landscapes. To identify somatic genetic alterations in

this brainstem glioma cohort, whole genome sequencing and
panel targeted sequencing for 68 common mutated brain tumor
genes were used on both the tumor samples and matched blood
(Fig. 3). BWA and GATK MuTect221,22 were used for variant
calling, and IntOgen23,24 and FML25 were used to predict
potential driver mutations and significant noncoding region
mutations. The mutation landscape of these tumors is grouped by
the four distinct DNA methylation clusters defined above (Fig. 3;
Supplementary Table 1). No significantly mutated noncoding
regions were identified.

Methylation cluster H3-Pons and methylation cluster H3-
Medulla are both enriched for H3 mutations, (H3-Pons: 40/43,
93.0%; H3-Medulla: 23/26, 88.5%), while the mutation
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frequencies of PPM1D, FGFR1, and NF1 are higher in methyla-
tion cluster H3-Medulla (PPM1D 46.15%, FGFR1 19.23%, NF1
46.15%) than in methylation cluster H3-Pons (PPM1D 11.63%,
FGFR1 2.33%, NF1 16.28%) (Fig. 4a). PPM1D truncating
mutations have been reported in brainstem gliomas, but the
frequency rate varies between different studies1,9–11,26. Three of
the 30 DIPGs harbored PPM1D mutations, as compared with 14
of 41 non-DIPG in H3 mutant brainstem gliomas. Methylation
clusters H3-Pons and H3-Medulla shared several driver muta-
tions, as predicated by FML/Intogen: PPM1D, NF1, ATRX,
FGFR1, H3F3A, TP53, and SNRNP200. However, methylation
cluster H3-Pons specifically included other distinct driver
alterations, such as BCOR, TCF12, KRAS, PTEN, MGAT1, and
PIK3CA (Fig. 4b).

As expected, methylation cluster IDH is enriched for IDH1
mutations (78.57%) and most of these cases harbored co-
occurring TP53 (92.86%) and ATRX (50%) mutations. FML/
Intogen analysis showed that TP53, ATRX, and IDH1 were
significantly mutated and potential driver mutations in this
methylation cluster. Of note, the patients in this cluster are adults
(age range 23–60 years).

Methylation cluster PA-like, consisting primarily of grade I or
II brainstem gliomas, showed distinct patterns in DNA

methylation and genetic mutations (Figs. 1 and 3). The number
of mutations for each sample was lower in samples of cluster PA-
like compared with samples in other clusters (mean mutation
count: 6.9; methylation cluster IDH, H3-Medulla, H3-Pons mean
mutation count: 24.1). Interestingly, FML/Intogen driver analysis
revealed potential driver mutations in NF1 and SF3B1 coding
regions, and in the noncoding 3′ UTR of EXD3, despite their low
frequency of mutations. Overall, few of the commonly associated
glioma driver genes were mutated in the methylation cluster PA-
like, and NF1 and SF3B1 were the only recurrently mutated genes
in this cluster.

Gene expression profiling reveals distinct enriched gene sets in
methylation clusters H3-Pons and H3-Medulla. We performed
RNAseq on samples from the brainstem glioma cohort and
evaluate patterns in gene expression (Supplementary Fig. 6).
When selecting genes encoding transcription factors, similar to
DNA methylation profiling, methylation clusters H3-Pons and
H3-Medulla could be differentiated by gene expression profiles27

(Supplementary Fig. 6). Next, we used HTseq28 and edgeR29,30 to
identify differentially expressed genes between methylation clus-
ters H3-Pons and H3-Medulla, followed by enrichment analysis
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of these genes in pathways and gene ontology (GO) using
DAVID31 (Supplementary Tables 4 and Supplementary Table 5).
The top altered pathways and GOs identified in our analyses are
related to cell cycle, cell division, or mitosis, showing the potential
different mechanisms involved in the tumors in methylation
clusters H3-Pons or H3-Medulla. We also applied Gene Set
Enrichment Analysis for the normalized FPKM values32,33

(Fig. 4c–h). Gene sets enriched in methylation cluster H3-
Medulla were primarily immune response-related gene sets such
as interferon gamma signaling and cytokine receptor interaction,
while gene sets enriched in methylation cluster H3-Pons were cell
cycle or mitosis-related such as DNA replication, mitotic phase,
and checkpoints.

Fusion genes and copy number alterations. Using whole gen-
ome sequencing data and RNA sequencing data, we evaluated our
cohort for genomic rearrangements (Manta34) and fusion genes
(STAR-fusion35). Several common fusion genes were detected,
including KIAA1549/BRAF (n= 3) and NTRK fusions, which
have been reported in gliomas11,36,37. The KIAA1549/BRAF
fusion was detected in 1 out of 8 pilocytic astrocytomas in our
cohort and in two grade II astrocytomas (all 3 in methylation
cluster PA-like). We validated several recurrent fusion genes
identified in our analyses, including C15orf57-CBX3 genes (n=
3), and NTRK2-other genes (n= 6) (Fig. 5; Supplementary
Table 6 and Supplementary Table 7). Sanger sequencing was
performed to confirm the fusion genes and specific breakpoints in
these samples.

We also used methylation array data to assess copy number
alterations for each methylation cluster by conumee38 and
GISTIC39 (Supplementary Tables 8 and 9; Supplementary Fig. 7a,
b), which showed different patterns in copy number gains and
deletions among the four methylation clusters. Although
methylation clusters H3-Pons and H3-Medulla shared similar

frequent copy number alterations in 3p26.32, 8p23.1 (gains) and
5q31.3 (loss), H3-Medulla globally harbored more copy number
gains (11 loci in H3-Medulla vs. 5 loci in H3-Pons) while H3-
Pons exhibited more frequent copy number losses (13 loci in H3-
Pons vs. 5 loci in H3-Medulla). Interestingly, only H3-Pons
showed 4q12 amplification which contains the frequently
amplified gene PDGFRA in midline gliomas. Copy number
alterations in methylation cluster IDH (7 loci in gains or losses)
and PA-like (7 loci in gains or losses, including 7q34: KIAA1549
and BRAF amplification) were fewer in comparison with
methylation clusters H3.

H3-medulla is correlated with better survival than H3-Pons.
We performed survival analysis to investigate potential differ-
ences in survival between the distinct methylation clusters we
identified (Fig. 6a–d). Kaplan–Meier analyses showed distinct
survival curves for patients stratified according to these four
methylation clusters (Fig. 6a). Methylation cluster IDH exhibited
longer overall survival relative to methylation cluster H3 clusters
(Median survival months, IDH: 141.2; H3-Pons: 9.47; H3-
Medulla: 26.33; Log-rank test: H3-Pons vs. IDH: p < 0.0001; H3-
Medulla vs. IDH: p= 0.0269). Methylation clusters H3-Medulla
and H3-Pons, despite sharing similar genetic alterations of H3
and TP53 pathway mutations, had distinct overall survival trends
(Log-rank test, p < 0.0001) (Fig. 6b).

Cases included in methylation cluster PA-like showed better
overall long-term survival compared with the other groups.
Importantly, this improved survival trend for patients in the
methylation cluster PA-like occurred in the context of the
majority of these cases being diagnosed histologically as
astrocytoma or oligoastrocytoma, grades II-III (21 out of 34).
Only 7 out of 34 tumors in this cluster were diagnosed as pilocytic
astrocytoma (Fig. 6a). Collectively, these results suggest that
methylation classification into these subgroups may serve as a
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better correlate to identify patients with grade I–III tumors that
have a more benign clinical course.

In terms of tumor grade, most of the tumors from methylation
cluster H3-Pons were grade IV (20 out of 47, 42.6%), while 19
tumors were grade III (40.4%), and 8 tumors were grade II
(17.0%). Tumors classified in the methylation cluster H3-Medulla
were composed of grade II and III cases (II: 11, 40.7%, III: 12,
44.4%;). When evaluating only grade II and III tumors in both
groups, H3-Medulla cases exhibited longer median overall
survival (26.3 months) compared to tumors classified as H3-
Pons (11.1 months) (Log-rank test, p= 0.00034) (Fig. 6c). DIPGs
are known to have the worst prognosis among brainstem gliomas,
and none of the DIPGs in our cohort were in methylation cluster
H3-Medulla. When DIPGs in methylation cluster H3-Pons were
excluded, samples from methylation cluster H3-Medulla still
showed a significantly longer overall survival relative to tumors
classified as H3-Pons (26.3 months vs. 10.6 months) (p value=
0.0064, log-rank test) (Fig. 6d). We also conducted Cox
proportional hazards regression models for multivariate analysis

(Supplementary Fig. 8). When including methylation cluster and
age as factors, H3-Pons still showed higher risk than H3-Medulla
(hazard ratio: 1.04–6.6; p value= 0.041), while age showed only
limited effect (hazard ratio: 0.95–1.0, p value= 0.066) (Supple-
mentary Fig. 8a). When including whether the sample is DIPG or
non-DIPG, methylation cluster remains the most dominant
factor (Supplementary Fig. 8b).

Discussion
Brainstem gliomas represent a heterogeneous group of tumors
arising from the midbrain, pons, and the medulla, affecting both
children and adults. These tumors have different histologic fea-
tures, but also differing levels of resectability and therefore vari-
able clinical courses. Among these tumors, DIPG has been the
most extensively studied, due to its relative prevalence and lack of
therapeutic options resulting in a poor prognosis. Integrated
genomic, epigenomic and transcriptomic studies have provided
insightful understanding of the tumorigenesis of pediatric DIPG,
which also might hold promise for future utilization of molecular
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marker-driven clinical trials and use of novel targeted therapies
such as HDAC, JMJD3, ACVR1, PPM1D, and BET bromodo-
main inhibitors, and CDK7 blockade40–44. However, the mole-
cular profiling of the many other brainstem tumors that are non-
pediatric DIPG has remained elusive due in large part to the lack
of sample availability. This has limited our understanding of these
diseases and ability to objectively stratify these patients and
implement use of novel targeted therapies. Here, we provide a
comprehensive integrated genomic analysis of gliomas of the
brainstem, with tumors spanning from the most rostral midbrain
to the pons and medulla. The newly updated WHO guidelines use
a new diagnostic term for brainstem gliomas with the H3 K27M
mutation, however, this classification is unable to distinguish the
variable prognoses of these gliomas, categorizing all of them as
WHO Grade IV. From our study, we show using the epigenetic
and genetic signatures that tumors from various locations in the
brainstem can be classified into four major epigenetic subtypes,
each with distinct clinical courses and potential therapeutic
targets.

Using methylation data we showed that brainstem gliomas
could be classified into four major methylation clusters: H3-
Pons, H3-Medulla, IDH, and PA-like. We summarized the
integrated genetic and clinical features of these subtypes in
Fig. 7. Our study revealed the presence of two distinct epige-
netic subgroups of H3-mutant tumors, H3-Pons and H3-
Medulla. There were significant differences in the survival
trends between these two clusters, with the H3-Pons group
having a more aggressive course as compared to the H3-
Medulla tumors. Based on RNA-seq based differential expres-
sion analysis, we found these tumors to have different enrich-
ment of gene expression pathways, with the H3-Medulla
tumors enriched for immune-response related pathways, as
compared with the more aggressive H3-Pons tumors having
more cell cycle-related pathways. Despite these tumors having
similar mutation patterns, with common alterations in core
mutations such as H3F3A, these striking differences in epige-
netic and expression patterns may inform distinct origins or
influences of the tumor microenvironment, and warrant further
investigation. These discoveries indicate that methylation status
might improve the classification for brainstem gliomas and
guide clinical decision making for patients.

Tumors in the PA-like cluster consisted primarily of tumors
originally diagnosed as grades II-III infiltrative gliomas, pilocytic
astrocytomas, PMA, and PXA. The PA-like-group tumors had a
benign clinical course, despite variability in grade. Based on
histologic criteria, such variability may lead to classification of a
subset of these cases as higher grade gliomas and lead to over-
treatment in clinical practice. Here again we demonstrate that
epigenetic and genomic patterns can more precisely stratify
patient tumors diagnosed with small biopsies. Using methylation-
based classification of tumors could better inform clinical deci-
sion making and identify patients that are candidates for ther-
apeutic intervention.

We also utilized whole genome sequencing data to establish the
mutation landscape of brainstem gliomas and discovered
methylation patterns closely matched with mutation landscapes.
Several frequently mutated genes were identified in these clusters,
including H3F3A, HIST1H3B, IDH1, TP53, PPM1D, ATM,
ATRX, FGFR1, PIK3CA, NF1, PTEN, PDGFRA, and TCF12. We
used additional algorithms to predict driver mutations in non-
coding regions of genes, such as UBE3C, CXorf28, and EXD3, as
well as structural variants and copy number changes. Although
several genes could be identified in multiple clusters, certain
genes, such as NF1 and PPM1D were more frequent in cluster
H3-Medulla, while the percentage of TP53 mutations was higher
in H3-Pons. Also, we identified the cluster IDH in brainstem

gliomas, with tumors in this cluster harboring co-occurring
IDH1, TP53, and ATRX mutations. The majority of these IDH
cluster tumors were restricted to adult patients, consistent with
previous studies focusing on pediatric brainstem tumors and
showing very rare IDH mutations in these pediatric tumors. This
indicates age is a key factor in developing brainstem glioma with
IDH1 mutation.

This comprehensive study of brainstem gliomas provides an
overview of this heterogeneous tumor entity. Using an integrated
genomic analysis of more than one hundred brainstem gliomas
from various anatomic locations, we show the promise of mole-
cular profiling of brainstem tumors for improved tumor classi-
fication and understanding of their molecular underpinnings, and
identify new potential therapeutic targets, all to improve out-
comes for these patients.

Methods
Sample collection and cohort characteristics. Brain tumor and peripheral blood
samples were collected from patients at Beijing Tiantan Hospital, Capital Medical
University, China between 2013 and 2017 with informed consent reviewed by
Institutional Review Board of Beijing Tiantan Hospital, with accreditation of the
Association for the Accreditation of Human Research Protection Program. Biopsy
or resected tumors were for clinical diagnosis and therapy. All the FFPE and snap-
frozen tumor tissues used for sequencing were reviewed by an experienced team of
neuropathologists at Beijing Tiantan Hospital, Captial Medical University. Tissues
whose tumor content were less than 70% were excluded from subsequent
sequencing. 126 leftover samples were used in this analysis. Among these samples,
97 samples were used for whole genome sequencing, 123 for methylation micro-
array, 75 for RNAseq, and 21 samples for panel sequencing. Clinical information
and survival data are available for these patients. Kaplan–Meier analysis, log-rank
test, and Cox proportional hazards regression model (R package survminer) were
used to test for survival analysis.

Whole genome sequencing and RNA sequencing. Whole exome sequencing,
RNAseq, and panel targeted sequencing (for 68 common mutated brain tumor
genes) were performed by GenetronHealth, Beijing, China. For whole genome
sequencing and panel sequencing, BWA was used for alignment and GATK
mutect2 was utilized for variant calling. For RNAseq, STAR, or hisat2 was use for
alignment, cufflinks was used for gene expression profiling, Htseq and edgeR were
used for differential counts analysis, and GSEA was used for gene sets analysis.

Methylation microarrays. The Illumina HumanMethylation450 BeadChip and
Infinium MethylationEPIC BeadChip were used for assessing genome-wide
methylation profiling of 123 samples. GenomeStudio Methylation Module was
used for data processing and quality check. Hierarchical clustering, t-distributed
stochastic neighbor embedding (tSNE), and principal component analysis by R
package Rtsne, and pheatmap with linkage method WPGMA and Euclidean dis-
tance were performed for evaluation of subgroups18,45–47.

Copy number alterations. Segmentation was calculated by Conumee from
methylation arrays. GISTIC 2.0 was used for four different methylation clusters.
Parameters setting: -genegistic 1 -smallmem 1 -broad 1 -conf 0.95 -armpeel 1
-savegene 1 -gcm mean -maxseg 2500 -ta 0.1 -td 0.1.

Structural variants. Manta was applied for structural variant calling from whole
genome sequencing data. We also used RNAseq data for checking structural var-
iants, and STAR-fusion was applied for RNAseq data. Selected fusion genes
detected from both whole genome sequencing and RNAseq were validated by
Sanger sequencing, including: CAPZA2-MET, KMT2E-MET, MET-CTTNBP2,
ST7-CAPZA2, CAPZA2-CLCN1, CAPZA2-THAP5, CAPZA2-PNPLA8, RB11-
2B6.3-MET, SYS1-DBNDD2, C15orf57-CBX3. Primers for PCR and Sanger
sequencing were listed in Supplementary Table 10.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Whole Genome Sequencing data of this study has been deposited to Genome Sequence
Archive in BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of
Sciences48,49, https://bigd.big.ac.cn/gsa-human, accession number HRA000092, and
RNAseq, panel targeted sequencing, and methylation microarray data to the European
Genome-phenome Archive (EGA, http://ega-archive.org) under accession number
EGAS00001004341. The deposited and publicly available data are compliant with the
regulations of the Ministry of Science and Technology of the People’s Republic of China.
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The data will be available for sharing and data use agreements are available in
Supplementary materials.
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