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A B S T R A C T

Purpose: This study aimed to determine whether MR-based radiomics of glioblastoma can predict the isocitrate
dehydrogenase-1 (IDH1) mutation status and compare predictive performances between manual and fully au-
tomatic deep-learning segmentations.
Method: Forty-five glioblastoma patients with pretreatment T2-weighted MRIs were retrospectively evaluated.
Manual segmentations of glioblastoma and peri-tumoral edema were trained via a deep neural network (V-Net).
An independent external cohort of 137 glioblastoma patients from the Cancer Imaging Archive was also included
(test set 1, n= 46; test set 2, n= 91). Test set 1—without known IDH1 status—was used to calculate dice
similarity coefficients (DSC) between the two segmentation methods (manual & V-Net). From test set 2, all-
relevant radiomic features were selected via a random forest-based wrapper algorithm for IDH1 prediction.
Receiver operating characteristics (ROC) curves with areas under the curve (AUC) were plotted as performance
metrics for both methods.
Results: Among 136 patients (45 and 91 patients from our institution and test set 2, respectively), 17 patients
(11.2 %) had IDH1 mutations. The mean DSC of test set 1 was 0.78 ± 0.14 (range, 0.34−0.94). A subset of 9
all-relevant features (8.4 %, 9/107) was selected. V-Net segmentation of the test set 2 yielded similar perfor-
mance in predicting IDH1 mutation as compared to manual segmentation (V-Net AUC=0.86 vs. manual
AUC=0.90). The optimal cut-point threshold of AUC yielded 86.8 % accuracy for manual segmentation and
75.8 % for V-Net segmentation.
Conclusions: V-Net showed robust segmentation capability of glioblastoma on T2-weighted MRI. All-relevant
radiomics features from both segmentation methods yielded a similar performance in IDH1 prediction.

1. Introduction

Glioblastoma is the most common primary malignant brain tumor
that is known for its dismal prognosis (average survival: approximately
1 year) [1]. Histologically, de novo glioblastoma shows the presence of
wild-type isocitrate dehydrogenase-1 (IDH1). Secondary glioblastoma
arising from lower grade gliomas has mutant IDH1 and occurs in about
12 % of glioblastomas [2]. The mutant IDH1 status indicates a better

prognosis [3,4]. As a result, assessing the status of the IDH1 muta-
tion—a well-known prognostic biomarker—would help in prog-
nostication of patients prior to histologic confirmation.
To quantitatively assess glioblastoma on MRI, appropriate tumor

segmentation is required, which is often time-consuming, labor-in-
tensive, and subjective. Convolutional neural network (CNN)-based
image segmentation has gained popularity for its applications in seg-
menting various anatomical structures and lesions including coronary
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arteries [5], abdominal organs [6,7], proximal femur [8], prostate
[9–11], and brain tumors [12,13]. Most approaches of CNN-based
image segmentations have focused on processing two-dimensional
images while most medical images comprise three-dimensional (3D)
volumes. V-Net is a CNN that implements 3D convolutional layers for
medical image segmentation. Residual connection and volumetric dice
metric are unique characteristics of V-Net that distinguish it from other
computerized methods. Overall, V-Net can analyze fine details of or-
gans of various shapes and textures, thus making it a generalized tool
for medical segmentation [14]. We hypothesized that V-Net would be
capable of segmenting glioblastoma and peritumoral edema on pre-
treatment T2-weighted MRI, as a result of which the radiomic features
from these segmentations would reliably predict the IDH1 mutation
status.
In this study, we aimed to apply MR-based radiomics to extract

features that would differentiate IDH1 mutant glioblastoma from wild-
type IDH1. In doing so, we attempted to segment tumors via a fully
automated CNN method named V-Net and compare its performance to
that of manual segmentations.

2. Material and Methods

2.1. Patient Selection

The institutional review board of our institution approved this ret-
rospective study and waived informed consent. The inclusion criteria of
the patients were: (1) pathologically confirmed WHO Grade IV glio-
blastoma; (2) available pretreatment brain MRI with T2-weighted
images (T2WI); (3) known IDH1 status; and (4) no prior history of
surgery or radiotherapy. Two independent patient cohorts were in-
cluded. First, a retrospective review of electronic medical records in our
institution from March 2009 to April 2018 yielded 45 eligible patients.
The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas
(TCGA), an open-source imaging and genetic repository, respectively
[15], were reviewed to include two additional test sets: test set 1
(n=46, without known IDH1 status) and test set 2 (n= 91). Glio-
blastomas patients in both test sets were selected using the above in-
clusion criteria, except for test set 1 patients whose IDH1 status was not
known. The flow diagram of training V-Net and analyzing two test sets
is depicted in Fig. 1.

2.2. MRI Acquisition Protocol

Two different 3.0-T MR scanners were used to acquire the images:
Magnetom Verio (Siemens Healthineers, Erlangen, Germany; 12-
channel phased-array coil) and Ingenia (Philips Healthcare, Best, the
Netherlands; 32-channel phased-array coil). The acquisition parameters
for both scanners were: axial T2WI (repetition time= 3000–5500ms;
echo time= 80–95ms; flip angle= 150°; field of
view=210×210mm; acquired matrix= 448×358; number of ex-
citations= 1; echo train length= 17; section thickness= 4−5mm).
For the TCIA cohort, MR images were obtained with either a 1.5-T
(n=66) or 3.0-T (n=25) scanner. The acquisition parameters were
axial T2WI (repetition time=3000–5500ms; echo time=80–105ms;
flip angle= 90°; field of view=200×200–240×240mm; acquired
matrix= 256×192–256× 224; number of excitations= 1–2; echo
train length= 8; section thickness= 5mm).

2.3. IDH1 Sequence Analyses

At our institution, the QIAamp DNA Mini Kit (QIAGEN, Hilden,
Germany) was used to extract genomic DNA from 10 μm thick sections
of 10 % neutral formalin-fixed paraffin-embedded tissue blocks. The
entire coding sequence of exon 4 of the IDH1 gene as well as codon 132
was acquired by overlapping polymerase chain reaction amplification,
which was performed in 20 μL containing 100 ng of template DNA,

10 μL PCR buffer, 0.25mM dNTPs, 10 pmol primers, and 1.25 U Taq
DNA polymerase (iNtRON, Seoul, Korea). The following primer se-
quences were used: forward, 50-CGGTCTTCAGAGAAGCCATT-30 and
reverse primer, 50-GCAAAATCACATTATTGCCAAC-30. The products of
PCR were electrophoresed on 2 % agarose gels and purified with a
QIAquick PCR purification kit (QIAGEN, Hilden, Germany). The BigDye
Terminator v1.1 kit (Applied Biosystems, Foster City, CA, USA) on an
ABI 313091 genetic analyzer (Applied Biosystems) was used for bidir-
ectional sequencing. For the TCIA/TGCA cohort, median normalized
messenger RNA expression data (Affymetrix HG U133A array) was
obtained from the TCGA Data portal [15].

2.4. Manual Segmentation

On T2WI, ROI encompassing the entire tumor (i.e. enhancing and
non-enhancing portion including necrosis) and peri-tumoral edema
were drawn semi-automatically on each slice by a radiologist with 6
years of experience in neuroradiology (Y.C.) using a 3D Slicer [16]
(www.slicer.org) (Supplementary Fig. 1). The segmented images were
further reviewed and confirmed by another radiologist with 20 years of
experience in neuroradiology (K.J.A.). Both radiologists were blinded to
the patients’ clinical information. Manual segmentations were drawn
for patients from our institution with known IDH1 status (n=45) and
in both test sets of the TCIA cohort (test set 1, n= 46; test set 2,
n= 91). For dice similarity coefficient (DSC) calculation, test set 1 was
used as reference to which the output of automatic segmentation could
be compared (Fig. 1).

2.5. Automatic Segmentation via V-Net

The application of the V-Net [14] was primarily based on previous

Fig. 1. Flowchart showing grouping of cohorts into development and test sets
with subsequent analyses.
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experiments on a GitHub repository (https://github.com/mattmacy/
vnet.pytorch). The V-net is similar to U-net [14,17], except that it uses
3D input and output and convolution with a stride of factor 2 instead of
max-pooling. The V-net structure was used with modification of dice
loss function which was used as:

× < > < >
< > + < > +

sum ground truth prediction
sum ground truth sum prediction

[2 ( )]
[ ( ) ( ) 0.0001]2 2

The ADAM optimizer was used to update the network parameters.
The learning rate, number of epochs, and batch size were 0.001, 128,
and 4, respectively. The training and tests were performed on a single
GPU (NVIDIA Geforce GTX 2080 ti) using PyTorch v1.0. The model
training time was approximately 2 h; the inference time for the test data
segmentation was about 0.1 s per patient.
For all T2WI data, a ranged (minimum=0, maximum=1) in-

tensity normalization was performed and interpolated to 1.5mm iso-
tropic space before segmentation and radiomics analysis. Firstly, for
reference segmentations, 45 manually segmented T2WI patients from
our institution were used to train the V-Net architectures, wherein 5
randomly selected patients’ T2WI were used solely for network struc-
ture and hyperparameter optimization purposes. The trained V-net
model was used to test the 46 unsegmented T2WI in test set 1. Finally,
this V-Net model was used to test the 91 T2WI in test set 2 to obtain
tumor segmentations. Both test sets were not used in the training pro-
cess to avoid overfitting.

2.6. Evaluation of Segmentation Accuracy

Test set 1 was used for DSC calculation. The segmented volumes
from manual and automatic methods were compared in DSC, which
were calculated for each of the 46 images as previously described by

Zou et al. [18], where the volumetric measure of agreement was within
the range of 0–1 (1 indicating the greatest overlap).

2.7. Radiomic Feature Extraction

Radiomic features from segmented MRIs were extracted via a tested
and maintained open-source platform, PyRadiomics [19]. After signal
intensity normalization, a total of 107 features, comprising first-order
statistics, shape-based, gray-level cooccurrence matrix, gray-level run-
length matrix, gray-level size zone matrix, neighboring gray-tone dif-
ference matrix, and gray-level dependence matrix, were extracted.
Radiomic features were extracted from patients with known IDH1
status; 45 patients from the development set and 91 patients from test
set 2 (Fig. 1).

2.8. Radiomic Feature Selection

From the development set, radiomic features were selected via
Boruta, a random forest-based wrapper algorithm for all-relevant fea-
ture selection [20]. Random foresting yields an importance measure for
individual features, thus minimal parameter adjustment is needed,
making it popular in dimensionality-reduction tasks. Boruta algorithm
was performed repeatedly to estimate feature importance, and irrele-
vant features were consecutively dropped. To reach statistical sig-
nificance, the algorithm continuously calculated all possible feature
combinations, producing an all-relevant subset of features.

2.9. Statistical Analysis

The patients’ baseline clinical characteristics were analyzed using
the t-test for age and Chi-squared or Fisher’s exact test for other cate-
gorial characteristics where appropriate. Wilcoxon rank-sum tests with
false discovery rate correction for multiple comparisons were used to
compare the radiomic features between wild-type and mutant IDH1.
Prediction of IDH1 status was based on generalized linear models
(GLM) that were fitted with the relevant radiomic features. Receiver
operating characteristics (ROC) curves were plotted with area under the
curves (AUC) for test set 2. The optimal cut-off threshold was de-
termined by Youden’s index [21]. The 95 % CI of AUCs, sensitivities,
specificities, and accuracies were estimated for each ROC analysis with
2000 stratified bootstrap samples. The statistical difference between the
AUCs obtained from manual and automatic segmentations was tested
via likelihood ratio test (Supplementary Materials). Statistical sig-
nificance was set at P < 0.05. All statistical analyses were performed
using R statistical software (R version 3.4.4., Vienna, Austria) and its
package ‘pROC’ [13].

Table 1
Baseline characteristics of study cohorts.

Clinical
characteristics

Our institution (n= 45)
(development set)

TCIA/TCGA
(n= 91) (test set)

P value

Sex, n (%)
Male 24 (53.3 %) 53 (58.2 %) 0.719
Female 21 (46.7 %) 38 (41.8 %)
Age, mean ± SD 58.7 ± 12.9 58.6 ± 15.2 0.971
Tumor location, n

(%)
0.183

Frontal 14 (31.1 %) 23 (25.3 %)
Occipital 3 (6.7 %) 4 (4.4 %)
Parietal 13 (28.9 %) 27 (29.7 %)
Temporal 9 (20 %) 32 (35.2 %)
Midline 4 (8.9 %) 5 (5.5 %)
Cerebellum 2 (4.4 %) 0 (0%)
IDH1 status, n (%)
Wild-type 38 (84.4 %) 83 (91.2 %) 0.371
Mutated 7 (15.6 %) 8 (8.8 %)

TCIA=the cancer imaging archive, SD=standard deviation, IDH1=isocitrate
dehydrogenase-1.

Table 2
Relevant radiomic features selected via Boruta classification.

Features Mean importance Median importance Minimum importance Maximum importance

Dependence entropy 5.519 5.622 0.131 8.619
Surface volume ratio 5.259 5.308 0.769 8.385
Run length non-uniformity 4.338 4.447 −0.255 6.801
Coarseness 4.261 4.358 −0.342 6.736
Flatness 3.951 4.030 0.103 6.758
Gray-level non-uniformity 3.514 3.589 −0.724 6.067
Run variance 3.298 3.396 −0.789 6.655
Strength 2.779 2.877 −0.765 5.836
Large area high gray-level emphasis 2.677 2.719 −0.470 5.505

IDH1=isocitrate dehydrogenase-1, SD=standard deviation.
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3. Results

3.1. Study Population

A total of 136 patients was retrospectively included (our institution,
n=45; TCIA, n=91) in the study. All patients had undergone pre-
treatment brain MRIs. Between the two cohorts, no significant

differences were found in sex, age, tumor location, and IDH1 status
(Table 1). The institutional cohort had seven IDH1 mutation cases (15.6
%) whereas the TCIA cohort had eight IDH1 mutation cases (8.8 %),
four of which were acquired with 1.5-T MR scanner and the other four
with 3.0-T MR scanner.

3.2. Relevant Radiomic Features

A total of 107 radiomic features were extracted from both cohorts.
Nine features were selected as all-relevant features by Boruta (Table 2).
The selected features in the order of mean importance were: ‘Depen-
dence Entropy’, ‘Surface Volume Ratio’, ‘Run Length Non-Uniformity’,
‘Coarseness’, ‘Flatness’, ‘Gray-Level Non-Uniformity’, ‘Run Variance’,
‘Strength’, and ‘Large Area High Gray-Level Emphasis’. Fig. 2 illustrates
the boxplots of attribute importance of radiomic features retrieved.
Finally, compared values of nine radiomic features are summarized in
Supplementary Table 2.

3.3. Dice Similarity Coefficients between Manual and Automatic
Segmentations

In test set 1, the mean DSC between manual and V-Net segmenta-
tions was 0.751 ± 0.140 (range, 0.336–0.943). The representative
segmentation images are depicted in Fig. 3. The DSC of individual tu-
mors is shown in Supplementary Table 1.

3.4. Performance of IDH1 Status Prediction

The predictive performances of IDH1 status are summarized in
Table 3. The AUCs were 0.904 (95 % CI: 0.81–1.0) and 0.857 (95 % CI:
0.74–0.97) for manual and V-net segmentation, respectively (Fig. 4)
(P=0.541). The optimal threshold of ROC yielded accuracy of 86.8 %
(95 % CI: 63.7 %–97.8 %) and 75.8 % (95 % CI: 57.1 %–94.5 %) for
manual and V-net method, respectively. There was no statistical dif-
ference between the two AUCs according to the likelihood ratio test
(P=0.073) (Supplementary Materials). The AUC of IDH1 status

Fig. 2. Boxplots of attribute importance of radiomic features retrieved, where
green and red boxplots indicate confirmed and rejected features, respectively.

Fig. 3. Representative images of The Cancer Imaging Archive/The Cancer Genome Atlas (TCIA/TCGA) test set with unsegmented glioblastoma (upper row) and V-
Net segmentation output (bottom row) in left parietal lobe (A), right frontoparietal lobe (B), left frontal lobe (C), and right temporal lobe (D).
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prediction of the development set was 0.771 (95 % CI: 0.59–0.95) with
accuracy of 73.3 % (95 % CI: 46.7 %–93.3 %).

4. Discussion

Accumulating evidence suggests that IDH1 mutation status is an
independent prognostic factor in patients with high-grade gliomas
[22,23] having IDH1 mutations that indicate better prognoses [24].
Considering its prognostic significance, this study implemented a un-
ique 3D image segmentation of glioblastoma on T2WI using V-Net (a
fully automated volumetric CNN), which yielded reliable accuracy in
predicting IDH1 mutations in glioblastoma. A previous similar study
found that tumor blood flow and area of internal necrosis of enhancing
tumors estimated the IDH1 mutation status with good accuracy [25]. In
contrast to their study, we only applied T2WI to acquire radiomic
features, achieving a comparable AUC without a complex parameter,
such as arterial spin labeling. The benefit of implementing only T2WI is
its generalizability, as it is the most commonly acquired brain MR se-
quence. At the same time, T2WI was reported to reflect heterogeneity of
glioblastoma and was capable of differentiating it from pseudo-pro-
gression [26]. The results of current study are also consistent with
another similar study by Lee et al. [27], who implemented radiomic
analysis to predict IDH1 mutation status in glioblastoma. While our
IDH1 predictive performance was similar to their study (Lee et al.:
70.3–87.3 % prediction rate vs. current study: 75.8–86.8 %), they used
only manual segmentation of multi-parametric MRI.
The segmentation performance of V-Net in our study was similar to

other similar segmentation approaches. Isensee et al. used a CNN-based
algorithm to segment brain tumors and achieved DSC of 0.647−0.858
for different subregions of tumors [13]. The distinctive strength of this
study lies in its fully automatic 3D image segmentation. This is im-
portant since segmentation is a crucial step prior to further image

analysis of tumors in any organ. Most previous studies performing si-
milar image analyses used time-consuming manual delineation of ROI
[25,27,28], which is often susceptible to errors and inter-rater vari-
abilities. The results of this study showed that reliable segmentation
capabilities could be achieved after training the V-net with a small
number of samples (n= 45). Additionally, the possibility of overfitting,
which is common in machine-learning algorithms, was minimized by
training the V-Net model solely from the development set and testing it
using an external test set. Furthermore, only T2WI, the most commonly
acquired conventional sequence, was used throughout the analysis and
segmentation of multi-parametric sequences such as gadolinium-en-
hanced T1-weighted, diffusion-weighted, and perfusion-weighted
images was not needed, simplifying the time-consuming pre-processing
and computational time. One of the significant progresses made in the
field of noninvasively estimating IDH1 mutation status is based on
measuring 2-hydroxyglutarate (2 HG) using MR spectroscopy. Several
studies have reliably estimated IDH1 status via this method; however,
varying accuracies and false-positive rates were reported due to factors
such as tumor volume [29], cutoff values [30], proportion of necrosis,
and apparent diffusion coefficients [31]. Considering radiomics have
limited reproducibility across different settings, it is important to note
that both 2 HG and radiomics are under technical development and are
yet to be incorporated into routine clinical practice.
It is interesting that some of the selected features overlap with a

similar previous study by Yu et al. [32]. For example, features such as
‘Surface Volume Ratio’, ‘Run Variance’, and ‘Large Area High Gray-
Level Emphasis’ were also found to be meaningful features in dis-
criminating IDH1 mutation status. Of importance, the median value of
‘Surface Volume Ratio’ was found to be lower in IDH1 mutant glio-
blastomas; considering lower ‘Surface Volume Ratio’ indicates more
compact and spherical shape, sphericity might be associated with IDH1
mutant glioblastoma. Although their study cohort consisted of grade II

Table 3
Comparison of IDH1 status prediction by two segmentation methods with 95 % confidence intervals.

Method AUCa Sensitivity Specificity Accuracy

Manual 0.904 [0.805, 1.0] 91.6 % [75, 100] 75 % [60.2, 100] 86.8 % [63.7, 97.8]
V-Net 0.857 [0.744, 0.97] 59 % [75, 100] 100 % [53.0, 96.4] 75.8 % [57.1, 94.5]

IDH1=isocitrate dehydrogenase-1, AUC=area under the receiver operating curve.
a Comparison of two AUCs giving P=0.541 via DeLong’s test.

Fig. 4. Receiver operating characteristics (ROC) curves of IDH1 mutation predicted by radiomic features from (A) manual and (B) V-Net segmentation.
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gliomas, these overlapping features might have discriminative ability in
predicting IDH1 status in both low and high-grade gliomas.
There are a few limitations in this study, apart from the potential

selection bias associated with the retrospective study design. Due to the
inherent rarity of IDH1 mutations in glioblastoma, creating a separate
internal validation set was not possible. Instead, application of V-
Net algorithm on a separate test set (i.e. not used in training the model)
would have minimized potential overfitting. Moreover, IDH2 mutations
(a minority of such mutations was accounted for) were not included due
to lack of available data. Additionally, even though images from two
different sites were analyzed, minimal pre-processings (intensity nor-
malization and spatial interpolation, which could be fully automated)
were performed. Nonetheless, considering only one sequence (T2WI)
was used throughout the study, no co-registration and pre-processing
were needed. Finally, a few automatic segmentations demonstrated
poor performances (i.e. low DSC) compared to the reference manual
segmentation. The erroneous segmentations included cerebrospinal
fluid of lateral ventricles, which seemed to occur when extensive T2
hyperintense peritumoral edema were near the lateral ventricles. This
suggests a room for further refinement of the model.
In conclusion, the current study applied V-net to automatically

segment glioblastoma on T2WI from which radiomic features were
extracted to predict IDH1 mutation. Compared to the manual segmen-
tation, radiomic analysis from automatic segmentation yielded reliable
capability in predicting IDH1 mutation status. Future studies are
needed to explore application of V-Net onto multi-parametric MRI with
sub-regional segmentations.
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