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Abstract
Introduction  Beyond focal radiation, there is no consensus standard therapy for pediatric high-grade glioma (pHGG) and 
outcomes remain dismal. We describe the largest molecularly-characterized cohort of children with pHGG treated with a 
3-drug maintenance regimen of temozolomide, irinotecan, and bevacizumab (TIB) following radiation.
Methods  We retrospectively reviewed 36 pediatric patients treated with TIB at Seattle Children’s Hospital from 2009 to 
2018 and analyzed survival using the Kaplan–Meier method. Molecular profiling was performed by targeted DNA sequenc-
ing and toxicities, steroid use, and palliative care utilization were evaluated.
Results  Median age at diagnosis was 10.9 years (18 months–18 years). Genetic alterations were detected in 26 genes and 
aligned with recognized molecular subgroups including H3 K27M-mutant (12), H3F3A G34-mutant (2), IDH-mutant (4), and 
hypermutator profiles (4). Fifteen patients (42%) completed 12 planned cycles of maintenance. Side effects associated with 
chemotherapy delays or modifications included thrombocytopenia (28%) and nausea/vomiting (19%), with temozolomide 
dosing most frequently modified. Median event-free survival (EFS) and overall survival (OS) was 16.2 and 20.1 months, 
with shorter survival seen in DIPG (9.3 and 13.3 months, respectively). Survival at 1, 2, and 5 years was 80%, 10% and 0% 
for DIPG and 85%, 38%, and 16% for other pHGG.
Conclusion  Our single-center experience demonstrates tolerability of this 3-drug regimen, with prolonged survival in DIPG 
compared to historical single-agent temozolomide. pHGG survival was comparable to analogous 3-drug regimens and supe-
rior to historical agents; however, cure was rare. Children with pHGG remain excellent candidates for the study of novel 
therapeutics combined with standard therapy.
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Introduction

Pediatric high-grade gliomas (pHGG) are aggressive dis-
eases with few long-term survivors [1]. pHGG encompass 
several malignancies, with anaplastic astrocytoma (AA; 
WHO Grade III) and glioblastoma (GBM; WHO grade 
IV) representing the most common histologies. Diffuse 
intrinsic pontine glioma (DIPG) is a discrete clinical entity 
arising from the pons included under the umbrella term 
pHGG, which is universally fatal with a historical median 
progression-free survival (PFS) of 7 months and median 
overall survival (OS) of 11.2 months [2]. Recent molecular 
discoveries have led to a new World Health Organization 
(WHO) classification, “diffuse midline glioma, H3 K27M-
mutant” (DMG), to address the biologic link amongst fatal 
H3 K27M-mutant glioma of the pons, thalamus, and spinal 
cord [3]. The historical median 1-year OS for all pHGG 
is 69% for AA and 59% for GBM with the vast majority 
succumbing to their disease within 2 years [4]. Resec-
tion beyond biopsy is impossible in DIPG and often unat-
tainable in other pHGG where lesions are infiltrative and 
invade critical structures. Ultimately, conformal radiation 
is the most impactful modality in prolonging survival and 
re-irradiation is the most efficacious therapy at recurrence 
[5–8]. Decades of research have been devoted to explor-
ing cytotoxic agents as neoadjuvant, concurrent, or adju-
vant therapies, yielding disappointing results and failing 
to improve survival [9–16]. While infants under 3 years 
of age with pHGG are often treated with intensive or pro-
longed post-operative chemotherapy regimens to delay or 
obviate radiation, children over 3 years of age are most 
often treated with focal radiotherapy [17, 18]. Rarely, 
craniospinal radiation (CSI) is required in the setting of 
metastatic disease or leptomeningeal dissemination.

In 2009, Seattle Children’s Hospital implemented an 
institutional standard for treating patients with pHGG 
using a 3-drug maintenance regimen of adjuvant temozo-
lomide (TMZ), irinotecan, and bevacizumab (BEV) fol-
lowing radiotherapy with concurrent TMZ. At the time, no 
consensus chemotherapy regimen was universally agreed 
upon and newly released data from the Phase 2 Children’s 
Oncology Group (COG) study ACNS0126 demonstrated 
that single-agent TMZ during and after radiotherapy failed 
to improve pHGG survival compared to historical controls. 
While TMZ toxicity was mild and side effects were toler-
able, the OS of 40% and 22% at 1 and 3 years, respec-
tively, did not significantly improve upon a multi-agent 
chemotherapy regimen per CCG-945 [19–21]. Equipped 
with ACNS0126 data, we elected to add agents to a TMZ 
backbone for enhanced cytotoxic benefit and potential syn-
ergy. BEV, a monoclonal antibody targeting VEGF, was 
newly FDA-approved for adult HGG at recurrence, and, 

while tumor biology undoubtedly differs between adult 
and pediatric HGG, it was a well-tolerated agent with 
unconfirmed activity in newly diagnosed pHGG [22, 23]. 
Additionally, irinotecan demonstrated pre-clinical synergy 
with TMZ [24]. Ultimately, our institutional standard was 
informed by contemporary pre-clinical and clinical stud-
ies, as well as consideration of feasibility and tolerability 
in this vulnerable population.

Materials and methods

Patient selection/inclusion

We retrospectively reviewed the medical records of all 
patients under 21 years of age treated at Seattle Children’s 
Hospital (SCH) between January 2009 and December 2018 
with histologically confirmed pHGG (WHO grade III or 
IV), gliomatosis cerebri (prior to being removed as a distinct 
clinical entity in 2016), or a radiographic or histopathologic 
diagnosis of DIPG. Records were reviewed to determine 
first-line treatment, and data were extracted for patients who 
received initial therapy per our institutional standard. The 
collection and use of this retrospective data were approved 
by the SCH Institutional Review Board (IRB#14449).

Treatment

Standard therapy for pHGG in 2009 included maximal 
surgical resection (if feasible) followed by focal radiation. 
All patients reviewed in this cohort additionally received 
treatment with concurrent oral TMZ (90 mg/m2/day) dur-
ing radiotherapy followed by a maintenance regimen of oral 
TMZ (200 mg/m2/day) for the first 5 days of the 28-day 
cycle, intravenous (IV) BEV (10 mg/kg/dose) every 2 weeks, 
and IV irinotecan (125 mg/m2/dose) every 2 weeks. This 
regimen is abbreviated TIB. As our institutional standard 
of care, TIB was offered as one of several treatment options 
available at the time of diagnosis and no eligibility crite-
ria were required to be met. Maintenance was given for 12 
cycles. Supportive care measures included pre-medications, 
such as ondansetron for nausea and diphenhydramine to pre-
vent infusion reactions. Oral trimethoprim-sulfamethoxazole 
(5 mg TMP/kg/day) was given twice weekly for prevention 
of pneumocystis jiroveci pneumonia (PJP). Corticosteroids 
were given at the discretion of the treating physician. Blood 
product transfusions were administered for anemia (hema-
tocrit < 21%) and thrombocytopenia (platelets < 30,000/µL). 
MRI of the brain and spine with gadolinium contrast was 
performed at 3-month intervals or earlier for symptoms of 
possible progression/recurrence. A plain film X-ray of the 
tibial growth plate was obtained at the start of maintenance, 
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after 6 cycles, and at the end of therapy to monitor for BEV-
associated osteonecrosis.

Molecular data collection

Molecular characterization was performed by UW-Onco-
Plex™, a targeted next-generation DNA sequencing panel 
designed to detect single nucleotide variants, small inser-
tions and deletions, copy number alterations, selected 
gene-fusions, and microsatellite instability [25, 26]. DNA 
was extracted from formalin-fixed paraffin embedded tis-
sue using the Qiagen GeneRead DNA FFPE Kit (Qiagen, 
Valencia, CA). Extracted DNA was sheared and sequenc-
ing libraries were prepared using KAPA HyperPrep reagents 
(Roche, Wilmington, MA). Prepared libraries were hybrid-
ized to a set of custom probes designed to target panels of 
genes chosen for their importance in diagnosis, prognosis, 
and/or treatment (UW-OncoPlexTM versions 4, 5, and 6 tar-
geted exonic and select intronic regions of 199, 262 and 
340 genes respectively). Libraries were then sequenced on 
Illumina NextSeq500 and HiSeq2500 systems (Illumina, 
San Diego, CA), and sequences were processed through an 
automated, custom-designed bioinformatics pipeline prior 
to analysis. For patients with insufficient tumor tissue for 
DNA extraction, we performed immunohistochemical (IHC) 
staining for the H3 K27M-mutant protein.

Survival analyses

Statistical endpoints included overall survival (OS), defined 
as the duration between the date of diagnosis and date of 
either death from any cause or last follow-up, and event-
free survival (EFS), defined as date of diagnosis to date of 
progression or recurrence. The date of diagnosis was defined 
as the date of initial biopsy/resection or, in the case of unbi-
opsied DIPG, the initial MRI. Progression and recurrence 
were primarily defined radiographically, with confirmation 
by the SCH multidisciplinary pediatric brain tumor board. 
Statistical analyses were performed using the Kaplan and 
Meier method with STATA software version 11. Survival 
comparisons were performed via log-rank test.

Results

Sixty-one patients with pHGG were treated during the 
specified timeframe, of whom 36 (10 DIPG and 26 pHGG) 
received TIB therapy. Patients not treated with TIB elected 
to enroll on clinical trials (9), receive radiation with or with-
out concurrent temozolomide and without maintenance 
therapy (13), or declined tumor-directed therapy (3). The 
cohort of 25 patients treated with alternative regimens were 
of similar age and gender distribution to our TIB cohort but 

were primarily composed of patients with DIPG (18) due 
to clinical trial availability. Among the 26 pHGG patients, 
pathology included AA (7), GBM (10), glioma NOS WHO 
III-IV (4), and gliomatosis cerebri (5). The median age at 
diagnosis was 10.9 years (range 1.5–18.8), with even gender 
distribution between males (18, 50%) and females (18, 50%). 
Metastatic disease was present at diagnosis in four (11%) 
patients, with an additional seven (22%) developing meta-
static lesions at progression or recurrence. Tumor resection 
was performed in 15 patients with a gross total resection 
(GTR) achieved in 7. Four of these patients required two 
neurosurgeries to achieve a GTR prior to starting radiation, 
and one patient underwent a total of three resections. Among 
DIPG patients, a diagnostic biopsy was obtained in 6/10 
(60%).

Focal radiation was delivered in fractionated doses, with 
a total dose ranging from 50.4 to 60 Gy. CSI ranging from 
36 to 39.6 Gy was delivered to four (11%) patients. Notably, 
three infants under 3 years of age at diagnosis were treated 
with TIB and upfront radiotherapy. These included patients 
with DIPG (1), spinal pHGG (1), and localized supratento-
rial pHGG (1). The latter was a 1-year-old for whom the 
decision to treat with TIB was determined by a strong fam-
ily preference based on perceived quality of life and who 
remains a long-term survivor.

The median duration of maintenance TIB therapy was 
271 days, with 15 (42%) patients completing all 12 cycles 
of maintenance chemotherapy. Therapy was discontinued 
for progressive disease in 14 (39%), infection in 1 (3%), 
and patient/family preference in 6 (17%), among whom all 
6 patients had some degree of TMZ intolerance. Patient/
families opted for a variety of subsequent therapies at dis-
ease recurrence/progression as listed in Table 1.

Toxicity

Maintenance therapy was well-tolerated. TMZ was the most 
commonly modified drug, with 66.7% of patients requiring 
one or more dosing modifications. Most common adverse 
effects resulting in drug suspensions included thrombo-
cytopenia (10/36, 28%) and nausea/vomiting (7/36, 19%) 
(Fig. 1). Transfusions with red blood cells were required 
in 7/36 (19%) and platelets in 6/36 (17%). Neutropenia was 
infrequent and did not necessitate granulocyte colony stimu-
lating factor (G-CSF). In one patient, TIB was discontinued 
due to progressive disease, with imaging showing calcifica-
tions concerning for a prior intracranial bleed but without 
evidence of acute hemorrhage on brain MRI. This patient 
did not require any interventions. Chemotherapy was admin-
istered in an ambulatory infusion center and inpatient hos-
pitalizations during maintenance were uncommon, occur-
ring in ten patients with a median inpatient stay of 8.5 days 
(range 0–26 days). Reasons for admission included infection 
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(respiratory and skin/soft tissue), malnutrition, feeding intol-
erance, nausea/vomiting, and ataxia. Two patients required 
prolonged admissions (43 and 97 days) secondary to com-
plications from poor wound healing that were present prior 
to maintenance chemotherapy and in each case the initiation 
of BEV was delayed to facilitate healing.

Supportive care and corticosteroids

Palliative care intervention at SCH is championed as a 
critical component of a multidimensional supportive care 
approach. Median time to palliative care referral was 52 days 
from diagnosis (range 0–713 days), almost always prior to 
progression/recurrence, with nine patients establishing care 
prior to the start of TIB maintenance. Our institutional stand-
ard emphasizes limited corticosteroids, often exclusively as a 
bridge from diagnosis to radiotherapy. We found a median of 
64 total days of corticosteroid treatment (range 2–602 days), 

including use at diagnosis, progression/recurrence, and end 
of life. We found 8/36 (22%) patients were receiving steroids 
at the initiation of TIB, 1/31 (3%) at the start of maintenance 
course 6, and 1/16 (7%) at the start of maintenance course 
12. Comparatively, DIPG patients showed similar average 
usage to other pHGG patients, with the longest utilization 
(602 days) seen in a patient whose prolonged corticosteroid 
requirement occurred 191 days after completion of TIB and 
during participation in an immunotherapy trial.

Molecular

SCH pediatric neurosurgical expertise permits DIPG 
biopsy and, overall, 32 patients (89%) underwent diagnos-
tic biopsy or resection, with one tumor specimen obtained 
at autopsy. Thirty-one patients (86%) had tumor tissue 
available for molecular testing, with missing sample pro-
curement (n = 5) attributed to insufficient material (n = 1), 

Table 1   Clinical characteristics and treatment

CAR​   chimeric antigen receptor, CSI   craniospinal irradiation
a Needle biopsies did not provide sufficient material for accurate histologic grading
b Extent of resection achieved prior to starting radiation
c Some patients received more than one chemotherapy agent
d Participants in unpublished clinical trials

Clinical features N (%) Treatment at diagnosis N (%) Treatment at recurrence/progression N (%)

Anatomic location Extent of resectionb DIPG
 Supratentorial 13 (36.1)  DIPG  No tumor-directed therapy 3 (30)
 Deep brain 8 (8.3)   Biopsy only 6 (60)  Re-irradiation only 0 (0)
 Brainstem 11 (30.6)   No surgical intervention 4 (40)  Chemotherapy + re-irradiation 4 (40)
 Spinal cord 4 (11.1)  pHGG  Chemotherapy alone 3 (30)

  Biopsy only 11 (42.3) pHGG
Pathology   Subtotal (STR) 8 (30.8)  No tumor-directed therapy 14 (53.8)
 DIPG 10 (27.8)   Gross total (GTR) 7 (26.9)  Re-irradiation only 1 (3.8)
 Anaplastic astrocytoma 7 (19.4)  Chemotherapy + re-irradiation 1 (3.8)
 Glioblastoma 10 (27.8) Radiation therapy  Chemotherapy + re-irradiation + resection 2 (7.7)
 Glioma NOS, WHO III-IVa 4 (11.1)  Focal 32 (88.9)  Chemotherapy + stereotactic surgery 1 (3.8)
 Gliomatosis cerebri 2 (5.6)   Focal dose range 50.4–60 Gy (gamma knife)
 WHO grade II histology  CSI 4 (11.1)  Chemotherapy + resection 1 (3.8)
 Gliomatosis cerebri 3 (8.3)   CSI dose range 36–39.6 Gy  Chemotherapy alone 6 (23.1)
 WHO grade III histology

Maintenance TIB Chemotherapy agentsc

Metastases  Median duration (days) 271  Continued TIB 3 (8.3)
 Metastatic 4 (11.1)  Range (days) 0–365  Etoposide 9 (25)
 Localized or locally 32 (88.9)    > 6 cycles 28 (77.8)  Bevacizumab 7 (19.4)

invasive    < 6 cycles 8 (22.2)  Lomustine 2 (5.6)
 CAR T cellsd 1 (2.8)
 Nivolumab 1 (2.8)
 Palbociclibd 1 (2.8)
 Temozolomide 1 (2.8)
 Trametinib 1 (2.8)
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family declining biopsy and/or autopsy (n = 3, all DIPG), 
or neurosurgery and sample storage at another institution 
(n = 1). IHC for H3 K27M alterations was performed in 
3/5 patients who had insufficient material for DNA extrac-
tion but was unable to distinguish between mutations in 
H3F3A, HIST1H3B, or HIST1H3C.

Recurrent alterations were detected in 26 genes and 
revealed a heterogenous group of genomic profiles consist-
ent with our current understanding of the molecular diver-
sity of pHGG (Fig. 2). Hypermutant profiles were detected 
in four patients, among whom two patients had associated 
germline alterations in MSH2 or MSH6. Recurrent altera-
tions were detected in well-described pHGG tumor sup-
pressor genes, along with pathways involving chromatin 
or transcriptional remodeling, cell cycle regulation, and 
receptor tyrosine kinase/RAS/PI3K signaling. TP53 muta-
tions were the most common overall (18/24 non-hyper-
mutator patients; 75%), followed by alterations in ATRX 
(8/24; 33%), NF1 (7/24; 29%, germline in 1), CDKN2A/B 
(7/24; 29%), IDH1 R132H (4/24; 17%), and PI3KCA (5/24; 
21%), with gene amplifications in EGFR (2/24; 8%), KIT 
(3/24; 13%), PDGFRA (3/24; 13%), MET (2/24; 8%), and 
VEGFR2 (3/24; 13%). As expected, two DIPG tumors with 
HIST1H3B mutations also harbored abberations in AVCR1, 
which encodes ALK2 [27]. Additional details on molecu-
lar alterations are listed in Supplemental Fig. 1.

Survival

Median EFS and OS for patients with DIPG was 9.3 and 
13.3  months, respectively. This corresponded to a sur-
vival 80%, 10%, and 0% at 1, 2, and 5 years. The OS of our 
DIPG cohort did not appear to be increased solely due to 
re-irradiation, as when we excluded the four patients who 
received re-irradiation the OS remained largely unchanged 
at 13.0 months. In the remaining pHGG cohort, respective 
median EFS and OS was 16.2 months and 20.1 months, 
with 85%, 38%, and 16% of patients alive at 1, 2, and 
5 years (Fig. 3a, b). H3 K27M mutations (n = 12) correlated 
with inferior survival when compared to patients without  
H3 K27M alterations (median EFS of 9.9 vs. 20.6 months; 
p < 0.002) with 0% survival at 5 years in those with H3 
K27M-mutant tumors (Fig. 3c). Greater extent of pHGG 
resection, as demonstrated by seven patients who achieved 
a GTR, resulted in a median EFS of 21 months, versus 
13.1 months in patients who underwent biopsy or subtotal 
resection (STR) (p = 0.05). Excluding patients with DIPG 
and/or H3 K27M mutations from this analysis amplified 
the survival difference between groups by extent of resec-
tion (p = 0.08), with a median OS of 22.8 months among 14 
pHGG patients who achieved biopsy/STR vs. 41.5 months 
in five patients with a GTR (Fig. 3d). Deaths were attributed 
to tumor progression in all but one patient, who died from 
sudden unexplained death due to epilepsy (SUDEP) more 
than 3 years following completion of GTR, radiation, and 
TIB therapy for a localized GBM.

Discussion

Our single-center experience demonstrates tolerability of a 
3-drug maintenance regimen for children with DIPG and 
pHGG. Our TIB regimen resulted in comparable survival to 
other published results of this approach (Table 2), as well as 
superior survival compared to historical single-agent regi-
mens and nearly all other published treatment strategies. 
Notably, our DIPG cohort experienced an improved 1-year 
OS of 80% [95% CI 41–95%] compared to a historical sur-
vival of 45.3% using International DIPG Registry (IDIPGR) 
data or 40% [95% CI 27–53%] with single-agent temozolo-
mide on ACNS0126 [2, 19].

While data from relatively large trials such as HERBY 
and ACNS0126 has left the standard treatment for pHGG 
beyond focal radiotherapy unclear and the roles of TMZ and 
BEV disputed, recent studies support this 3-drug regimen 
[28–30]. Our cohort of 36 patients over a 10-year follow-
up period confirms these findings with a cumulative 79 
patient-years treated, along with the insight of molecular 
and supportive care characterization. In our pHGG cohort, 
not including DIPG, we found similar outcomes to those 
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reported by Hummel et al., with an improved 1-year OS 
(85% [95% CI 64–94%]) with this regimen compared to the 
2-drug regimen studied in the HERBY trial, which showed 
a decrement in survival when BEV was added to standard 
radiotherapy plus TMZ. In that pediatric study, median EFS 
and OS at 1 year were 8.2 months and 75% [95% CI 61–84], 
respectively, in the BEV-treated arm [31]. Our results may 
suggest an important role of irinotecan for mechanistic 
synergy or, moreover, the added benefit of a multi-agent 
regimen. However, it is also important to note the inherent 
limitations and challenges of comparing our retrospective 
analysis with a randomized controlled trial, which may have 
narrower eligibility criteria, more uniform patient popula-
tion, and more detailed collection of adverse events. TIB was 
offered as an institutional standard of care, therefore patient 
participation was not randomized and may have been subject 
to provider and selection bias.

This retrospective review also replicates the well-
described survival benefit in pHGG patients who achieve 
maximal surgical resection or GTR [32]. It is notable that 
amongst seven patients who achieved a GTR prior to ini-
tiating radiation, five underwent multiple surgical resec-
tions. In light of this apparent outcome benefit, we advo-
cate for thoughtful, repeat resection upfront with the aim 
of removing all detectable disease when feasible. However, 
the authors realize that this observation may also reflect 
the biologic implications of midline tumors that are more 
often located in eloquent cortex or brainstem regions and 
may only be amenable to biopsy. For the larger subgroup 
of patients who had residual disease following resection, 
radiographic treatment response was not captured in this 
study largely due to a lack of universal imaging standards 
for analysis and evolution in imaging sequences during 

Fig. 2   Molecular characteristics. Genetic alterations were detected 
in 26 genes by UW-OncoPlexTM or IHC (in the case of one patient) 
on tumor tissue obtained from 29 patients at diagnosis, recurrence, or 
autopsy. Clinical features describe status at diagnosis including tumor 
location, histologic WHO grade, presence of metastatic disease, and 
patient age. Recurrently mutated genes are grouped and align with 

recognized molecular subgroups from left-to-right: (1) H3 K27M-
mutant, (2) H3F3A G34-mutant, (3) IDH-mutant, and (4) hypermu-
tation. Hypermutator signatures were identified in four patients with 
alterations spanning the majority of genes, therefore only select muta-
tions are depicted (right of figure)
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the study timeframe, but would be critical endpoints to 
evaluate in prospective studies.

This is the largest published cohort of pediatric patients 
treated with TIB to be molecularly characterized. While 
our patient numbers are too limited to draw prognostic 
conclusions, the mutational frequencies identified fol-
low known biological subgroups including adolescent 
pHGG with IDH1/ATRX/TP53 mutations, younger DMG 
patients with H3.3 K27M-mutant tumors, and hypermuta-
tor profiles. Our data support clustering of ATRX, IDH1, 
and TP53 alterations in pHGG, as has been previously 
described [1, 33], with IDH1 mutations localizing exclu-
sively to supratentorial tumors. As demonstrated in the 
post hoc analysis of the HERBY trial, pHGG tumors har-
boring alterations in the MAPK pathway had improved 
survival with the addition of BEV [33]. It is possible 

that our cohort contained a greater proportion of MAPK-
altered tumors, conferring a small benefit with this 3-drug 
regimen. Of note, UW-OncoPlex™ has been updated with 
additional genetic mutations as they became clinically rel-
evant. Specifically, ACVR1 alterations were not evaluated 
on earlier versions, possibly resulting in an underestima-
tion of the true incidence.

The toxicity profile of TIB was similar to published data 
for single-agent TMZ, irinotecan, or BEV and concurrent 
delivery was not overly toxic. Concerns about potential 
negative effects of BEV on vasculature homeostasis were 
not borne out, nor did we find an increased incidence of 
metastatic disease at progression/recurrence (7/36, 19%) as 
compared to reports of non-BEV-containing regimens (4/15, 
27%) [34]. TIB was well-tolerated and would be practical to 
administer in a variety of clinical settings.

Fig. 3   Survival outcomes. Estimates of overall survival (a) and event-
free survival (b) for patients with DIPG (n = 10) and other pHGG 
(n = 26) treated with a maintenance TIB regimen following radio-
therapy with concurrent temozolomide (p < 0.01 and 0.0001, respec-
tively). c EFS for patients with (n = 12) and without (n = 19) altera-

tions detected in H3 K27M (p = 0.002). d EFS by extent of resection 
of pHGG patients who received a GTR (n = 5) vs. biopsy or STR 
(n = 14) prior to radiation (p = 0.08). d Excludes patients with DIPG 
or H3 K27M mutations, as GTR was largely unachievable due to 
tumor location
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The role of supportive care in DIPG and other pHGG out-
comes is an active area of study, which we hope to enhance 
by our report of early palliative care referral and limited 
corticosteroids. SCH encourages palliative care referral at 
diagnosis and is participating in a prospective study evaluat-
ing whether early referral improves patient-reported symp-
tom burden and Quality of Life (QOL) amongst a broader 
cohort of patients [NCT01838564]. Published data on corti-
costeroid use for symptom management is sparse; however, 
the myriad of side effects and negative effects on QOL in 
pediatric patients are well-characterized [35, 36]. Pre-clin-
ical observations also support corticosteroids’ detrimental 
effects on brain tumor treatment due their role in repairing 
the blood–brain barrier and limiting chemotherapy delivery 
[37, 38]. Overall, we strongly support the use of supportive 
care measures that may translate to an improved QOL, espe-
cially for these frequently fatal diseases.

While previous reports vary regarding the utility of 
single-agent TMZ, irinotecan, or BEV, as well as that of 
TIB, our cohort demonstrates improved 1-year OS in DIPG 
and comparable survival in other pHGG with this regimen. 
Nonetheless, cure was rare for pHGG and absent for DIPG. 
Ultimately, this treatment strategy may best serve as a back-
bone for additional agents, including molecularly-targeted 
or immunotherapeutic. Furthermore, a subset of patients 
searching for potential improvement in QOL or modest 
survival benefit, who are unable to enroll in early phase 

studies due to geographic or economic barriers and/or who 
do not meet study enrollment criteria, could benefit from 
this regimen.
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