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ABSTRACT 

Childhood medulloblastoma is a case of a childhood brain tumor that requires close attention 

due to the low survival rate. Effective prognosis depends a lot on accurate detection of its 

subtype. The present study proposes a texture-based computer-aided categorization of 

childhood medulloblastoma samples. According to the World Health Organization (W.H.O), it has 

four subtypes (desmoplastic, classic, nodular, and large). Classification is done in two levels: i) 

normal and abnormal ii) its four subtypes. The system is evaluated on indigenous patient 

samples collected from the region. The main objective of database generation is to create a 

dataset of childhood medulloblastoma samples since there exists no available benchmark 

dataset. The proposed framework for automated classification is based on the architectural 

property and the distribution of cells. Five texture features were extracted for the feature set 

viz: Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GRLM), First-order 

histogram features (HOGL), Local Binary Pattern (LBP) and Tamura features. The performance of 

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting,
pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1111/jmi.12893

https://doi.org/10.1111/jmi.12893
https://doi.org/10.1111/jmi.12893


A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

each feature set was evaluated, both individually and in combinations, using five different 

classifiers. 5-fold cross-validation was used for training and testing the dataset. Experiments on 

both individual feature sets and combinations (best-2, best-3, best-4, all-5) of feature sets were 

evaluated based on the accuracy of performance. It was revealed that the combined best-4 

feature set resulted in the highest accuracy of 91.3%. The Precision, Recall, and Specificity were 

0.913, 0.913, and 0.97, respectively. Significantly, it implied that the all-5 feature set is not 

necessary to have a useful classification. Feature reduction by PCA resulted in increased 

accuracy of 96.7%. 

ADDITION OF SECOND ABSTRACT -- LAY DESCRIPTION: Childhood medulloblastoma is a case of 

childhood brain tumor that requires high attention due to a low survival rate. Effective prognosis 

depends a lot on accurate detection of its subtype. The present study proposes a texture-based 

computer-aided categorization of childhood medulloblastoma samples. According to the World 

Health Organization (W.H.O), it has four subtypes (desmoplastic, classic, nodular, and large). 

Classification is done in two levels: i) normal and abnormal ii) its four subtypes. The system is 

evaluated on indigenous patient samples collected from the region. The main objective of 

database generation is to create a dataset of childhood medulloblastoma samples since there 

exists no available benchmark dataset. The proposed framework is a model for the automatic 

classification of the samples. The tissue samples obtained post-operation by doctors are 

converted into images, and then necessary algorithms are applied so that certain features 

describing each group of the image are known and studied for classification. Later these images 

are classified using the image features into the subtypes of abnormal samples.  
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INTRODUCTION 

Medulloblastoma is the most common malignant tumor in children accounting for most of all 

brain tumors. This densely cellular, midline cerebellar tumor arises over the roof of the fourth 

ventricle. The microscopic view of the tissue level displays a sheets-like arrangement of tightly 

packed cells, with large dark size nuclei. According to Polednak and Flannery1, it constitutes 

approximately 20% of all childhood primary nervous system tumors. It has four subtypes2 based 

on histology: classic, nodular, large cell, and desmoplastic. Each subtype has different 

architectural information and diagnosis. The large cell variant of Medulloblastoma resembles the 

classic pattern. It is architecturally the most prevalent and is highly anaplastic. As far as the 

molecular classification is concerned, medulloblastoma subtypes include WNT-activated, SHH-

activated, and non-WNT/non-SHH (group 3 and group 4)3. The treatment procedure depends on 

subtype classification, as the degree of aggressiveness, differs from subtype to subtype. An 

improved 2- and 5-yr survival rate with the correct diagnosis has been reported4 for childhood 

medulloblastoma. Providing an integrated diagnosis is of clinical value as both the histological 

and molecular variants have distinct therapeutic and prognostic implications5. 

CONTRIBUTION 

The manual classification can vary, depending on individual pathologist experience and 

knowledge. This variation can be overcome by the use of computer-aided diagnostic tools that 

have been used for decades for better evaluations in medical and clinical analysis. Most studies 

relating to medulloblastoma6-8 classified the tissue samples as either anaplastic or nonanaplastic. 

However, medulloblastoma tumor has four subtypes, and to the best of our knowledge, no 

attempt has been made to classify the tumor into these subtypes using computer-assisted 
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techniques to date. Therefore, we attempt to classify medulloblastoma into its subtypes, as 

declared by W.H.O. Also, the non-availability of public benchmark data is an added disadvantage 

responsible for lack of such work. The strength of this study is in the creation of a dataset of 

indigenous samples collected from the region. The generation of the dataset is based on the 

diagnosis provided by the clinicians and pathologists. The up-gradation of this database is an 

ongoing process as the study is in progress. 

TEXTURAL ANALYSIS 

From the histopathology point of view, analysis can be of 4 levels: morphology, color, texture, 

and sparse features. The pathologist performs the diagnosis both at 10x (architectural) and 40x 

(cellular) microscopic view for two-level observation of the tissue sample. The color-based 

feature helps us to understand the cell chromaticity and is done in 40x microscopic view. The cell 

morphology-based methods of digital histological analysis, also done at 40x view, extract the 

cells from the smear images and studies the various morphology of the cell associated with its 

shape, size, and structural features, for classification into different subgroups. However, it 

cannot depict the distribution of cells, i.e., the architectural level information of the tissue type, 

which is a vital diagnosis aspect of childhood medulloblastoma samples. The architectural view is 

a low power 10x microscopic view that a pathologist uses to check the distribution of cells. 

Texture-based classification9 plays a significant role in the study of cell distribution and variation 

at the architectural level of tissue. Over the decades, a computer-based diagnosis has become 

very popular in the field of medical analysis. Therefore, it can be effectively used for a quick 

diagnosis of such tumor subtypes. A study by Awwad et al10 has reported the potential for 

automated classification of tumor type and subtype in pediatric posterior fossa tumors based on 

standard MRI applying texture analysis. Sparse textures11 (also known as tiled textures or mega-

textures) are textures that are too huge to fit entirely in the visual memory. Still, since our 
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images were smaller and adequately handled by our machine Graphics Processing Unit (GPU), 

we did not opt for sparse based texture features. 

METHOD AND MATERIAL 

Informed consent and ethical clearance 

The study conformed to the principles and guidelines of Rule 122DD, Drugs and Cosmetics Rule, 

1945 of India and was approved by the Ethics Committee (Registration number 

ECR/248/Indt/AS/2015) of the Institute of Advanced Study in Science and Technology, Guwahati 

(approval number IEC(HS)/IASST/1082/2017-18/1), India. All participants provided written 

informed consent. 

Implementation 

The experiments were implemented in Matlab (R2016b, Mathworks, and Natick, MA, The USA) 

and All-in-one HP pc (2.70 GHz, Intel Core i5, 4 GB Ram). Also, built-in Matlab function, 

customized routines, and a portion of available source code [13-16] were used for the study. 

Model 

The block diagram (Fig. 1) describes the execution model of our work. The tissue blocks, 

collected from Guwahati Medical College and Hospital (GMCH) (step 1) and stained at 

Ayursundra 

Healthcare Pvt. Ltd. (step 2), were observed under a microscope, and henceforth, images were 

captured and laborious and carefully ground-truth marked under expert supervision at Guwahati 

Neurological Research Center (GNRC) (step 3). Image acquisition was followed by pre-processing 

(step 4 and 5). Subsequently, five different texture features (step 6) were extracted and were 

compared using five standard classifiers (step 7). The outcomes are given in the results section. 
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Data Collection 

The tissue blocks from the Neurology Department of GMCH. GMCH is the foremost Public Sector 

Hospital in the region catering to the general public and treating all diseases. Hematoxylin and 

Eosin (H&E) staining were done at Ayursundra Healthcare Pvt. Limited. Ayursundra Healthcare 

Pvt. Ltd. is one of the biggest diagnostics providers of the region with a strong pathology unit. On 

staining the block with H&E, the nucleus is marked blue and cytoplasm as pink for better 

understanding. After the staining is done, we can study the features of the slide under the 

microscope. The microscopic image capture was done at Guwahati Neurological Research Centre 

(GNRC). Established in 1987, GNRC is the first private super-specialty healthcare center in North 

East India. Childhood medulloblastoma is a grave case of the tumour since the most commonly 

affected age-group of children is a vulnerable age, and the survival rate of the disease is also 

almost nil. There is no online benchmark dataset of biopsy images available for different classes 

of this tumor. Fig. 2 also illustrates the difference in the microscopic appearance12 of each 

subtype. The classic pattern (b) has a sheets-like arrangement of the cells with extensive 

cellularity. The large cell (c) has the same structural arrangement as the classic subtype. 

However, the size of the cells of large cell medulloblastoma are enlarged and, unlike the classic 

variant, is highly aggressive. The nodular pattern (a) has nodules like structure in the distribution 

of cell arrangement. Finally, the last subtype of desmoplastic (d) has a network of collagen fiber. 

The study design was cross-sectional, wherein data (a small quantity of the tissue block) 

were collected from children (of age<15 years) who were diagnosed with this type of tumor. The 

samples were collected as a part of the post-operative procedure by the collaborating medical 

institutions, namely the Neurology Department of GMCH. The diagnosis of the same sample of 

the tissue block manually done in GMCH was noted down, for corroboration with our findings. 
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During the study period, a total of 15 children were treated from whom the samples were 

collected. A graphical presentation of the flow of participants is shown in Fig. 3. 

We obtained the images at 10x microscopic low power view of resolution 

2048px×1536px. It is tough to get images corresponding to each subtype. We collected 4 

classics, 2 desmoplastic, 1 nodular and 2 large cell anaplastic cases/blocks from which we 

captured a total of 44, 38, 23 and 28 images respectively. However, to have an unbiased 

classifying accuracy, we finally selected 23 best images of each subgroup for our purpose, with 

the help of experts. A link to a few images acquired for the study is provided in 

https://figshare.com/s/44220013b8ba5c2f075f. 

Image Preprocessing 

The difference in the expertise of the technician preparing the histological slides landed us with 

images that were either dark or lightly stained. Hence preprocessing methods were carried out 

such that variation in staining does not affect our result. For this color, channeling was first done 

to extract the most appropriate channel to get our region of interest(ROI). Color channeling is a 

prime task for image processing, as individual color channels provide distinct and diverse 

information about the image. It is an integral part, as not all color information is required. The 

pathway that carries the targeted information can be considered neglecting the other available 

channels. Hence, for selecting the appropriate channel for our case, the image was converted to 

all available color channels viz. RGB, HSV, YCbCr, CMY, and L*a*b* shown in Fig. 4, and then the 

particular color channel in which the foreground was differentiated best from the background 

was chosen.  

The choice of the color channel is purely based on visual perception. Also, we are only 

interested in the cells and not cytoplasm of the cells, so we followed the perception that since 
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the cells are purple after undergoing H&E staining and purple is closer to red, so red channel is 

visually most precise. Secondly, image enhancement was performed to differentiate the 

targeted ROI from the background. Next, we analyzed all enhancement methodologies available, 

as depicted on a selected image in. Fig. 5.  

 The application of the filters to our images demonstrated that none gave us the required 

outcome that we were searching for, namely the best elimination of the background while 

focusing on the cell alignment of the tissue samples. Hence, we customized a filtering mask by 

filtering the original image by the customized filter kernel [1,1,1; 1,10,1; 111] of size 3×3. The 

enhanced images were grayscale (the second image of row 1 of Fig. 5). The obtained images 

were brighter, but it highlighted the cell alignment while giving a clean background, which was 

needed.  

Feature Extraction 

Next, experiments were performed for recognizing the different subtypes of childhood 

medulloblastoma. We were mainly concerned in the cell distribution, as different subtypes have 

a different spatial distribution of cells. Commonly, shape and color are the significant features 

used by the pathologist for analyzing histological images. Shape-based characteristics generally 

define the physical structure of an object like area, perimeter, orientation, etc.17. Now both 

these features are observed through 40x level microscopic view. However, in our case, the 10x 

microscopic view is concerned with only the spread of cells in the tissue region and does not 

carry any shape information. The architectural difference is a visual perimeter observed by a 

pathologist based on human intelligence. We experiment if this human intelligence can be 

included in digital histopathology using computer vision by texture features. In general, the 

texture is the surface characteristic and description of an object, stated by its size, density, 
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arrangement, and proportion of elementary parts. For this experiment, we studied the effect of 

both first order and second order textural features of the tissue samples. The first-order 

statistics define individual pixel statistical properties like mean, variance, skewness, and kurtosis. 

The second-order statistics represent the relation between pixels17. We considered five well-

established texture features, namely Gray level co-occurrence matrix (GLCM)18, Gray level run 

length matrix (GRLM)19, Local binary pattern (LBP), First-order histogram feature20 (HOGL) and 

Tamura21. 

GLCM: GLCM describes how frequently a couple of pixels appears together in the image via 

spatial association among pixels of the image. It signifies the likelihood of arriving from pixel i to j 

in a definite direction. We applied this well know texture feature in all four directions, usually 

represented by degrees (0o, 45o, 90o, 135o). The four directions represent the neighborhood of 

the pixel i.  Each of the elements (i,j) in the GLCM matrix gives the occurrence of the pixel with 

value ‘i’ in the directions to the pixel with value ‘j.’ The degrees considered represent the offset 

between a pair of pixels.  For this study the offset was measured by a single-pixel distance taken 

as [0 1; -1 1; -1 0; -1 -1] for all four directions. We extracted the features of pixel identity pairs 

relating to contrast, correlation, energy, and homogeneity. The mathematical formulae of the 

features are as follows: 

Every element (i,j) in GLCM specifies the number of times that the pixel with value occurred 

adjacent to a pixel with value j in image P. 

Contrast =∑    
 
 j|2p(i; j)         (1) 

It returns the contrast between the pixel and its neighborhood in the entire image. Contrast 

property is also said to be the variance and inertia of the image. For a constant image, the value 

of contrast is 0. 
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Correlation =∑ (    )(   ) (   )               (2) 

µ and σ represent the mean and standard deviation of pixel i and pixel j. 

It returns a measure of how perfectly two neighbors are correlated. The correlation of an image 

is always in the range of [-1,1]. The association for an entirely positive correlated image is +1, 

and the perfect negatively correlated image is -1. 

Energy =∑i,jp(i, j)2          (3)  

The range of Energy is between [0,1]. It returns the sum of squared elements in the GLCM. The 

energy is also referred to as uniformity or angular second moment of the image. For a constant 

image, the energy is 1. 

Homogeneity =∑i,jP (i, j)/(1 + |i-j|)        (4) 

Homogeneity of an image returns a value which evaluates the proximity of the distribution of 

elements in the GLCM with respect to the GLCM diagonal. It ranges from [0,1]. From here we 

extracted sixteen (4× 4) GLCM texture features. 

GRLM: Secondly, we used GRLM feature extraction. GLCM22 describes the presence of pixel pairs 

in a particular direction whereas GRLM denotes the associated path of particular pixels in a 

definite direction22. The gray level run is a line of pixels in a certain direction having the same 

intensity value23. Gray level run length is the number of such pixels and the number of 

occurrences of such is the run-length value. Here, we considered the run length as the number 

of neighboring pixels that possess the same grey intensity in horizontal to its right direction. 

Since the resolution of the images is large the images are quantized to 16 gray levels for ease of 

computational complexity and speedy performance. The features that were extracted using 

GRLM were short-run emphasis (sre), long-run emphasis (lre), gray level non-uniformity (gln), 
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run percentage (rp), run length non-uniformity (rln), low gray level run emphasis (lgre) and high 

gray level run emphasis (hgre). From here we extracted seven textural features. The 

mathematical formulae24 are given below. 

sre =1/n∑i,jp(i, j)/j2          (5) 

lre =1/n∑i,jj
2p(i, j)          (6) 

gln = 1/n∑i(∑jp(i, j))2          (7) 

rp =   ∑i,jn/p(i, j)j          (8) 

rln = 1/n ∑j(∑ip(i, j))2          (9) 

lgre = 1/n∑i,jp(i, j)/i2          (10) 

hgre=1/n∑i,ji
2p(i, j)          (11) 

Here p(i, j) is the number of times there is a run of length j having gray level i, n is the total 

number of pixels. 

Tamura Texture Feature: Our third feature set is the Tamura21 based feature set. The Tamura 

feature computes six texture features viz coarseness, contrast, directionality, line-likeness, 

regularity, and roughness. The authors25 reported that the first three are more significant than 

the rest. Therefore, we extracted the primary three considerable features of coarseness, 

contrast, and directionality from Tamura based features. The coarseness signifies the number of 

prominent spatial dissimilarity of grey levels, which are the small texels constituting the textures 

of the image. Directionality takes into account the edge contour and the direction angle. These 

are formulated using ‘prewitts’ edge detector operator. 
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HOGL: Our fourth feature set was the histogram-based feature, which was mean, variance, 

skewness, kurtosis, energy, entropy, and probability of intensity distribution of the grayscale 

image. The mean, variance, skewness, kurtosis is said to be the main first-order texture statistics 

to represent an image17. The variance examines how an individual pixel value deviates from the 

mean value of the pixels in the image. Skewness contributes to whether an appeared surface is 

darker or brighter than the average. Kurtosis studies the peak of the probability distribution. A 

high value of kurtosis will have a sharper peak. From here, we extracted 14 textural features. 

LBP: For LBP, a binary code is produced for each pixel by thresholding the neighborhood with the 

value of the center pixel. The neighborhood considered was 8 pixels, which entail all the pixels 

surrounding the center pixel with a range or offset value of 1 considering the immediate 

neighbor of the center pixel. We did not encode any rotation features and found the mapping as 

rotation invariant. A histogram is then produced for different binary codes generated 

representing various types of spots, curved edges, at areas, etc in the image textons17. The LBP 

features encode local texture information and can be used for many tasks including 

classification, detection, and recognition. Lahdenoja26 referred LBP to be associated with 

statistical and structural texture analysis. It was used to check the local image contrast in the 

subtypes. From here, we extracted 59 textural features. 

Hence in total, 99 textural features were extracted from the above mentioned five pure 

feature sets and analyzed for classification. 

Classification 

The classification task involves five significant steps. a) Create the necessary test and training 

dataset. b) Find the best- fit algorithm to classify the data. c) Train the model. d) Predict the 

subtype using the fitted model and finally e) to attempt to increase accuracy by selecting the 
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optimum feature set. We implemented five standard classifiers, viz. Linear Discriminant (LD), 

Quadratic Discriminant (QD), Support Vector Machine (SVM), k Nearest Neighbor (KNN), and 

Decision Tree-based classification methodologies27-33 to classify all the images using pure texture 

feature sets i) individually and also ii) in combinations of individual features. Both LD and QD 

were used since we do not know whether we had the same or different covariance for the 

classes. The SVM classifier was computed using the ‘quadratic’ kernel and ‘one vs. all’ 

classification model. For the KNN classifier ‘Euclidean distance’ was used as the distance 

measure with 10 number of nearest neighbors.  The decision tree model used ‘Ginni index’ as 

the splitting criteria. We used these five different classifiers since, in machine learning, there is 

no particular rule as to which classifier will perform best for a given feature set. These classifiers 

are few of the prominent machine learning classifiers34 and were chosen based on their diverse 

nature of classification. The merit and demerit of each classifier are presented in Table. 1. The 

combined features sets were based on varied concatenations of the pure sets as follows: most 

accurate 2 (best-2), most accurate 3 (best-3), most accurate 4 (best-4) or all five pure feature 

sets (all-5). The accuracy of the samples is calculated as Accuracy = (True positive + True 

negative) = Number of samples/100. 

Construction of training and testing data set 

We have used 5 fold cross-validation where the data set was divided into 5 subsets, and 

the holdout method is repeated 5 times. Hence for each iteration, 80% of the data are treated as 

training samples, and the remaining 20% of testing samples. For each iteration, one of 5 subsets 

was used as a test set, and 5-1=4 set was used as the training set. The advantage of this method 

is that every data point gets to be in the training and test set, removing any biases associated 

with the data point role in training or testing. 



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

RESULTS 

Performance evaluation 

Table:2 shows the contribution of different feature sets towards the multiclass classification of 

the various subgroups in childhood medulloblastoma. First, we tested the accuracy of LBP, 

GLCM, HOGL, Tamura, and GRLM of individual feature sets and then arranged the feature sets in 

descending order of accuracy of classification9. Successively, we checked the classification 

accuracy for the combinations of feature sets. The results are then grouped by best-2 

(LBP+GRLN), best-3 (LBP+GRLM+GLCM), best-4 (LBP+GRLM+GLCM+Tamura) and all-5 

(LBP+GLCM+GRLM+Tamura+HOGL) feature sets, as shown in Table. 2.  

Fig. 6(a) depicts the classification accuracy of feature sets, along with the performance 

time (in seconds) shown in Fig. 6(b). Correlation analysis was performed to confirm the 

efficiency of feature combinations. The best-4 feature set formed by the combination of GLCM, 

GRLN, LBP, and Tamura features gave us the best performance for classification in terms of 

accuracy. 

Although accuracy is a good indicator of achievement, it is effectual only when datasets 

are symmetric, i.e., where values of false positive and false negatives are almost the same. 

Therefore, to further validate the performance of SVM, we calculated a few other measures viz: 

Precision, Recall, False positive rate, Specificity, and Kappa. The values of the tests are shown in 

Table. 3.  

As revealed, SVM has a better value for the other measures as too. Therefore, we plotted 

a Receiver operational characteristics (ROC) curve shown in (Fig. 7) to analyze the area under the 

curve (AUC) for each subclass. 
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Class 3 had a perfect AUC=1 followed by class 4, class 1, and class 2. We did a correlation 

analysis for this set of the concatenated 83-dimensional feature vector. We found that there is 

little correlation between individual feature subsets, which reveal that the concatenated feature 

set measures different aspects of features of the image efficiently, and combining them might be 

useful in the extraction of information. Fig. 8 shows the correlation analysis of the best-4 feature 

set. 

The confusion matrix (Fig. 9) pictorially describes the accuracy of predicted and actual 

class for the best-4 feature set. The diagonal elements give the number of correctly classified 

class instances. It is seen that for class 1 and 2 we got a small misclassification where an instance 

of class 1 is classified as class 2 while in class 2 some cases are classified as of class 1 and class 4. 

Classes 3 and 4 are correctly classified. The numbers 1 to 4 are the four subgroups of childhood 

medulloblastoma. 

LD and QD presented the least accurate performance since they assume the feature set 

to be independent. In contrast, in a real situation, it is difficult to obtain independent sets and 

indeed our observed features were dependent. Moreover, it requires the distribution to be 

normal, but in practice, our distribution may not follow the normal distribution. SVM gave the 

best performance since SVM performs well for non-linear separable classes, and our subtypes 

are not linearly separable. Decision Tree did not perform well and might have got stuck into local 

minima. KNN was a good performer as our feature sets had less irrelevant samples, as proved 

during correlation analysis. 

Feature Reduction 

As explained above, our proposed approach gives the highest accuracy for the combined best-4 

feature i.e., combining GLCM, GRLM, Tamura, and LBP feature set and excluding the HOGL based 
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feature set. Also, it is observed that for classification SVM classifier gives the highest accuracy for 

this combination. This model corresponding to features from GLCM, GRLM, LBP and Tamura 

contains 83 features. Our next target was to reduce this feature set to reduce computational 

time further. We used the well-applied feature reduction methodology of principal component 

analysis (PCA) for dimensionality reduction. PCA is used for feature reduction by reducing the 

number of correlated variables in a feature set by using Eigenvalues and Eigenvectors. The SVM 

classifier was used for PCA since it performed best in accuracy for the mentioned feature set. We 

calculated the accuracy of the classifier based on the consideration of the number of principal 

components. First, we calculated the accuracy at an interval of 10, starting with 10 principal 

components. On reaching 30, we found the accuracy decreases from 96.7% (at 20 principal 

components) to 94.6%. The accuracy decreased as we increased the number of components, as 

clear from Fig. 10.  

To find out the exact number of components for utmost accuracy, we performed our 

experiment taking a variable number of principal components lesser than 30. Fig. 10 includes the 

table showing the number of components vs. accuracy, which reveals that we can achieve the 

best accuracy of 96.7% using 20 principal components. We thus reduced the feature set for the 

combination of best-4 feature set from 83 to 20 and increased accuracy by 5.4%. 

DISCUSSION 

The individual texture features were evaluated using five different classifiers. The SVM and KNN 

perform better in the case of all the feature sets. The LBP feature set gives the highest 

classification accuracy of 84.8%, and the HOGL based feature set provides the least certainty of 

69.6% using the SVM classifier. The accuracy of classifiers for the five classifiers in decreasing 

order are LBP, GRLM, GLCM, Tamura, and HOGL. Different texture sets measure various aspects 
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of texture. Hence to explore which aspect provided improved results, we repeated the 

classification procedure in a combination of feature sets. For this purpose, we combined best-2, 

best-3, best-4 and all-5 feature set based on their performance measured in terms of accuracy. 

We got an efficiency of 91.3% by using best-4 texture feature set followed by best-2, best-3, and 

all-5 feature set. Significantly, it is observed that the combination of all five feature set reduces 

the classification accuracy. We performed a feature reduction for our best-fit feature set and 

found that the efficiency increases as we decrease the feature set from 83 to 20. 

Observations 

Difficulties 

The architectural property of medulloblastoma subtypes are very minute and requires 

experience and skill to evaluate such abnormalities. As follow-up treatment depends highly on 

its type, it is vital to have an accurate diagnosis. The time taken for analysis of the biopsy sample 

in the region requires considerable time. There is a very less ratio of the pathologist to patients. 

A fact which is right for all underdeveloped and developing parts of a country. As prognosis is 

very sensitive, most of the cases move outside the region for better prospects. This results in the 

lesser availability of data in the area. The lack of a benchmark data set makes it further 

challenging to carry out such research. But since its classification can give a longer survival rate, 

we have tried to attempt to classify its subgroups using computer-aided diagnosis. 

Comparison 

Till now, multiclass textural classification for medulloblastoma is not reported in any study. 

Further, as mentioned, there is no benchmark dataset available where our methodology could 

be applied and compared with our indigenous dataset. Hence, a comparison of our results was 

not possible. The multi-class analysis is more complicated than a two-way classifier problem. 
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Researchers have distinguished medulloblastoma into two types, anaplastic and non-anaplastic. 

Galaro et al6 have classified anaplastic and non-anaplastic medulloblastoma using a bag of words 

classifier and obtained an accuracy of 87%. Rao et al7 had used CNN based classification for 

anaplastic and non-anaplastic medulloblastoma for 10 images and obtained an accuracy of 

89.8%. Lai et al8 classified between anaplastic and non-anaplastic and using Haar, Haralick, and 

Law textural feature and achieved an AUC of 91%. Our proposed method for multiclass 

classification obtains a higher accuracy of 96.7%. 

CONCLUSION 

The paper presents a multiclass classification among childhood medulloblastoma sub-groups 

using five textural feature sets. We evaluated the accuracy of classifiers using independent 

feature set and in the groups of best-2, best-3, best-4, and all-5 feature set. Using best-4 feature 

set, we were able to achieve an accuracy of 91.3%, which further increases to 96.7% on feature 

reduction using principal component analysis. It is also seen that not all combination of feature 

sets gives us a better result. Since individual feature sets provide different textural information, 

it is recommended that we use the group of features for better classification. As observed, 

existing methods are well applicable for pre and post-processing of the images, giving 

satisfactory accuracy. This accuracy will increase once our dataset increases, and we may be able 

to use deep learning methodologies for the system. 
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Figure Captions: 

Fig. 1. Block Diagram for our proposed work. 

 

Fig. 2. Figure showing the microscopic view of our data samples a) nodular b) classic c) large cell d) 

desmoplastic subtype. 
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Fig. 3. Data Collection procedure. 

 

Fig. 4. Showing the different color channels for our dataset images. 
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Fig. 5. Result of different enhancement methods applied to our images. 

 

Fig. 6(a). Plot of Classification Accuracy of the used subgroup of features with different classifiers. 
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Fig. 6(b). Training time analysis of the feature sets for SVM classifier. 

 

Fig. 7. ROC curve for Best4 feature set for the different classes. 
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Fig. 8. Correlation analysis of the features. 

 

Fig. 9. Confusion matrix showing the true class and predicted class output of best-4 feature set. 
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Fig. 10. PCA analysis showing accuracy vs no. of components curve of best-4 feature set. 

 

Table. 1.  Comparison of different classifiers used. 

Classifiers Advantage Disadvantage 

KNN 
It  is  efficient,  simple,  non-parametric and is 

easily implemented 

It has a slow performance rate when the 

size of the training sample increases. 

 

The performance is hindered in the 

presence of irrelevant samples. 

LD/QD 

Requires normal distribution. 

 

The requirement of training samples is less for 

parameter estimation in classification. 

 

Large speed and accuracy are achieved when 
applied to a large dataset. 

The algorithm works well with 

independent features only. 

 

It gives a poor performance for 

dependant feature set. 

Decision Tree 

It can be used for any datatype. 

  Non-parametric. 

It does not have any distribution requirement. 

It is faster for the larger feature set. 

The major risk in the implementation of 
a decision tree is that with the presence 
of an alternative tree. 

It can get stuck at local minima. 

 

SVM 

No distribution requirement. 

It is able to manage large spaces of the feature. 

Good for nonlinear feature 

It has high usage and computational 

time 
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Table. 2.  Performance comparison in % of individual and best-2, best-3, best-4 and all-5 texture. 

Individual features Classifiers 
Tree LD QD SVM KNN 

     GLCM 63 60.9 63 72.8 77.2 
      

GRLM 48.9 53.6 48.5 89.7 84.5 
      HOGL 66 60.9 69 68.5 67 
      LBP 70 57 67 84.8 80.4 
      Tamura 65.7 59.8 47.4 69.6 62 
      Best2(LBP+GRLM) 68.5 56 62 90.2 79 
      Best3(LBP+GRLM+GLCM) 68.5 57.6 69.6 89.9 81.5 
      

Best4(LBP+GRLM+GLCM+Tamura) 67.4 59.8 69.6 91.3 83.6 
      All5(LBP+GRLM+GLCM+Tamura+HOGL) 63 59.8 70.7 87 73.9 
      

 

 

Table. 3.  The performance measure for the best-4 feature set. 

 

 

 

 

 

Classifiers Precision Recall False Positive Rate Specificity Accuracy Kappa 
       

SVM .913 .913 .03 .97 .913 .884 
       

Tree .67 .67 .09 .90 .674 .565 
       

QD .69 .68 .06 .93 .696 .594 
       

LD .59 .513 .11 .89 .598 .464 
       

KNN .83 .87 .05 .95 .836 .78 
       


