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Abstract

In the WHO glioma classification guidelines grade (glioblastoma versus lower-

grade glioma), IDH mutation and 1p/19q co-deletion status play a central role

as they are important markers for prognosis and optimal therapy planning. Cur-

rently, diagnosis requires invasive surgical procedures. Therefore, we propose an

automatic segmentation and classification pipeline based on routinely acquired

pre-operative MRI (T1, T1 postcontrast, T2 and/or FLAIR). A 3D U-Net was

designed for segmentation and trained on the BraTS 2019 training dataset. Af-

ter segmentation, the 3D tumor region of interest is extracted from the MRI

and fed into a CNN to simultaneously predict grade, IDH mutation and 1p19q

co-deletion. Multi-task learning allowed to handle missing labels and train one

network on a large dataset of 628 patients, collected from The Cancer Imaging

Archive and BraTS databases. Additionally, the network was validated on an

independent dataset of 110 patients retrospectively acquired at the Ghent Uni-

versity Hospital (GUH). Segmentation performance calculated on the BraTS

validation set shows an average whole tumor dice score of 90% and increased

robustness to missing image modalities by randomly excluding input MRI dur-

ing training. Classification area under the curve scores are 93%, 94% and 82%

on the TCIA test data and 94%, 86% and 87% on the GUH data for grade,
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IDH and 1p19q status respectively. We developed a fast, automatic pipeline to

segment glioma and accurately predict important (molecular) markers based on

pre-therapy MRI.

Keywords: Glioma, Segmentation, Deep Learning, MRI, Molecular markers

1. Introduction

Gliomas are the most frequently occurring primary brain tumors and show

a large heterogeneity in treatment response and prognosis. The WHO classifi-

cation system classifies glioma into grades I-IV in order of malignancy based on

histopathological and clinical criteria (Louis et al., 2016). Glioblastoma multi-5

forme, WHO grade IV, is the most aggressive type and has a very poor prognosis

with a 5-year survival rate of only 5.6%. In contrast, lower-grade glioma (WHO

grade II and III) have more favorable survival rates up to 81.6% and 57.6%

respectively (Ostrom et al., 2018). In the most recent classification of glioma,

the WHO has put increased emphasis on the integration of molecular markers10

(Louis et al., 2016). As illustrated in Figure 1, two genetic markers play a cen-

tral role: isocitrate dehydrogenase (IDH) 1 and/or 2 mutation and co-deletion

of chromosome arms 1p and 19q.

Figure 1: Classification of diffuse gliomas based on histological and genetic features. Not

otherwise specified (NOS) designates a group of lesions that cannot be classified into the

more narrowly defined groups or for which insufficient information is available. Adapted from

(Louis et al., 2016).

IDH mutation occurs in more than 80% of lower-grade glioma cases and ap-
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proximately 10% of glioblastoma cases, corresponding closely to so-called sec-15

ondary glioblastoma (Eckel-Passow et al., 2015; Yan et al.). Gliomas with IDH

mutation are less aggressive and demonstrate better response to temozolomide

chemotherapy than IDH wildtype gliomas. For example, glioblastoma patients

with IDH mutation show a longer overall survival (OS) compared to patients

with IDH wildtype glioblastoma (31 versus 15 months) (Yan et al.). Moreover,20

reported OS of IDH wildtype LGG is only slightly longer than IDH wildtype

glioblastoma (The Cancer Genome Atlas Research Network, 2015). Hence IDH

mutation is associated with a significantly better prognosis and appears to be a

more important predictor than WHO grade as Reuss et al. (2015) reported little

difference in survival between IDH mutant WHO grade II and III astrocytoma.25

According to the 2016 WHO classification scheme, diagnosis of oligoden-

droglioma requires demonstration of both IDH mutation and combined loss of

1p and 19q (see Figure 1). Similarly to IDH mutation, 1p/19q co-deletion

is linked to more favorable outcomes and oligodendrogliomas respond well to

combined procarbazine, lomustine and vincristine chemotherapy (Weller et al.,30

2017).

We can conclude that determination of WHO grade (glioblastoma versus

lower-grade glioma), IDH mutation and 1p/19q co-deletion status is necessary

for prognosis and optimal therapy planning. Currently, genetic information of

gliomas is derived from the analysis of tumor tissue obtained through biopsy or35

resection. However, biopsies involve risks, are subject to sampling error and are

related to reduced OS compared to a wait-and-scan approach (Jackson et al.,

2001; Wijnenga et al., 2017). Tumor resection is standard of care for most

glioma types but is not always possible depending on tumor location and ac-

cessibility, the patient’s clinical condition or when the patient refuses a surgical40

procedure. Therefore, non-invasive assessment of clinically relevant markers can

aid in characterizing glioma and guide therapy and surgery planning, especially

when extraction of tumor tissue is not possible or genetic testing not available.

Correlations between MR phenotypes and glioma subtypes have been widely

investigated. For example, presence of contrast enhancement and necrosis on45
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T1 contrast enhanced (T1ce) MRI is associated with high-grade glioma (Law

et al., 2003). IDH mutant glioma have been reported to demonstrate minimal

enhancement, sharp tumor margins and homogeneous signal intensity (Carrillo

et al., 2012; Qi et al., 2014). This contrasts with IDH wildtype glioma that

is correlated with thick, irregular enhancement with necrosis and infiltrative50

edema. Furthermore, increased enhancement, poorly circumscribed borders

and heterogeneous signal intensity are characteristic MRI features related to

1p/19q co-deletion (Johnson et al., 2017; Sonoda et al., 2015). However, vi-

sual interpretation and prediction of tumor properties remains very challenging

and inaccurate. For instance, 40-45% of non-enhancing lesions are subsequently55

found to be highly malignant (Jansen et al., 2012). Conversely, 16% of WHO

grade II glioma show contrast enhancement and this percentage is expected

to be even higher for low-grade oligodendroglioma (Khalid et al., 2012; Pallud

et al., 2009).

To improve speed and accuracy of non-invasive tumor characterization, there60

is an increasing interest to use machine learning techniques for medical image

analysis. A selection of recent studies on the prediction of grade, IDH mutation

and 1p/19q co-deletion status of glioma is included in Table 1. Yang et al.

(2018) differentiated LGG from glioblastoma with high accuracy (AUC of 0.97)

based on T1ce MRI. The tumor was manually segmented followed by slice-level65

classification through the use of a 2D convolutional neural network (CNN), pre-

trained on ImageNet, fine-tuned on 90 patients and evaluated on a test set of

23 patients. State-of-the-art performance on IDH mutation status prediction

was reported by Chang et al. (2018a). They predicted IDH mutation based on

pre-operative MRI (T1, T1ce, T2 and FLAIR) of 496 patients. Tumors were70

manually delineated and classified by four 2D CNNs (one for each modality).

Through the combination of the four probabilities with age and a logistic re-

gression classifier, an AUC of 0.95 was obtained. Akkus et al. (2017) analyzed

T1ce and T2 MRI of 159 LGG patients to predict 1p/19q co-deletion status.

The tumor was delineated semi-automatically and each slice was classified using75

a multi-scale 2D CNN achieving an accuracy of 88%.
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Most of the studies included in Table 1 used manual or semi-automatic seg-

mentations which might introduce variability and subjectivity to the classifica-

tion pipeline and impede clinical adoption. However, encouraged by the annual

Brain Tumor Segmentation (BraTS) Challenges (Menze et al., 2015), a lot of80

research is performed on automatic glioma segmentation. In recent years deep

learning techniques have surpassed performance of more traditional radiomics

methods (Bakas et al., 2018). Myronenko (2019) achieved first place at the

2018 BraTS challenge with dice scores of 76.64, 88.39, 81.54 for enhancing tu-

mor (ET), whole tumor (WT), and tumor core (TC) volumes respectively on the85

BraTS 2018 test set. They used an ensemble of 10 encoder-decoder networks.

An additional limitation is that existing studies often train and evaluate

their models on a small dataset from one institution. Hence their robustness

to data from other clinical centers (with large variations in imaging protocols)

remains to be evaluated on an independent dataset. Moreover, due to the lim-90

ited amount of data, often radiomics methods are used where hand-engineered

features are extracted depending on expert opinion. Convolutional neural net-

works, on the other hand, can automatically extract and classify features from

complex imaging datasets with increased speed and without requiring human

interaction resulting in a more objective computer-aided diagnosis tool.95

Therefore, in this study we propose a non-invasive fully automatic 3D pipeline

to segment glioma and predict clinically relevant markers according to the most

recent WHO guidelines based on routinely acquired pre-operative MRI. We

collected a large dataset from multiple public databases and an independent

dataset from the Ghent University Hospital to test the generalization perfor-100

mance. Moreover, our approach is robust to missing T1 and T2 or FLAIR

MRI.

Table 1: Overview of recent studies on non-invasive prediction of grade, IDH mutation and

1p/19q codeletion status of glioma.

Author Task Dataset Method Result
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Skogen et al.

(2016)

predicting WHO

grade II, III, IV

95 patients

(grade II, III,

IV)

T1ce

manual 2D

segmentation

texture features

ROC analysis

AUC = 0.91

(II, III vs. IV)

AUC = 0.84

(II vs. III)

AUC = 0.73

(III vs. IV)

Hsieh et al.

(2017)

distinguishing

lower-grade (II,

III) from high-

grade GBM (IV)

107 patients

(grade II, III, IV)

T1ce

manual 2D

segmentation

histogram,

texture features

logistic regres-

sion

AUC = 0.89

Yang et al.

(2018)

distinguishing

lower-grade (II,

III) from high-

grade GBM (IV)

113 patients

(grade II, III, IV)

T1ce

Manual ROI

segmentation

(pre-trained) 2D

CNN: AlexNet,

GoogleNet

AUC = 0.97

Chang et al.

(2018a)

IDH mutant vs.

IDH wildtype

496 patients

(grade II, III, IV)

T1 + T1ce + T2

+ FLAIR

Manual ROI

segmentation

2D CNN:

ResNet34

Logistic regres-

sion combining

age with proba-

bility output

AUC = 0.95

Yu et al.

(2017)

IDH1 mutant vs.

IDH1 wildtype

140 patients

(grade II)

FLAIR

Automatic seg-

mentation with

2D CNN

Location, shape,

texture and his-

togram features

SVM, AdaBoost

AUC = 0.86
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Zhang et al.

(2017)

IDH mutant vs.

IDH wildtype

120 patients

(grade III, IV)

T1, T1ce, T2,

FLAIR, DWI

(ADC)

Semi-automatic

segmentation

Anatomical,

shape, texture

and histogram

features

Random forest

classification

AUC = 0.92

Arita et al.

(2018)

IDH mutant vs.

IDH wildtype

199 patients

(grade II, III)

T1, T1ce, T2,

FLAIR

Manual segmen-

tation

Location, shape,

texture features

LASSO regres-

sion

Accuracy =

87%

Chang et al.

(2018b)

IDH mutant vs.

IDH wildtype

1p/19q co-

deleted vs.

1p/19q Intact

MGMT methy-

lated vs. un-

methylated

259 patients

(grade II, III, IV)

T1, T1ce, T2,

FLAIR

Automatic seg-

mentation with

2D CNN

2D CNN: resid-

ual network

AUC = 0.91

(IDH)

AUC = 0.88

(1p/19q)

AUC = 0.81

(MGMT)

Choi et al.

(2019)

IDH mutant vs.

IDH wildtype

1p/19q co-

deleted vs.

1p/19q Intact

463 patients

(grade II, III, IV)

T1, T1ce, T2,

FLAIR, DSC

perfusion MRI

Automatic seg-

mentation with

CNN followed

by manual

correction

2D convolu-

tional LSTM

AUC = 0.95

(IDH)

AUC = 0.78

(1p/19q)
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Zhou et al.

(2019)

IDH mutant vs.

IDH wildtype

IDH mutant:

1p/19q co-

deleted vs.

1p/19q Intact

744 patients

(grade II, III, IV)

T1ce, FLAIR

Manual segmen-

tation

Histogram,

shape, texture

and age features

Random forest

classification

AUC = 0.92

(IDH)

AUC = 0.72

(1p/19q)

Akkus et al.

(2017)

1p/19q co-

deleted vs.

1p/19q Intact

159 patients

(grade II, III)

T1ce, T2

Semi-automatic

2D segmenta-

tion

2D CNN

Accuracy =

88%

Kim et al.

(2019)

1p/19q co-

deleted vs.

1p/19q Intact

167 patients

(grade II, III, IV)

T1, T1ce, T2,

FLAIR

Manual segmen-

tation

Texture, topo-

logical and

pre-trained

CNN features

Random forest

classification

AUC = 0.71

van der

Voort et al.

(2019)

1p/19q co-

deleted vs.

1p/19q Intact

284 patients +

129 from TCIA

(grade II, III)

T1ce, T2

Manual segmen-

tation

Intensity, tex-

ture, shape,

texture, age and

sex features

SVM classifier

AUC = 0.72

(TCIA)

2. Materials and methods

The pipeline designed in this study consists of a segmentation stage and a

subsequent classification stage as illustrated in Figure 2. In this section, the105

collected data and methodology are explained for both stages.
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Figure 2: Schematic overview of the pipeline presented in this study. Both the segmentation

and classification network architectures are illustrated
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2.1. Glioma Segmentation

2.1.1. Patient data

For the segmentation, we used 335 patients (glioma WHO grade II, III and

IV) from the BraTS 2019 training dataset (Bakas et al., 2017; Menze et al.,110

2015). This dataset includes routine clinically acquired pre-operative T1, T1ce,

T2 and FLAIR MRI from multiple institutions together with manual segmen-

tation maps denoting the GD-enhancing, peritumoral edema and the necrotic

and non-enhancing tumor core regions. All MRI were co-registered to the same

anatomical template, interpolated to 1 mm3 voxel sizes, skull-stripped and in-115

dependently normalized by subtracting the mean and dividing by the standard

deviation.

2.1.2. Network architecture and training

In recent BraTS challenges, U-Nets have shown state-of-the-art performance

for brain tumor segmentation. A U-Net is an encoder-decoder network that com-120

bines semantic and spatial information through the use of skip connections from

the encoder to the decoder which allows to segment fine structures very well.

We therefore implemented a 3D U-Net similar to the architecture proposed by

Isensee et al. (2019) (see Figure 2). The network has four input channels (one

for each modality), 32 feature maps at the highest resolution, five levels (depths125

in the U shape) and four output channels (background, necrosis, edema and

enhancing tissue). In the decoding part, the number of filters is reduced right

before trilinear upsampling instead of transposed convolutions to limit the num-

ber of parameters and memory consumption and to allow for a suitable number

of feature maps. During training we process patches of 112 × 112 × 112 and a130

small batch size of two due to the high memory consumption of 3D convolutions.

Leaky ReLU activation and instance instead of batch normalization was used as

the exponential moving averages of mean and variance within small batches are

unstable. The network was trained using the ADAM optimizer with an initial

learning rate lrinit = 10−4 which is halved if the validation loss has not im-135

proved in the last 50 epochs and an L2 weight decay of 10−6. A combination of
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cross-entropy and multi-class soft dice loss was used as the optimization metric.

The network was implemented using PyTorch and trained on an 11GB NVIDA

GTX 1080 Ti GPU.

Sixty patients were held out for validation and the network was trained on140

the remaining 275 patients. To prevent overfitting, data augmentations such as

flipping and random axial rotations were applied on the fly during training.

In clinical practice, not all four MRI sequences (T1, T1ce, T2 and FLAIR)

are always available. This is also the case for our dataset that is used to train

the classification network (see Section 2.2.1). For some patients, a good quality145

T1, T2 or FLAIR MRI is lacking. To increase robustness of the segmentation

network to missing T1 and T2 or FLAIR modalities, channels were randomly

set to zero during training. We made sure that at least the T1ce and a T2 or

FLAIR sequence was available at the input.

The network is finally evaluated on the BraTS 2019 validation dataset con-150

taining 125 patients and the reported dice scores and Hausdorff distances were

computed by the online evaluation platform (https://ipp.cbica.upenn.edu). The

dice score denotes the percentage of overlap between the predicted and groundtruth

segmentation volumes. The robust Hausdorff distance reports the 95% quantile

over all surface distances.155

2.2. Glioma Classification

2.2.1. Patient data

To acquire a large dataset, we collected data from multiple public databases:

the TCGA-GBM (Scarpace et al., 2016), TCGA-LGG (Pedano et al., 2016) and

LGG-1p19qDeletion (Erickson et al., 2017) collections on The Cancer Imaging160

Archive (TCIA) (Clark et al., 2013) and the BraTS 2019 dataset. Inclusion

criteria were: a histologically proven glioma of WHO grade II, III or IV, the

availability of pre-operative T1ce MRI together with a T2 and/or FLAIR se-

quence of sufficient quality and information on WHO grade, IDH mutation and

1p19q co-deletion status. In total 628 patients were included: 164 patients165

from TCGA-GBM, 121 from TCGA-LGG, 141 from 1p19qDeletion and 202
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from BraTS 2019 (only patients that were not already included in the TCGA

collections). The LGG-1p19qDeletion collection only includes a T1ce and T2

sequence. Hence the required robustness of the segmentation network to lacking

T1 and FLAIR MRI. For all patients, WHO grade information was available170

(337 GBM vs. 291 LGG). IDH mutation status was known for 380 patients (212

mutated vs. 168 wildtype) and 1p19q co-deletion status for 280 LGG patients

(133 co-deleted vs. 147 intact). Molecular data of patients in the TCGA-GBM

and TCGA-LGG collections were obtained from (Ceccarelli et al., 2016).

Additionally, data was retrospectively acquired at the Ghent University Hos-175

pital, with permission of the local ethics committee, informed consent was

waived (Belgian registration number B670201838395 2018/1500). Using the

same inclusion criteria, we collected data from 110 patients with known WHO

grade (61 GBM vs. 49 LGG). For 86 patients IDH status was determined

(32 IDH mutant vs. 54 IDH wildtype) through immunohistochemistry (IHC)180

and for 40 LGG patients (12 co-deleted vs. 28 intact) 1p19q co-deletion sta-

tus was known by fluorescence in-situ hybridization (FISH). The same pre-

processing steps were performed as for the segmentation data using SPM12

(version 7219, Wellcome Trust Centre for Neuroimaging, University College

London) and MATLAB R2018b (The MathWorks, Inc., Natick, MA).185

2.2.2. Network architecture and training

Using the segmentation mask, a tumor region of interest (ROI) is extracted

from the MRI and subsequently fed into the classification network as illustrated

in Figure 2. A similar architecture design is used as described in the original

ResNet paper (He et al., 2016). The architecture starts with a convolutional190

layer with 64 7×7×7 filters and stride two followed by four residual blocks. Each

residual block consists of two 3×3×3 convolutional layers with a skip connection

via addition. The convolutional layers in the first block have 64 filters without

downsampling of the feature maps. In the following three residual blocks the

number of filters are doubled and downsampling is directly performed by the first195

convolutional layer that has a stride of two. This results in 512 features maps
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after the last convolutional layer. To allow identity shortcuts, input and output

of a residual block must have the same dimensions. This is not the case in the

last three residual blocks where the input is matched to the output dimensions

through a 1×1×1 convolutional layer with stride two. Every convolutional layer200

is succeeded with instance normalization and Leaky ReLU activation (negative

slope of 0.01). The adaptive average pool layer after the last convolutional layer

allows the network to process different ROI input sizes hence no resizing to a

fixed shape is required. In the end the network splits into three separate fully

connected (FC) layers to simultaneously predict WHO grade, IDH mutation and205

1p19q co-deletion. This so-called multi-task learning helps the network to learn

features that are relevant for multiple tasks, reduces the risk of overfitting and

allows a better generalization (Caruana, 1997). As explained in the introduction,

MRI features describing enhancing regions and tumor margins are important

to predict grade, IDH and 1p19q status which shows that these tasks are very210

much related and that knowledge on one characteristic is informative for the

other markers as well. Moreover, not all ground truth labels are available for

every patient in our dataset. Multi-task learning allows us to deal with missing

labels and train one network on all data instead of training separate networks for

each task on a smaller dataset. The 1p19q co-deletion classifier is only trained215

for LGG patients as all GBM patients in the dataset are 1p19q intact and the

2016 WHO classification system does not include 1p19q status for GBM cases

(see Figure 1).

The network is trained with AdamW optimization (lrinit = 10−5), L2 weight

decay of 10−2, a batch size of eight and focal binary cross-entropy loss. Focal220

loss weights the contribution of each sample based on the classification error and

thereby reduces the contribution of already correctly classified samples. This is

especially useful to deal with class imbalance. The loss is calculated for each

task separately on all samples in the batch with known ground truth labels and

averaged to a global loss which is backpropagated through the network. If the225

validation loss did not improve in the last 10 epochs the learning rate is halved

and early stopping occurs after no improvement for 30 epochs. In the last fully
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connected layer, dropout is applied with probability of 10%. Different hyperpa-

rameters of the network were tuned based on the validation set. The network

was implemented with the PyTorch deep learning framework and trained on an230

11GB NVIDIA GeForce RTX 2080 Ti.

The 628 patients are split into a training set of 458 (264 GBM vs. 194 LGG,

123 IDH mutant vs. 87 IDH wildtype and 83 1p19q co-deleted vs. 100 1p19q

intact), a validation set of 70 (27 GBM vs. 43 LGG, 41 IDH mutant vs. 29 IDH

wildtype and 20 1p19q co-deleted vs. 23 1p19q intact) and a test set of 100 (46235

GBM vs. 54 LGG, 48 IDH mutant vs. 52 wildtype and 30 1p19q co-deleted vs.

24 1p19q intact) patients. For patients in the validation and test set, all ground

truth labels were available and test patients were not used in the training set

of the segmentation network in order to evaluate the system on new cases that

both the segmentation and classification stages have never seen before. The240

dataset was augmented with random flipping, axial rotations, intensity scaling,

elastic transform and setting input channels to zero as was done to train the

segmentation network. Data form the Ghent University Hospital was used to

evaluate the performance of the classification pipeline on an entirely independent

dataset.245

3. Results

3.1. Glioma Segmentation

Segmentation results on the BraTS 2019 validation data are summarized in

Table 2 and Table 3. Dice scores and Hausdorff distances are reported for the

enhancing tumor (ET), whole tumor (WT) and tumor core (TC) regions and for250

different available modalities: all four sequences, only T1ce and FLAIR or only

T1ce and T2. To illustrate the increased robustness to missing modalities, the

results are included with (Table 2) and without (Table 3) randomly setting input

channels to zero during training. A whole tumor dice score of 90% is achieved

which lowers to 89% and 87% when only the T1ce and FLAIR and T1ce and255

T2 MRI are available respectively. Without randomly removing channels while
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Table 2: Segmentation results on the BraTS2019 validation data with randomly setting input

channels to zero while training. Metrics were computed by the online evaluation platform.

Available modalities Dice Score (%) Hausdorff distance (mm)

ET WT TC ET WT TC

T1, T1ce, T2, FLAIR 75.71 89.81 83.18 5.08 4.99 6.66

T1ce, FLAIR 74.35 89.37 82.74 4.34 5.12 6.82

T1ce, T2 74.09 86.98 82.20 5.58 7.15 7.37

Table 3: Segmentation results on the BraTS2019 validation data without randomly setting

input channels to zero while training. Metrics were computed by the online evaluation plat-

form.

Available modalities Dice Score (%) Hausdorff distance (mm)

ET WT TC ET WT TC

T1, T1ce, T2, FLAIR 76.33 90.02 79.68 3.89 5.72 6.97

T1ce, FLAIR 64.37 82.77 69.33 51.88 15.09 26.13

T1ce, T2 62.46 60.98 59.86 9.02 23.03 23.27

training, the difference in performance is larger with WT dice scores of 90%,

83% and 61%.

The network achieves a high average WT specificity of 99% and a sensitivity

of 87%. Figure 3 shows an example segmentation of the patient from the vali-260

dation set with the lowest whole tumor dice score of 32% (when only providing

T1ce and T2). Some of the edema surrounding the segmented tumor core is

missed. When providing all four MRI the WT dice increases to 54%. On the

Nvidia 1080 Ti GPU, a patient’s MRI can be segmented in around 0.3 seconds.

3.2. Glioma Classification265

In Table 4 the results are presented of the multi-task classification network.

For each task (WHO grade, IDH mutation and 1p19q co-deletion status) the

AUC, Matthews Correlation Coefficient (MCC), accuracy, sensitivity and speci-

ficity scores are included. MCC is a balanced performance measure for binary

classifications that considers all four components of the confusion matrix and270
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T1ce T2 FLAIR Segmentation
T1ce, T2

Segmentation
T1ce, T2

Segmentation
T1, T1ce, T2, FLAIRFLAIRT2

Figure 3: Example MRI and segmentation (overlaid on T1ce) for two different slices of the

patient with lowest whole tumor dice score. Blue denotes the necrotic and non-enhancing

tissue, green indicates the peritumoral edema. The predicted segmentations are included

when only providing the T1ce and T2 sequences and when providing all sequences (for the

bottom slice).
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Table 4: Classification performance n the TCIA and Ghent University Hospital (GUH) test

data. AUC, Matthews Correlation Coefficient (MCC), accuracy, sensitivity and specificity

scores are reported for all three tasks: WHO grade, IDH mutation and 1p19q co-deletion

status. A case is classified as Glioblastoma (WHO grade IV), IDH mutant and 1p19q co-

deleted respectively if the predicted probability is higher than 0.5.

Dataset Task AUC MCC Acc. Sens. Spec.

TCIA test data GBM vs. LGG 93.28 80.26 90.00 93.48 87.04

IDH mutation 94.03 78.00 89.00 89.58 88.46

1p19q co-deletion 82.08 66.16 83.33 86.67 79.17

GUH data GBM vs. LGG 93.98 79.81 90.00 90.16 89.80

IDH mutation 86.23 52.92 75.58 84.38 70.37

1p19q co-deletion 86.61 40.48 75.00 58.33 82.14

has a value between -1 and 1 (with zero corresponding to random prediction).

The sensitivity scores indicate the percentage of GBM, IDH mutant and 1p19q

co-deleted cases that are correctly classified as such. The results on the unseen

TCIA test data show high classification performances with AUC scores of 93%

and 94% for grade and IDH status respectively. Predicting 1p19q co-deletion275

status for lower-grade glioma is harder but still an AUC of 82% is achieved. The

performance was also evaluated on the completely independent dataset from the

Ghent University Hospital. The resulting AUC scores on the GUH data are 94%,

86% and 87% for grade, IDH and 1p19q status respectively.

4. Discussion280

The segmentation results on the BraTS 2019 validation set show that very

good dice scores are achieved. With an average whole tumor dice score of

90%, our segmentation algorithm matches the performance of state-of-the art

algorithms of the BraTS 2019 challenge with the top three winning algorithms

obtaining a mean WT dice score of 91% according to the validation leaderboard285

(Bakas and Sako, 2019). We believe that the obtained performance with the

implemented U-Net is sufficient for the current task, as small variations be-
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tween manual and predicted segmentations won’t have a strong influence on the

tumour ROI. Additionally, the network shows increased robustness to missing

modalities when randomly setting the T1 and T2 or FLAIR sequence to zero290

while training. There is only a small decrease in performance when only pro-

viding the T1ce and FLAIR or T1ce and T2 scans compared to all four MRI

as input. Without randomly excluding image modalities during training, the

performance with only two modalities is much lower. This is especially useful

as not all four MRI modalities are available for all patients in both our public295

dataset and the Ghent University Hospital dataset. This way an accurate seg-

mentation and ROI extraction could still be obtained for these patients. The

very high specificity and slightly lower sensitivity indicates that segmentation

inaccuracies are due to parts of the surrounding edema that are not detected

by the network. This is illustrated by the example shown in Figure 3 with the300

lowest WT dice score. Based only on the T1ce and T2 MRI, the network is

able to segment the tumor core but misses the surrounding edema which is not

clearly visible on the T2 sequence. When adding the FLAIR sequence where the

edema is more evident, the network is able to detect more of the edema tissue.

With the trained segmentation network, a 3D tumor ROI is extracted and305

used as input to the subsequent 3D CNN that predicts binary tumor grade,

IDH mutation and 1p19q co-deletion status. For binary grade prediction, very

high accuracies of 90% on both the TCIA and GUH test data are achieved.

This shows that the network is able to accurately distinguish glioblastoma from

lower-grade glioma and generalizes well to unseen data from different institu-310

tions. The IDH mutation prediction performance is high on the TCIA test set

(AUC of 94%). On the GUH data, the performance is lower with an AUC of

86%. Especially a lower specificity of 70% compared to 88% is observed. This

difference in performance might be because immunohistochemistry was used to

determine IDH status for the GUH data while for the TCGA data IDH status315

was assessed using gene sequencing (Ceccarelli et al., 2016). However, a nega-

tive IDH status using IHC does not necessarily mean an IDH wildtype tumor

and if no sequencing is available the resulting diagnosis suggested by the WHO
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is astrocytoma, not otherwise specified (NOS) (Louis et al., 2016). The GUH

database contains 14 IDH wildtype astrocytoma while this diagnosis should be320

very rare according to the WHO. Hence some IDH mutant astrocytoma might

be missed with IHC resulting in more false positives of the model and thus a

lower specificity. An additional limitation to the dataset is that there are only

two IDH mutant glioblastoma in the TCIA training set making it very unlikely

that the network will predict this combination of classes. Therefore, the four325

GBM with IDH mutation in the GUH database were predicted as GBM, IDH

wildtype. In terms of 1p19q co-deletion status prediction of lower-grade glioma,

a good performance is achieved on both the TCIA and GUH datasets (AUC of

82% and 87% respectively). Although 1p19q status was known for the GBM

cases in the TCGA-GBM collection (all 1p19q intact), we only included LGG330

patients as this marker is only considered for those patients according to the

WHO guidelines (Figure 1). Including the GBM cases would increase the overall

prediction accuracy of 1p19q status but would introduce a large data imbalance

and thereby decrease the performance for LGG cases. Results on the GUH

dataset show a lower sensitivity compared to the results on the more balanced335

TCIA test set. In the GUH dataset, 1p19q status was only available for 40

LGG patients with just 12 1p19q co-deleted cases which might be too small to

obtain reliable performance estimations. Depending on the classification thresh-

old, the sensitivity can also be optimized. For example, with a threshold of 0.45

the sensitivity on the GUH dataset increased to 75% with the same specificity.340

In this study, we trained a 3D classification network to classify the entire

tumor ROI. Current applications of CNNs for brain tumor classification are

mostly 2D, taking only a small part of the tumor into account while brain

tumors have a very heterogeneous appearance with strong variations between

different slices. Furthermore, extracting only the tumor ROI allows the network345

to focus on this region but context information on surrounding tissues and

location is excluded. Including this information may further improve diagnostic

performance.

The clinical translation potential of the developed pipeline is strong as only
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routinely acquired MRI are necessary as input and no further human inter-350

action is required. Data preprocessing is minimal, and the segmentation and

classification takes less than 5 seconds on an NVIDIA GeForce RTX 2080 Ti

GPU.

5. Conclusion

In conclusion, we developed a fully automatic 3D pipeline to segment glioma355

and non-invasively predict important (molecular) markers according to the WHO

classification guidelines with high diagnostic performance. The segmentation al-

gorithm shows increased robustness to missing image modalities by randomly

excluding input MRI during training. Through the use of multi-task learning to

handle missing labels, one classification network could be trained on a large360

multi-institutional database. Evaluation on an independent private dataset

demonstrated the generalizability of the algorithm. The non-invasive assess-

ment of clinically relevant genetic mutations can help to characterize glioma

and thereby guide therapy and surgery planning.
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