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The discovery of IDH1/2 (isocitrate dehydrogenase) mutation in large scale, genomewide mutational
analyses of gliomas has led to profound developments in understanding tumourigenesis, and restructur-
ing of the classification of both high and low grade gliomas. Owing to this progress made in the recogni-
tion of molecular markers which predict tumour behavior and treatment response, the increasing
importance of adjuvant treatments such as chemo- and radiotherapy, and the tremendous advances in
surgical technique and intraoperative monitoring which have facilitated superior extents of resection
whilst preserving neurological functioning and quality of life, contemporary management of low grade
glioma (LGG) has switched from a passive, observant approach to a more active, interventional one.
Furthermore, this has implications for the manner in which patients with incidentally discovered and/
or asymptomatic LGG are managed, and this review of the biological behaviour of LGG, as well as its clin-
ical investigation and management, should act as a timely reminder to all clinicians of the importance of
referring LGG patients early to a surgical neuro-oncologist who is not only familiar and acquainted with
the vagaries of this disease process, but who, in addition, is devoted to delivering care to these patients
with the support of a multi-disciplinary clinical decision-making unit, comprising medical neuro-
oncologists, radiation oncologists and allied health professionals.

Crown Copyright � 2020 Published by Elsevier Ltd. All rights reserved.
The discovery of specific molecular aberrations that drive
gliomagenesis has led to important modifications in the taxonomy
of astrocytoma. The most recent edition of the WHO Classification
of CNS Tumours has, for the first time, incorporated molecular
parameters and traditional histological methods to stratify and
define each tumour entity [1]. For instance, the diagnosis of oligo-
dendroglioma is now made on the basis of presence of the charac-
teristic 1p19q codeletion, and the oft-confusing former diagnosis
of oligoastrocytoma has been largely abandoned. Although diffuse
astrocytomas remain defined along previously established histo-
logical features, where grade II astrocytoma is hallmarked by
nuclear atypia, anaplastic astrocytoma (grade III) by the presence
of mitoses and glioblastoma (grade IV) by endothelial proliferation
and palisading necrosis, genetic markers (i.e. ATRX loss, TP53 and
IDH1/2 mutations) also impact brain tumour classification.

Therefore, supratentorial WHO grade II LGG are divided into
two distinct histological categories: oligodendroglioma, and dif-
fuse astrocytoma. (Table 1) As IDH1/2 mutations occur early in
tumourigenesis [2,3], stratification into each group becomes
dependent on subsequent genetic abnormalities: 1p19q codeletion
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Table 1
Algorithm of the integrated pathological diagnosis of gliomas. Please note that molecular signatures will outweigh histological characteristics in achieving an integrated
diagnosis. The final diagnosis of oligoastrocytoma has thus been largely abandoned in the newest classification (adapted from 2016 WHO Classification of CNS Tumors [1]).

Traditional histopathology Astrocytoma (Oligoastrocytoma) Oligodendroglioma Glioblastoma

IDH status Mutant Wildtype Mutant Wildtype
ATRX loss Yes No No Yes No
1p19q codeletion No Yes No No No
Final integrated diagnosis Diffuse astrocytoma,

IDH-mutant
Oligodendroglioma, IDH-mutant,
1p19q codeleted

Diffuse astrocytoma,
IDH-wildtype

Glioblastoma,
IDH-mutant

Glioblastoma, IDH-
wildtype

WHO Grade II or III II or III II or III IV IV
Inconclusive or unavailable

genetic testing
Diffuse astrocytoma
NOS

Oligoastrocytoma NOS Oligodendroglioma NOS Glioblastoma NOS
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(oligodendroglioma, as already mentioned), and ATRX loss/TP53
mutation for diffuse astrocytoma. However, this presumes that
all LGG entities are IDHmut, which is not so; at least 10% of diffuse
astrocytomas are IDHwt [4], with implications for genetic expres-
sion, tumour behaviour and prognosis. In fact, on that basis, this
LGG subgroup has more in common with higher grade astrocy-
tomas [5–7], whilst the clinical characteristics of IDHmut WHO
Grade II and III astrocytomas appear almost to approach one
another [8]. Thus, LGG represent a heterogeneous conglomeration
of clinicopathological constructs, with repercussions for imaging,
surgical management and adjuvant therapies.

Whilst CT and PET, respectively, play adjunct roles in detecting
calcifications in the pre-operative diagnosis of oligodendroglioma
and identifying ‘hot’ spots as a potential sign of tumour hyperactiv-
ity and/or progression [9], the mainstay of radiological diagnosis of
LGG is MRI. The minimum required for adequate diagnosis is an
anatomic MR exam (1.5 T or 3 T) with T2-weighted and pre- and
post-gadolinium contrast enhanced T1-weighted imaging [10,11].
Typically, LGG is identified as a non-enhancing, T1-hypointense,
T2- and FLAIR hyperintense mass lesion; contrast enhancement
of as little as 1.2 cm3 may be enough to distinguish glioblastoma
from LGG, with very high specificity [12].

However, the controversy in LGG management, with regards to
imaging, lies not in diagnosis; in practice, this is usually straight-
forward. Rather, the major debate revolves around the question
of surveillance imaging over time, especially in those LGG patients
who have not undergone treatment. Historically, LGG has been
considered to be inactive or ‘benign’, at least on radiological
grounds, however, longitudinal MRI studies, coupled with a deeper
understanding of biological behaviour, has led to the development
of a four step framework proposing to model the true natural his-
tory of LGG, all the way from MR silence, (with presumed occult
glioma stem cell proliferation), to frank malignant transformation
of LGG to glioblastoma [13,14]. There is also inconsistency regard-
ing what the radiological radial growth rate of a given LGG might
be, how that is affected by treatment, not to mention, of course,
the explosive growth and development of enhancement character-
istic of malignant progression [15–18]. These all potentially con-
found successive surveillance imaging over a protracted period as
an adequate strategy for LGG management.

Surveillance imaging has been reflexively instituted by clini-
cians as the standard of care for LGG management, especially for
incidentally discovered lesions or eloquent tumours, due to the
perceived high risks of surgical resection, and fatalistic attitudes
regarding the eventuality of low to high grade progression. How-
ever, especially in high volume quaternary centres, not only is sur-
gical resection associated with low morbidity and mortality [19],
maximising EOR is likely to convey significant PFS and OS benefit
[20,21]. Moreover, intraoperative MRI [22] and the re-emergence
of awake craniotomy with intraoperative monitoring and func-
tional mapping in LGG surgery have proven themselves useful in
helping achieve maximal safe resection for eloquent LGG [23,24],
as well as spawning the concept of supramaximal LGG resection
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in order to prolong survival and preserve cognitive and neuropsy-
chological function [25]. Consequently, advances in surgical tech-
nique, technologies and philosophy have rendered LGG far more
amenable to operative management than previously envisaged.

This detailed synthesis of the salient literature aims to make the
case for early referral of patients with presumed LGG to surgical
neuro-oncologists for timely consideration of operative manage-
ment. Making that case involves an appraisal of the biological
and clinicoradiological characteristics of these tumours, and thor-
ough critique of surgical LGG management, focusing on the value
of functional mapping and intraoperative imaging in optimising
extent of resection, survival, quality of life and efficacy of adjuvant
treatments.

1. The biological behavior of low grade glioma

The discovery of IDH1/2 (isocitrate dehydrogenase) mutation
across a number of sequencing analyses has transformed our
understanding of gliomagenesis and glioma progression
[4,7,26,27]. Identified in ~ 90% of LGG [4,28–31] using immunohis-
tochemical and/or sequencing techniques, the most common
mutations are found at codon 132 and 172 for IDH1 and IDH2,
respectively [2]. These mutations occur early in tumourigenesis,
thereby giving rise to both astrocytoma and oligodendroglioma,
the resultant cell of origin possessing a Proneural genetic signature
[2,3,32]. Such mutations reduce aKG production in the citric acid
cycle, leading to the accumulation of a aKG antagonist, (2-HG) thus
causing genome-wide histone and DNA methylation alterations
and applying a brake to cellular differentiation [33–35]. Inactivat-
ing mutations of the ATRX gene are highly associated with IDH and
TP53 mutations, but mutually exclusive with 1p19q codeletion
[36]. ATRX mutations result in alternative telomere lengthening
and a mechanistic link to genomic instability. Combining this prop-
erty with inherent accentuated self-renewal, DNA hypermethyla-
tion and epigenetic instability [34] of IDH1/2 mutation provides
a plausible pathogenic synergy capable of eventual malignant
transformation of LGG, especially in the setting of TP53 mutation,
almost ubiquitously observed in IDHmut LGG with ATRX loss [37].

Overall, IDHmut LGG, when compared to IDHwt LGG, generally
occur in younger patients, and have superior prognosis; Metellus
et al. found that the presence of IDH mutation in LGG patients
was associated with a near doubling of the 5-year OS from 51%
to 93% [5]. Leeper et al. found in their larger series of nearly 160
patients that the median survival of 1p19q-codeleted, IDHmut
LGG patients was over fifteen years [30]. Etxanix et al. calculated
that absence of IDH mutation was the only statistically significant
poor prognostic factor, for both progression and death (hazard
ratios of 3.1 and 6.4, respectively) on multivariate analysis [38].
In a more elaborate mutational analysis, Eckel-Passow et al. sought
to gauge the effect of key genetic clusters on survival in patients
with WHO Grade II (and III) glioma [39]. This group used the pres-
ence/absence of not only IDH mutations, but also TERT promoter
mutations, and 1p/19q codeletion status to define five principal
or early referral of low grade glioma patients to a surgical neuro-oncologist,
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glioma groups; whilst median survival in the TERT-mutant/
IDHmut group (regardless of 1p19q-codeletion status) was not
reached at ten years, non-IDHmut gliomas had a median survival
of less than four years, and non-1p19q-codeleted, non-IDHmut,
TERT mutation only gliomas (nearly 10% of total cohort) had a dis-
mal median survival of under two years, essentially mimicking the
expected survival of IDHwt glioblastoma patients. Further, in a
large 558-patient cohort, Olar et al. showed a statistically signifi-
cant difference in outcome based onWHO grade for IDHwt gliomas
(median OS: 4.82 years (grade II) v. 1.97 years (grade III), but not
for IDHmut tumours. (Median OS ~ 13 years) [40].

It would seem fair to speculate that IDHwt LGG must share
many of the biological properties of IDHwt glioblastoma, including
EGFR amplification, PTEN loss and resultant Pi3k dysregulation
[41]. Certainly, the inverse is true, as IDHmut glioblastoma shares
many of the clinical and growth characteristics of IDHmut LGG
[42]. Of 160 IDHwt astrocytomas (all grades) evaluated by Reuss
et al., 78% were diagnosed as the molecular equivalent of IDHwt
glioblastoma of the classical or mesenchymal subtype [43] (i.e.
gain of chromosome 7, loss of chromosome 10, CDKN2A deletion,
EGFR amplification and a TERT mutation rate of nearly 80%) and
17% with a DNA methylation pattern equivalent to IDHwt-H3F3A
mutated glioblastoma [6]. Therefore, IDHwt LGG appears to share
the poor survival associated with the Classical and Mesenchymal
subtypes of glioblastoma, related to a growth advantage conferred
by either rapid cellular turnover (possibly augmented by neovas-
cularisation), whilst IDHmut LGG growth seems more reliant on
subtle, paraphysiological amplification of canonical stem cell
renewal. Certainly, this hypothesis is borne out by the work of Zeng
et al., where IDHmut glioma (all grades) patients with low/moder-
ate Ki-67 expression (as a marker of cellular turnover) had clearly
superior median OS (1527 days) to IDHwt patients whose tumours
expressed high Ki-67 expression. (355 days) [44].

However, the IDH mutant/wildtype dichotomy falls short in
addressing the full characterisation of LGG behaviour, in particular,
the phenomenon of rapidly progressive IDHmut LGG. Using a TCGA
data set of 286 IDHmut LGG patients, Huang et al. found that
IGFBP2 overexpression was the only inverse correlate with OS of
IDHmut LGG patients, to the point where median survival was less
than that seen for IDHwt lesions [45]. Increasingly gaining curios-
ity is the potential relationship between total number of CNV with
PFS/OS in IDHmut LGG, especially as IDHwt LGG have been shown
to develop nearly identical levels of CNV as glioblastoma [46].
Building on the work of Richardson et al., who found that rapidly
progressive IDHmut LGG (defined as transformation to glioblas-
toma and death within three years) was directly associated with
the presence of homozygous CDK4NA deletion and high CNV count
[47,48], Shirahata et al. developed a novel grading system for IDH-
mut diffuse astrocytomas of all grades, incorporating the poor
prognostic factors of CDK4NA gene deletion, high CNV load and
histological necrosis [49].

Although the IDH mutation has made an impactful contribution
to our understanding of LGG biology, it has begun to ask more
questions than it has answered. It has initiated the progressive
obsolescence of histological grading as the primary means of dif-
ferentiating between glioma types, in favour of genetic, and possi-
bly in future, epigenetic stratification. Thus, considerable
intertumoural heterogeneity amongst all LGG determines that it
is folly to predict the outcome or clinical course, merely on the
basis of a single MRI scan, at a single time point.
2. Radiological properties

Whilst there is little conjecture regarding initial radiological
diagnosis, the main controversies which will be addressed here
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revolve around chronological tumour growth rate on serial imag-
ing, the accuracy of radiological imaging in predicting when a
given LGG may switch to a more aggressive phenotype and the
utility of imaging in predicting intrinsic lesional expression of rel-
evant molecular markers. A small early report calculated a mean
diameter growth rate (untreated LGG) of 4 mm/year; even after
partial LGG resection, that growth rate remained remarkably stable
[15,18]. This average growth rate was confirmed in a larger series
of nearly 150 patients, although growth rates recorded ranged
between 1 and 36 mm/year, an impressive fluctuation. Moreover,
they calculated that LGG with mean tumour volume growth rate
of > 8 mm/year carried inferior prognosis [16], a result supported
by Hathout et al., who showed that the rate of expansion of
contrast-enhancing tumour and FLAIR abnormality increased the
likelihood of transformation of LGG to higher grade lesions; more-
over, radial expansion rates of T2/FLAIR hyperintense regions
higher than 45 mm/day (~16 mm/year) demonstrated an 82% sensi-
tivity/86% specificity of identifying LGG experiencing malignant
transformation [50].

Goze et al. measured median malignant PFS/OS in LGG cases of
slow velocity of diametric expansion at 149 and 198 months,
respectively, as opposed to cases in the fast velocity group, where
the PFS and OS were just 46 and 82 months. Initial mean tumour
volume > 100 cm3 also portended poorer OS in univariate analysis
of the same cohort [51]. An additional retrospective study by Pal-
lud et al. calculated the asymptomatic ‘silent phase’ of LGG growth,
with a median lead time of 11.6 years (with the longest calculated
lead time of almost 40 years). They also found that velocity of
tumour volume expansion, rather than tumour volume per se, cor-
related negatively with lead time, exploiting this data to advocate
for an MRI screening program for early LGG identification [13].

However, whilst mean growth rates are a useful guide to overall
LGG behavior, they fail to account for LGG that undergo explosive
mean tumour growth and malignant transformation, or predict
which patients will transform, after many years of steady, unspec-
tacular growth [52]. Differentiating between better and poorer
prognosis LGG from a radiological perspective is hardly an exact
science, either. Darlix et al., in a retrospective LGG cohort of almost
200 patients, attempted to identify radiological signs which predict
good prognostic molecular markers, like IDH mutation. A summary
of their statistically significant findings indicate that IDHmut
lesions have an anatomical frontal predilection, with ‘sharp’ bor-
ders, whereas IDHwt and 1p19q-codeleted tumours exhibited
more ‘indistinct’ borders [53]. Clearly, subjective terminology such
as this is of dubious clinical utility. Additional novel MRI sequences
and techniques have been explored in efforts to stratify LGG prog-
nosis, molecular expression and predict malignant transformation,
such as DWI [54,55], PWI [56,57], amide proton transfer-weighted
MRI [58] and MR spectroscopy [59–61], although a recent system-
atic review of imaging in the management of adult LGG patients
suggests that their routine clinical use in LGG diagnosis, prognosis
and follow up remains undefined [10].

PET scanning allows for quantification of tumour metabolism,
helping identify potential histological upgrading in known LGG,
which are usually hypometabolic on PET imaging with 18F-
fluorodeoxyglucose. This practice of detecting malignant transfor-
mation in LGG is aided by the fact that malignant gliomas are usu-
ally hypermetabolic. Novel PET techniques utilising radiolabeled
amino acids (FET) [62] have been shown to predict a higher diag-
nostic accuracy for LGG progression than contrast enhancement
on MRI, especially if monitored with successive studies [63,64].
However, PET imaging remains a diagnostic tool of ambiguous clin-
ical usefulness in LGG patients; tracer uptake values of non-
neoplastic lesions, LGG and HGG often overlap across studies,
and there is no evidence that PET imaging can distinguish between
molecular subgroups of LGG [65].
or early referral of low grade glioma patients to a surgical neuro-oncologist,
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Therefore, the radiological mainstay of management of LGG
patients remains MR imaging, with contrast-enhanced T1-
weighted, T2-weighted and FLAIR image acquisition as a minimum
requirement. However, in the absence of sequences, markers or
techniques which categorically distinguish malignant transforma-
tion (in the absence of frank enhancement) and important molec-
ular biomarkers, radiographical analysis of LGG patients therefore
necessitates a nuanced, sophisticated approach. Although calcu-
lated radial LGG growth rates provide a valuable guide to expected
radiological behavior, it remains an imperfect and inaccurate one.
Whilst surveillance imaging spares LGG patients the immediate
risks of surgical intervention, failure to understand that LGG is a
forever evolving neoplastic process may breed unwitting clinical
complacency, and certainly, may lead to inferior patient outcomes
in the long term.
3. Clinical characteristics

LGG represent 15–20% of all primary brain tumours found in
adults. They are most frequent among Caucasian men and typically
affect patients at a younger age than HGG (4th vs 6th decade of
life) [66,67]. LGG patients with lesions containing mutations in
IDH, TP53, and ATRX (i.e. diffuse astrocytoma) are diagnosed at a
median age of 34 years, as opposed to 44 years for patients whose
tumours express IDH mutation, 1p/19q codeletion, and TERT pro-
moter mutation (i.e. oligodendroglioma) [7,37,39]. IDHmut LGG,
in particular, have a high tendency to involve the frontal lobe
and supplementary motor area [68,69]. Capelle et al., in a compre-
hensive study of nearly 1100 patients, found that nearly 90% of all
LGG, irrespective of mutational analysis, involved the frontal lobe,
and/or temporal lobe and/or insula [70]. The only identified risk
factor thus far for LGG formation is exposure to ionising radiation
[71].

As LGG diffusely infiltrate normal brain structure at a relatively
slow rate of progression, compensatory mechanisms involving the
neuronal and astrocytic network enable the patient to tolerate
insidious tumor growth, thus delaying overt clinical manifestations
[72]. Seizures are a very common initial presentation in LGG
patients, occurring when normal brain architecture is disrupted
to an extent that perturbs electrical activity through the usual
interconnected channels, a phenomenon which may be especially
exacerbated in IDHmut LGG patients owing to the relationship
between 2-HG accumulation and subsequent neuroexcitatory glu-
tamate overload at the cellular level [73,74]. Occurring in ~ 90% of
LGG patients [75], and in many instances pharmacoresistant, sei-
zure incidence is highest in cortical lesions in the temporal or
temporo-insular region, or those LGG in close proximity to the cen-
tral sulcus; also, oligodendroglioma appears to be more epilepto-
genic than diffuse astrocytoma [76]. Once the extent of tumour
infiltration becomes more pronounced, and overwhelm compen-
satory mechanisms, symptoms of mass effect soon supervene, such
as headache (usually exacerbated by factors that raise intracranial
pressure, such as cough or prolonged recumbent posture) and per-
turbations in cognitive, speech and sensorimotor function mani-
fest. Neuropsychological deficits in at least one domain of
memory, visuospatial capacity, executive function, attention, lan-
guage and psychomotor speed may present in ~ 70% of LGG
patients, even when basic history and examination reveal no
abnormality, and/or in cases detected incidentally on imaging [77].

The Pignatti prognostic scoring system for LGG was extrapo-
lated using the patient sets (over 600 in total) of the EORTC LGG
radiotherapy trials 22,844 and 22845 [78]. The factors on multi-
variate analysis which predicted poorer prognosis in LGG patients
included older age (40+), astrocytoma histology, tumour
diameter > 6 cm, tumour crossing midline and presence of neuro-
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logical deficit; patients with three or more unfavourable factors are
classified as high-risk (median overall survival: 3.67 years), while
low risk patients can expect a median overall survival of 7.8 years.
Whilst this scoring system is important in identifying key LGG clin-
ical and radiological features, its utility as a prognostic tool in
future will likely be usurped by molecular markers of prognosis,
including IDH1/2 mutation [38,40,79].

There are three fundamental features of LGG which need to be
understood when considering the merits of surgical intervention.
Firstly, these patients are generally younger adults; therefore, sur-
gery needs to aim to maximise EOR as safely as is practicable, with
preservation of neurological and cognitive function a primary goal,
so as to maximise quality and productivity of life [24]. Secondly,
whilst pharmacotherapy may temporise seizure control in LGG
patients, many will eventually fail that therapy [80], accompanied
by psychological anguish, functional impairment and unpleasant
medical side-effects. Seizure control ought to be considered a sur-
rogate marker for overall treatment response and tumour control
[81]. Thirdly, a strategy of prompt surgical resection may help
eliminate widely accepted and potentially modifiable risk factors
of poor prognosis in LGG patients, such as reducing the incidence
of larger diameter lesions and lesions which cross midline white
matter structures, offering prophylaxis against future neurological
deficit, and at least delaying the unpredictable longer term risk of
malignant transformation [82].
4. The evolution of LGG surgical management

Goals of surgery have become cumulative and complementary,
as our understanding of LGG behaviour improves, and surgical
technique has become further refined. LGG-related seizure disor-
ders are a commonmanifestation and intractable, medically refrac-
tory epilepsy became an early target for efforts to treat these
patients surgically. In a heterogeneous LGG patient group, with a
range of tumour histologies and children also represented, Berger
et al. were able to eliminate the need for anti-epileptic medications
altogether in half of patients who had intractable epilepsy; they
described using electrocorticography during tumour resection
[83]. Further studies showed that extent of lesional resection (in-
cluding LGG), along with complementary epilepsy procedures such
as amygdalohippocampectomy, significantly affected post-
operative seizure control, to the point where at least 90% of these
patients can be either seizure free or exhibit considerable improve-
ment [76,84–89]. Xu et al. suggested an EOR threshold of 80% was
significantly effective at reducing seizure occurrence in LGG-
associated epilepsy [90].

This pivotal role of surgical EOR in controlling tumour-
associated epilepsy led gradually to a change in mindset regarding
the surgical management of LGG in general, especially for inciden-
tally discovered and/or eloquent lesions. The most compelling evi-
dence for advocating a more aggressive surgical approach was
published in an elegant and imaginative study by Jakola et al.
[91]. Examining survival in population-based parallel LGG cohorts
from two Norwegian university hospitals (in adjacent geographical
regions with separate regional referral practices) with different
surgical treatment strategies was performed. Whilst one centre fol-
lowed a biopsy and ‘watchful radiological waiting’ approach, the
standard of practice in the second hospital was early safe surgical
resection. Median survival in the watchful waiting group was
5.9 years, but had not been reached in the surgery group, and mul-
tivariate analysis revealed a relative HR of 1.8 when treated in the
centre where watchful waiting was performed. Subsequent follow
up of the long term survival data confirmed an ongoing survival
benefit which persisted. Median OS in the surgery group eventually
reached 14.4 years [92].
or early referral of low grade glioma patients to a surgical neuro-oncologist,
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However, this cohort study did not attempt to quantify EOR and
its contribution to LGG PFS/OS, nor address the issue of avoiding
post-operative deficits, especially in patients with eloquent or
near-eloquent LGG. Attempts to quantify the extent of residual
tumour required to impart a survival benefit in LGG patients have
been made; Roelz et al. found in their series (126 patients), that
RTV greater than 15 cm3 imparted a near fourfold increase risk of
worse survival [93]. This result reconfirmed the findings of the
seminal paper by Berger et al., who found that RTV greater than
10 cm3 led to a statistically significant increase in risk of malignant
transformation (46% v. 3.7%) [94]. The minimum overall EOR
thought to impart a survival advantage in LGG has been reported
anywhere between 40 and 76% [20,70,95]. Most importantly, in
line with the data collated in HGG patients [96,97] the best OS
and PFS advantage in LGG management is imparted when EOR is
100% [20,70,95,98,99]; this concept has been maximally developed
in the form of so called ‘supratotal’ or ‘supramaximal resection’ for
LGG, using awake craniotomy and intraoperative electrical
stimulation to excise tumours and surrounding non-eloquent tis-
sue beyond the macroscopic tumour margin in order to preserve
neurological function and further negate the risk of malignant
transformation, as well as take advantage of intrinsic neurocom-
pensatory mechanisms which allow function to be reacquired
[25,100–102].

Achieving GTR for LGG which invade eloquent regions of the
brain such as the motor cortex and dominant frontal operculum,
owes much to the burgeoning usage of intraoperative monitoring,
with both cortical and subcortical mapping, via awake craniotomy
[103]. The main finding of a meta-analysis of ninety articles which
investigated the effect of intraoperative monitoring on adult supra-
tentorial glioma (WHO Grades II-IV) outcomes was that monitor-
ing was significantly associated with a halving of the rate of late
or permanent severe neurological deficit. Moreover, not only were
eloquent (and thus, surgically more challenging) tumours more
commonly represented in the intraoperative monitoring arm, but
the GTR rate was higher, too. (74.8% v. 58.3%) [23] Specifically, per-
sistent language deficit was caused in less than 2% of the 250 LGG
patient cohort out of UCSF, with GTR achieved in just over half of
all LGG patients [104]. Of 300 LGG patients (same centre) with elo-
quent, perirolandic lesions, surgical resection coupled with intra-
operative electrical stimulation carried a risk of permanent motor
deficit of ~ 5% [105]; similar rates of permanent language and sen-
sorimotor have been reported elsewhere in patients with eloquent
LGG [106,107].

Although beyond the scope of this review, the regular use of
intraoperative stimulation has enabled neurosurgeons and neuro-
scientists to uncover extraordinary structural and functional
insights into cerebral white matter tract and regional anatomy,
including the supplementary motor area [108], expressive and
receptive speech pathways [109,110], visual representation [111],
executive and cognitive function [112,113]. Thus, this rapid pro-
gress in understanding of brain structure and function, coupled
with the armamentarium of intraoperative stimulation, has greatly
improved surgical resectability and oncological clearance of LGG
lesions previously considered to be too high risk for causing severe
post-operative neurological deficit, meaning quality of life can now
be realistically salvaged, dispelling previously nihilistic attitudes
towards the surgical management of LGG patients [24].
5. Adjuvant therapies in LGG – chemotherapy and radiotherapy

Extrapolation of data from numerous randomised controlled
trials into the effect of concomitant chemo- and radiotherapy for
anaplastic oligodendroglioma [114–117], IDHwt anaplastic astro-
cytoma [118] and glioblastoma [119,120] has permitted the for-
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mulation of comprehensive guidelines for post-surgical therapy
in LGG [121] (Fig. 1). Furthermore, Buckner et al. showed that a
treatment regimen consisting of adjuvant irradiation and a
chemotherapy protocol (PCV) also improved outcome in a 254
patient LGG cohort, with benefits persisting irrespective of histo-
logical subtype or IDH mutation status. The median OS was
13.3 years with irradiation plus chemotherapy, versus 7.8 years
with radiation therapy alone [122]; this now constitutes the new
standard of care for WHO (1p/19q-non-codeleted) Grade II astrocy-
tomas [121]. Adjuvant therapies are also effective at imparting
improved seizure control in LGG patients, whilst a recrudescence
of seizure frequency may act as a surrogate harbinger for tumour
progression and treatment failure [81,123].

Thus, recognition of the prognostic impact in LGG patients of
1p19q codeletion [122], IDH1/2 mutation [124,125] and MGMT
methylation status [126], as well as clinical factors such as age
[78] and KPS [127], in terms of response to adjuvant therapy, has
resulted in the recent adoption of a more aggressive multi-modal
approach to LGG management. Retrospective analyses validating
the superior outcomes seen in higher risk LGG patients treated
with surgery and concurrent chemoirradiation help reinforce this
management paradigm [128]. Indeed, owing to the unfavourable
side-effect profile of PCV, the negligible BBB penetrance of vin-
cristine [129] and the improved tolerability and patient preference
for orally-administered chemotherapy, temozolomide has slowly
(and not without controversy, one might add) superseded PCV in
the day-to-day clinical practice of LGG patients in many Neuro-
oncology departments [130]. Keenly awaited are the results of
the randomised Phase III clinical trial comparing radiotherapy/te-
mozolomide and radiotherapy/PCV in 1p/19q (WHO Grades II/III)
co-deleted patients, which ought to provide some clarity on the
matter. (NIH ClinicalTrials.gov Identifier: NCT0887146)

A post-operative ‘watch and wait’ approach for LGG patients
ought to be reserved only for those who are young (age < 40), with
high KPS (70+), whose tumours express the IDH1/2 mutation and
whose surgical management constitutes GTR [121], especially
given the long term risks of radiotherapy-induced neurocognitive
dysfunction [131]. MGMT methylation status, as well as patient
tolerance, may be a factor in the selection of temozolomide over
PCV as chemotherapy of choice, although adjuvant treatment of
IDHwt LGG now mimics that of glioblastoma. Adjuvant radiother-
apy alone has been shown only to improve PFS (not OS) in LGG
patients and thus, irradiation as a stand-alone treatment is only
ever instituted in select or palliative LGG cases [132–134]. Che-
motherapy only regimens (usually temozolomide) are limited to
those patients for whom radiotherapy entails a large treatment
volume and thus increased risk of delayed cognitive effects of
treatment, although, in future, may yet prove to have a specific role
in high risk and/or IDHwt LGG adjuvant treatment [135].

This switch from a relatively passive to a more proactive
approach in adjuvant LGG management has consequences for
how LGG patients are managed from time of diagnosis. Even higher
risk, less surgically amenable LGG patients have been demon-
strated to derive benefit from adjuvant therapy, which means, of
course, that obtaining a tissue diagnosis, as a baseline, is impera-
tive to instigating said treatments. Thus, the case for ‘‘sitting tight”
indefinitely on LGG patients, using serial imaging to monitor radi-
ological progress, is losing ground to the notion of instituting ear-
lier management of an ever growing evidence base, across all
modalities.
6. Illustrative case

A 25-year-old otherwise fit, right hand dominant woman was
referred to a neurologist at a peripheral centre for investigation
or early referral of low grade glioma patients to a surgical neuro-oncologist,
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Fig. 1. Clinical pathway for glioma (adapted from EANO Guidelines on Glioma Diagnosis and Treatment [121]). Maximum safe surgical resection is recommended whenever
feasible in all patients with newly diagnosed gliomas. Note that the current recommendation for management of WHO Grade II gliomas which are IDHwt is identical to the
treatment pathway for glioblastoma, and upfront radiotherapy with PCV chemotherapy should at least be considered in all patients with IDHmut gliomas.
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of persistent headaches. No pertinent neurological findings were
evident and MRI of the brain was performed in October 2010. This
somewhat surprisingly showed a small T2- and FLAIR hyperintense
right superomedial frontal lesion, with the reported differential
diagnosis of cortical dysplasia, encephalomalacia or incidental
LGG. Table 2 outlines the surveillance MR imaging (and accompa-
nying tumour features, volume measurements and key images) to
which this patient was subjected over the following eight years,
with no alteration in symptoms or signs during that intervening
period. Although the lesion was officially reported as stable in size
and appearance, on retrospective analysis, subtle changes in the T2
and FLAIR abnormality are apparent on comparison of successive
images, especially between scans done in February 2015 and
February 2016. Nevertheless, surveillance imaging for this patient
was relaxed to biannual monitoring. On the MRI brain performed
in August 2018, the lesion expanded markedly, measuring 5.7 �
4.4 � 3.3 cm, with avid peripheral enhancement and evidence of
callosal invasion. Additionally, a satellite enhancing nodule mea-
suring 11 mm in maximal diameter had also developed within
the right superior frontal gyrus; fearing malignant transformation,
the patient was subsequently referred to our centre, the first time
she had ever been sent for neurosurgical assessment. Shortly
thereafter, the patient underwent craniotomy and excision of the
right frontocallosal lesion, and GTR of the contrast-enhancing
and T2-hyperintense portions of the tumour was achieved. The
final pathological diagnosis confirmed WHO Grade IV glioblas-
toma, (final molecular analysis: IDH1-mutant, ATRX lost, MGMT
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methylated, TP53 mutant) and the patient was referred for
chemoirradiation, as per the Stupp protocol [119]. Crucial to note
is that the technical complexity of this case was significantly
heightened by the tumour’s progression into the corpus callosum,
irrespective of the excellent EOR achieved, and the patient in fact
required further surgical intervention approximately six months
later after developing intraventricular septations and delayed
hydrocephalus.
7. Conclusion and recommendations

By highlighting the increasingly nuanced nature of LGG man-
agement, this article’s primary objective is to recommend that all
patients diagnosed with a likely LGG on either CT or MR imaging
be referred, as soon as practicable, to a surgical neuro-oncologist
who is familiar and acquainted with the vagaries of this disease
process, as well as attached to and invested in a multi-
disciplinary clinical decision-making unit, with medical neuro-
oncologists, radiation oncologists and allied health professionals
involved. In light of progress made in understanding molecular
biology, the emerging importance of adjuvant chemo- and radio-
therapy, and tremendous advances in surgical technique which
have facilitated superior EOR whilst preserving neurological func-
tioning and quality of life, adhering to the traditional (yet mis-
guided and erroneous) mantra, that LGG are ‘‘stable” lesions with
‘‘low” risk of progression or malignant transformation, no longer
can be argued to serve the best interests of this patient cohort.
or early referral of low grade glioma patients to a surgical neuro-oncologist,
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Table 2
MRI characteristics of the glioma of the illustrative case, in terms of size, growth rate, callosal involvement and presence of enhancement over time. Mean annualised growth rate
in brackets. Key images also included: T2-weighted images displayed for scans performed from 2010 to 2016; T1-weighted (contrast enhanced) images shown for scans done in
2018. (tumour volumes calculated using HorosTM software [Purview; Annapolis, MD, USA]); *denotes all enhancing/macroscopic tumour within the corpus callosum excised.

Date of MRI Size (T2/FLAIR) –
cm3

Annualised growth rate (cm3/
annum)

Callosal
involvement?

Enhancement? Key images

22.10.2010 3.95 – No No

23.11.2011 4.31 0.33 No No –
11.04.2012 4.64 0.85 No No –
24.12.2012 5.51 0.87 No No –
14.02.2015 5.73 0.10 No No

24.02.2016 6.27 0.52 No No

02.08.2018 78.37 29.53
(Mean: 9.55)

Yes Yes

12.08.2018
(post-op)

0 – No* No*
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Conversely, it can be contended that such a mindset is in fact a
proxy advocate for managing these complex patients in a compla-
cent and falsely reassuring manner.

This review has no designs to repudiate altogether a place for
surveillance imaging, over an unspecified period, for any given
LGG patient. However, when (frequently young and well-
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functioning) LGG patients have been referred by specialists gener-
ally unacquainted with the inherent caprice that underpins LGG
clinicoradiological behaviour, it is a source of unending frustration
for surgical neuro-oncologists to discover, when reviewing the
patient’s history, medical record and catalogue of previous imaging
(sometimes a decade or more in its accumulation) and with the
or early referral of low grade glioma patients to a surgical neuro-oncologist,
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benefit of 20:20 hindsight, that operative intervention, or at least
its contemplation, ought to have been instigated months, or even
years, sooner. Relatively commonly seen in the neurosurgical or
neuro-oncological setting, the incidence of LGG in the community
remains nonetheless relatively rare, and it is unreasonable to
expect those not expert in treating this neoplastic disease to
understand how best to tailor management for this patient group.
Certainly, a blind and passive reliance on the radiologist’s report
which accompanies the annual MRI report should no longer mas-
querade as ‘‘best practice”. Therefore, in exactly the same way a
putative diagnosis of glioblastoma on MR imaging prompts a rapid
neurosurgical referral for timely consideration of surgery, so too,
should a radiological verdict of LGG pre-empt an early consultation
from a surgical neuro-oncologist, with a view to subsequent take-
over of patient care.
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