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Abstract
Purpose  Although non-enhancing lesions suspicious for glioma are usually assumed to be low grade glioma (LGG), some 
high grade glioma (HGG) do not enhance, which may lead to a delay in biopsy and/or resection, diagnosis, and treatment 
initiation. Thus, there is a clear need for a large-sample study that quantifies the rate of malignant, non-enhancing gliomas.
Methods  We retrospectively reviewed our series of 561 consecutive surgically treated gliomas with tissue diagnosis, 111 of 
which were non-enhancing, to determine the prevalence of high-grade histology in radiographically presumed LGG. Relative 
expression of tumor markers were also reported for non-enhancing lesions to investigate genetic correlates.
Results  We identified 561 surgically treated gliomas with tissue diagnosis from August 2012 to July 2018 and found that 111 
patients (19.8%) demonstrated non-enhancing lesions suspicious for glioma on preoperative MRI. Thirty-one (27.9%) of the 
non-enhancing lesions were classified as HGGs (WHO Grade III or IV). Non-enhancing lesions were four times more likely 
to be HGG in patients older than 60 years than patients younger than 35 years (41.2% vs. 11.4%, Pearson Chi2 p < 0.001). 
Binomial logistic regression showed a significant inverse effect of age on the presence of IDH mutation in non-enhancing 
HGGs (p = 0.007).
Conclusion  A clinically significant proportion (27.9%) of non-enhancing lesions were found to be HGG on final pathologic 
diagnosis. Thus, in patients with good functional and health status, especially those older than 60 years, we recommend 
obtaining tissue diagnosis of all lesions suspected to be glioma, even those that are non-enhancing, to guide diagnosis as 
well as early initiation of chemotherapy and radiation therapy.
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Introduction

Gliomas represent the most common central nervous system 
neoplasm with an age-adjusted incidence of 5.4 cases per 
100,000 people every year [1]. Low-grade gliomas (LGG, 
grade I–II) account for approximately 25.8% of all gliomas, 

and their diagnosis often involves a combination of factors 
including patient clinical presentation, histopathology, and 
imaging findings (enhancement, diffusion restriction, size, 
infiltration, etc.) [2, 3]. In general, gliomas with enhance-
ment after the administration of gadolinium-based contrast 
are associated with malignant features, while non-enhancing 
lesions are typically presumed to be a lower histological 
grade [4].

Non-enhancing lesions suspicious for glioma are usu-
ally assumed to be LGG and thus may be observed without 
obtaining tissue diagnosis at some institutions [5]. However, 
management of patients presenting with non-enhancing, pre-
sumed LGG has been a continued subject of debate. This 
controversy is further complicated by the fact that not all 
non-enhancing gliomas are found to have low-grade his-
tology on biopsy. Several studies within the past 20 years 

 *	 Daniel G. Eichberg 
	 deichberg35@gmail.com

1	 Department of Neurological Surgery, University of Miami 
Miller School of Medicine, Lois Pope Life Center, 1095 NW 
14th Terrace (D4‑6), Miami, FL 33146, USA

2	 Department of Radiology, University of Miami Miller School 
of Medicine, Miami, FL, USA

3	 Sylvester Comprehensive Cancer Center, Miami, FL, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-020-03474-z&domain=pdf


	 Journal of Neuro-Oncology

1 3

have demonstrated that 9–45% of non-enhancing lesions 
can be histologically malignant (HGG, grade 3–4) [5–11]. 
Scott et al. demonstrated in a sample of 314 patients that 
9% of HGGs lacked enhancement while 48% of LGGs 
enhanced, almost equal to the proportion of LGGs that did 
not. However, not all of the patients in their sample under-
went pre-operative MRI and several patients underwent 
stereotactic biopsy, which is more susceptible to errors in 
sampling and thus may have skewed tumor grading [11]. 
Another large sample study was conducted by Chamber-
lain et al., that showed absence of contract enhancement in 
4% of glioblastoma multiformes (GBM) and 31% of highly 
anaplastic astrocytoma (HAA). However, this study was con-
ducted over 20 years ago and findings presented may differ 
in light of current incidence rates for glioma [12–15]. The 
remaining studies provide similar evidence of histologically 
malignant gliomas presenting with non-enhancing MRI, 
but rates reported dramatically differ most likely owing to 
small sample sizes [6–10]. Indeed, there is a clear need for 
a large-sample study that addresses the rate of malignant, 
non-enhancing gliomas in the current patient population.

Thus, to understand the prevalence of high-grade histol-
ogy in radiographically presumed low-grade gliomas, we 
retrospectively reviewed a series of 561 consecutive gliomas 
biopsies, 111 of which were non-enhancing radiographi-
cally. Relative expression of methylation and tumor markers 
were also reported for non-enhancing lesions to investigate 
genetic correlates. Findings from this study may allow for a 
more informed assessment of the risk for malignancy in non-
enhancing gliomas and direct future treatment paradigms.

Methods

Patient selection

After Institutional Review Board approval, we conducted 
an exploratory retrospective review of all non-enhancing 
lesions diagnosed as gliomas, undergoing surgical resection 
or biopsy at our institution from August 2011 to June 2018. 
Inclusion criteria comprised of the following: (1) patients 
older than 18 years old; (2) patients with newly diagnosed 
supratentorial non-enhancing lesions in the diagnostic MRI 
with gadolinium-contrast; and (3) patients with a histologi-
cal diagnosis of either LGG or HGG. The histological diag-
nosis was confirmed by our institution’s pathology depart-
ment using standard histopathological criteria. All imaging 
studies were reviewed by a Board Certified Neuroradiologist.

Data gathering

Relevant demographic data including diagnosis, sex, and 
age at surgery were collected. In addition, the presence of 

contrast-enhancement in the diagnostic presurgical MRI 
and histological variables, such as tumor pathology, were 
recorded to examine the rates of non-enhancing but histo-
logically malignant tumors. Presence or lack of enhance-
ment was determined by a board-certified neuroradiologist. 
Finally, the presence of prognostic biomarkers MGMT, 
IDH1, and 1p19q were also collected to determine any 
potential association between MRI contrast-enhancement 
and tumor malignancy. Patients without mutational marker 
data were excluded from analysis.

Surgical planning

Our surgical treatment paradigm is to perform a maximal 
safe resection of FLAIR hyperintense lesions when feasible, 
while minimizing new neurologic deficits. We resect FLAIR 
hyperintense regions up to either anatomic landmarks such 
as sulci, the falx, or the dura, or functional landmarks such as 
initiation of motor or speech arrest during awake surgeries.

For lesions entirely within eloquent regions, the thalami, 
or the basal ganglia, or when there is multifocal disease, we 
opt for an open biopsy or a steorotactic needle biopsy.

When we take an open biopsy or a stereotactic needle 
biopsy, we pick our target within a FLAIR hyperintense area 
that is as far away as possible from blood vessels and elo-
quent areas. For stereotactic needle biopsies, we take two 
core biopsies from one target site, although we rotate the 
window of the biopsy needle 180 degrees in between biop-
sies to target a slightly different area.

Radiographic analysis

A blinded board certified neurosurgeon evaluated the radio-
graphic characteristics of all non-enhancing high grade glio-
mas. Lesions were characterized as multifocal if there were 
two or more noncontiguous areas of FLAIR hyperintensity. 
Lesions were characterized as diffuse if one contiguous 
FLAIR hyperintense lesion involved more than one lobe 
and/or more than one hemisphere.

Statistical analysis

Pearson’s correlation coefficient was used to assess the 
relationship between mutational status and age, followed by 
binomial logistic regression analysis. All data was analyzed 
using IBM SPSS Statistics v. 24.0 (IBM, Armonk, NY). 
Correlations between age and tumor grading were assessed 
using Pearson’s chi square test. Tumors were categorized 
by histological grade based on WHO standards and relative 
frequencies were calculated based on tumor type and grade. 
Incidence of non-enhancing LGGs expressing tumor bio-
markers MGMT, IDH1, 1p19q was also calculated.
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Results

We identified 561 gliomas from August 2012 to July 2018 
and found that 111 patients (19.8%) demonstrated non-
enhancing lesions on preoperative MRI. Median age at 
diagnosis was 46 years old (17–84) with a similar distribu-
tion between females and males (51.4% vs. 48.6%, respec-
tively). Tissue diagnosis was obtained for all patients at 
the time of surgery; 19 patients underwent supramaximal 
resection, 47 patients underwent lesionectomy, 28 patients 
underwent subtotal resection, 8 patients underwent open 
biopsy, and 9 patients underwent stereotactic needle 
biopsy.

We confirmed through histological grading that 80 
(72.0%) of the non-enhancing lesions were classified 
as LGGs (WHO Grade I or II). Grade II Astrocytoma 
was the most common non-enhancing LGG, observed 
in 47 patients (42.3%), followed by Grade II Oligoden-
droglioma which were observed in 17 (15.3%) patients 
(Fig. 1). Malignant features (WHO Grade III or IV) were 
described in 31 (27.9%) of the non-enhancing tumors. 
Out of these HGG, we identified 17 (15.3%) patients with 

Grade III Anaplastic Astrocytoma, 4 (3.6%) patients with 
Anaplastic Oligodendroglioma, and 1 (0.9%) patient with 
Anaplastic Mixed Glioma. Lastly, we identified a total of 
9 (8.1%) cases of pre-operative non-enhancing glioma in 
which Grade IV Glioblastoma Multiforme was the defini-
tive diagnosis.

Non-enhancing lesions were four times more likely to 
be HGG in patients older than 60 years old than patients 
younger than 35 years old (41.2% vs. 11.4%, Pearson Chi2 
p < 0,001). A binomial logistic regression was performed 
to assess the effect of age on the probability of having a 
non-enhancing HGG, as opposed to non-enhancing LGG. 
The regression model was statistically significant (p = 0.007) 
and showed that with each additional year in age there was a 
3.8% increase in the probability of having a non-enhancing 
lesion suspicious for glioma be histologically HGG instead 
of LGG (Fig. 2).

Regarding methylation and tumor markers, we found 
that in patients with non-enhancing LGG, IDH+ muta-
tional status was significantly negatively correlated with age 
(R2 = − 0.509, p = 0.002) (Table 1). This correlation was not 
seen with non-enhancing HGGs (R2 = − 0.131, P = 0.642). 
There was no correlation between the incidence of MGMT 

Fig. 1   Summary of histologic grading of tumor specimen without radiographic enhancement
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hypermethylation or 1p19q co-deletions and age in either 
non-enhancing HGGs or LGGs (Table 1, Fig. 3). Finally, 
binomial logistic regression showed a significant effect of 

age on the presence of IDH mutation (P = 0.007). With each 
increasing year in age, the presence of IDH+ mutational 
status becomes 0.922 times less likely.

Of 111 non-enhancing high grade glioma patients, 41 
patients (36.9%) had diffuse lesions and 9 patients (8.1%) 
had multifocal disease, of which 4 patients (3.6%) had both 
diffuse and multifocal lesions. Of the 41 patients with diffuse 
lesions, twenty-five patients (61.0%) had lesions involving 
the insula. No patients had non-diffuse insular lesions.

Discussion

Surgical treatment of LGG and HGG

Although the routine evaluation of brain lesions compat-
ible with low-grade gliomas include contrast-enhanced T1/
T2 and FLAIR weighted sequences, our study provides 
contemporary data supporting the fact that there is a clini-
cally significant percentage of non-enhancing gliomas that 
possess malignant histological characteristics at diagnosis 
(27.9%, n = 31). The probability of a non-enhancing high-
grade glioma was higher in the older cohort compared to the 

Fig. 2   Proportion of LGG and HGG after stratification by age. The 
proportion of non-enhancing LGGs decreases with age while the 
number of non-enhancing HGGs increase with age. The proportion of 
non-enhancing LGGs decreased from 88.6% in patients younger than 
34 to 58.8% in patients older than 58.8. Contrarily, the proportion 
of patients with non-enhancing HGG increased from 11.4 to 41.2%. 
(Color figure online)

Table 1   Correlation among age 
groups, histological grading, 
and methylation/tumor marker 
expression in nonenhancing 
low grade gliomas and 
nonenhancing high grade 
gliomas

Age  ≤ 34 years 35–55 years  ≥ 55 years

Low Grade (I-II) # low grade tumors 31 28 20
MGMT Hypermethylation
 No 1 (3.2) 0 (0) 4 (20)
 Yes 0 (0) 1 (3.6) 0 (0)
 No data 30 (96.8) 27 (96.4) 16 (80)

IDH-1 (+)
 No 1 (3.2) 4 (14.3) 8 (40)
 Yes 9 (29.0) 10 (35.7) 4 (20)
 No data 21 (67.8) 14 (50) 8 (40)

1p19q Co-deletion
 No 7 (22.6) 5 (17.9) 3 (5)
 Yes 6 (19.4) 11 (39.3) 5 (25)
 No data 18 (58) 12 (42.8) 12 (60)

High Grade (III-IV) # high grade tumors 4 14 14
MGMT Hypermethylation
 No 0 (0) 0 (0) 4 (28.6)
 Yes 1 (25) 2 (14.3) 1 (7.1)
 No data 3 (75) 12 (85.7) 9 (64.3)

IDH-1 (+)
 No 1 (25) 4 (28.6) 4 (28.6)
 Yes 1 (25) 2 (14.3) 3 (21.4)
 No data 2 (50) 8 (57.1) 7 (50)

1p19q Co-deletion
 No 0 (0) 2 (14.3) 3 (21.4)
 Yes 1 (25) 0 (0) 2 (14.3)
 No data 3 (75) 12 (85.7) 9 (64.3)
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younger group (41.2%vs. 11.4%, Pearson Chi2, p < 0.001). 
Despite the limitations of our study (retrospective study, 
single-surgeon series, selection bias), we found sufficient 
evidence to support the concept that non-enhancing high-
grade gliomas may be relatively common; therefore, the 
absence of contrast-enhancement in these lesions may not 
be sufficient to accurately predict histology.

Whether non-enhancing, presumed low-grade, gliomas 
should be conservatively followed or treated with surgical 
resection remains a topic of debate. While some studies have 
shown a wait-watch approach may be a safe and effective 
initial strategy for the management of LGG, patients will 
often need to be treated for larger lesions once treatment is 
initiated following changes in lesion size or quality [16, 17]. 
This may prove ultimately disadvantageous as increased pre-
surgical lesions size may complicate surgical resection and 
increase perioperative morbidity [18–20]. In a systematic 
review, Aghi et al. also described that, while conservative 
follow-up resulted in no negative impact, most cases of sur-
gical resection for LGG resulted in positive benefit includ-
ing improved seizure control and cognitive function [21]. 
Many authors advocate for early resection for both LGG 

and HGG in most circumstances, although the objective is 
mainly to obtain histologic confirmation, improve neuro-
logic condition, reduce tumor growth, and prevent malignant 
transformation in cases of LGG as opposed to cytoreduction 
and alleviating mass effect in surgery for HGG [22, 23]. 
The invasive nature of LGG and frequent occurrence near 
eloquent areas of cortex often preclude complete resection. 
Thus, intraoperative stimulation brain mapping should be 
employed to prevent severe neurologic deficits while still 
achieving gross total resection [24]. Finally, Jakola et al. 
compared wait and watch versus surgical resection strate-
gies for LGGs in a sample of 240 patients [25]. Of these, 153 
patients underwent biopsy and “watchful waiting” while 87 
underwent early resection. Surgical resection significantly 
improved overall survival (74% compared to 60%) with con-
servative treatment associated with a relative hazard ratio of 
1.8. Thus, in situations where resection is possible, it is clear 
surgical intervention for LGG or HGG should be preferred.

Our finding that non-enhancing lesions were four times 
more likely to be HGG in patients older than 60 years 
old than patients younger than 35 years old (41.2% vs. 
11.4%, Pearson Chi2 p < 0,001) suggest that older patients, 

Fig. 3   Tree diagram of biomarkers expressed in non-enhancing high 
grade glioma lesions. 43 out of 111 non-enhancing HGG expressed 
at least one favorable biomarker such as MGMT hypermethylation, 

1p19q co-deletion, IDH1 mutation, or a combination these. The 
majority (61.2%) of non-enhancing high grade gliomas were IDH-1 
wildtype, non-1p19q codeleted, and MGMT non-hypermethylated
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especially those over 60 years, found to have a non-enhanc-
ing lesion suspicious for glioma, undergo biopsy, as there 
is an increased probability of having high grade pathology, 
and thus adjuvant chemoradioterhapy may be initiated as 
early as possible.

Radiographic features of HGG

The improved outcome in patients with LGG receiving 
early surgical resection and recent advancements in treat-
ment necessitate a firm understanding of the radiographic 
features of HGG and LGG for diagnosis, management and 
treatment. MRI with gadolinium-contrast has traditionally 
been used as an imaging assessment for glioma malignancy 
prior to biopsy. This increased contrast enhancement in 
malignant lesions has been attributed to greater microvas-
cular proliferation and increased blood–brain-barrier perme-
ability, allowing for enhanced extravasation of gadolinium 
into tumor tissue [26–28]. However, we have shown 27.9% 
of non-enhancing gliomas may be of high grade. Several 
other radiologic characteristics of HGG and LGGs may offer 
supplemental information to refine diagnoses and are wor-
thy of discussion here. First, high-grade gliomas typically 
present with less distinct and irregular borders compared to 
other tumors, often with nodular enhancement. Glioblasto-
mas are often seen crossing the mid-line in a characteristic 
“butterfly” appearance; these GBMs that cross the midline 
and with diameters greater than 5–6 cm have been asso-
ciated with worse patient outcome [29]. Fluid attenuation 
inversion recovery (FLAIR) weighted MRI images of HGGs 
will often reveal significant surrounding vasogenic edema, 
often referred to as peritumoral edema [30]. This is often 
accompanied by hemorrhage, mass effect, and ventricular 
distortion as well as a hypointense center of necrosis [26]. 
Hemorrhage, necrosis, and cyst formation can result in het-
erogeneous signal intensity on both T1and T2 weighted 
imaging.

Radiographic features of LGG

Despite being classified as WHO Grade II or lower, LGGs 
have the propensity to undergo malignant transformation 
which can be unpredictable and rapid [28]. This insidious 
progression is suspected to occur in up to 70% of LGGs 
within 5–10 years of diagnosis [27]. Routine MR imaging 
is the current modality of choice for patient monitoring and 
thus a knowledge of the radiographic features of LGG is 
essential. LGGs typically present with low and high signal 
on T1 and T2 weighted MR respectively. FLAIR sequences 
may also show high signal indicating cerebral edema which 
may be useful in differentiating between non-neoplastic 
masses. Still, conventional imaging is not highly specific and 
further differentiation of LGGs from other non-neoplastic, 

non-enhancing lesions (developmental anomalies, tume-
factive multiple sclerosis, bacterial abscesses) should be 
supplemented with histological confirmation and clinical 
correlates [31]. Worthy of note are pilocytic astrocytomas 
which, despite being categorized as a Grade I glioma, may 
display imaging features of higher-grade neoplasms, such as 
intratumoral hemorrhage and intense enhancement. In these 
cases, PAs may be distinguished by their slow growth, cystic 
character, and distinctive enhancing mural nodule [32].

In addition, previous studies have been conducted associ-
ating imaging findings with the presence of gene mutations 
in hopes that imaging correlates may serve as noninvasive 
biomarkers. In the current study, we examined the relative 
incidence of MGMT, IDH-1, and 1p19q biomarkers in our 
population of non-enhancing LGGs. IDH1 mutations and 
MGMT promoter methylation have both been associated 
with longer survival [33]. In a study of 202 patients, Car-
rillo et al. found that non-contrast enhancing tumors (nCET) 
significantly correlated with presence of IDH1 mutations but 
not MGMT methylation [34]. In addition, nCET was able 
to predict IDH1 mutational status with 97.5% accuracy but 
poorly predicted MGMT promoter methylation. Presence 
of a smooth, non-enhancing tumor margin has also been 
associated with presence of a 1p19q co-deletion subtype 
[35]. Similarly, we found that, of the non-enhancing LGGs 
expressing one of our relevant biomarkers, most were either 
IDH-1 mutants, 1p19q subtypes, or both. Of note, we found 
that 43 of 111 (38.7%) of non-enhancing high grade gliomas 
had at least one favorable biomarker such as 1p19q co-dele-
tion, IDH-1 mutation, and/or MGMT promoter methylation 
(Fig. 3). Such prognostic and potentially therapy directing 
information would benefit this clinically significant propor-
tion of patients with non-enhancing high grade gliomas. 
While these findings are interesting, further radiogenomic 
studies are needed to characterize the diagnostic and prog-
nostic value of these associations.

Current approaches at grade‑based glioma imaging

Our data on the prevalence of non-enhancing, malignant 
gliomas underscore a need for novel methodologies with 
improved predictive value that correlate radiological find-
ings with tumor grade. Although contrast-enhancement 
alone may not be a powerful enough differentiator of tumor 
grade, Asari et al. used a combine score of nine MRI cri-
teria including contrast enhancement, flow-void, edema, 
and necrosis/cyst formation, that correlated positively with 
tumor grade [36].

Another approach may be through examining the 
motion of water molecules as an inverse correlate of 
tumor cellularity through diffusion weighted imaging 
(DWI). Implied increases in cellular density and impaired 
free water diffusion may result in a lower apparent 



Journal of Neuro-Oncology	

1 3

diffusion coefficient (ADC) correlating with degree of 
malignancy in glioblastoma and anaplastic astrocytomas 
[37]. A recent histogram analysis conducted by Kang 
et al. showed ADC maps to be a promising predictor of 
tumor grade with sensitivity and specificities of 85.7% 
and 100% respectively [38].

Perfusion weighted imaging (PWI) may be another 
approach to radiological assessment of tumor grade. Diag-
nostic imaging for PWI relies on the ability of malignant 
gliomas to aggressively invade brain parenchyma and 
induce profound angiogenesis. In the past, small studies 
using PWI to create cerebral blood volume maps as an 
assessment for tumor vascularity correlating with tumor 
grade have been relatively successful [39–42]. Though 
promising, the sensitivity and specificity of this approach 
should be further investigated and confirmed in a large 
patient population.

In all patients with suspected glioma (both suspected 
high grade and low grade) on MRI, we favor a maximal 
safe resection without creating new neurologic, when 
feasible. While Perfusion Weighted Imaging (PWI) is a 
valuable tool to noninvasively predict tumor grade before 
surgery, this information would not affect our surgi-
cal decision making. Additionally, PWI is not routinely 
reimbursed at our hospital. Therefore, because PWI does 
not affect our surgical decision making and because it 
increases health care expenditures, we do not order it 
routinely.

Finally, MR spectroscopy is a well-studied technique 
that examines metabolic differences between neoplastic 
and normal brain tissue as well as metabolic inhomogene-
ity within the glioma itself [43]. Through the detection of 
various metabolites such as choline (Cho), creatine (Cr), 
and myo-inositol (MI), and N-acetylaspartate (NAA), 
MRS is able to differentiate between various tumor grades 
by quantifying varying metabolite ratios. HGGs have gen-
erally been correlated with increased Cho/ NAA and Cho/
Cr ratios while LGGs have generally shown elevated MI/
Cr ratios [44–48]. Hourani et al. reported the sensitivity 
and specificity of their approach to be 72.25% and 91.7% 
respectively with a cut-off ratio of NAA/Cho of 0.61. 
While this approach is approach is promising, adoption 
into clinical practice has been slow due to lack of large-
sample, multi-center studies [43].

In the current study, we found no radiographic features 
common among all non-enhancing high grade gliomas, or 
specific to non-enhancing high grade gliomas that were not 
found in enhancing high grade gliomas. Diffuse lesions were 
found in 36.9% of patients, multifocal disease was found in 
8.1% of patients, and 3.6% of patients had both multifocal 
and diffuse disease. Future studies with emerging imaging 
sequences such as MR spectroscopy will hopefully detect 
high grade gliomas non-invasively.

A treatment algorithm for suspected LGG and HGG

Finally, a treatment paradigm for suspected LGG and HGG 
should be discussed. First, when imaging suspected LGG or 
HGG, one should not solely rely on the presence or absence 
of gadolinium-enhancement for an assessment of tumor 
grade. A gross assessment of peritumoral edema, degree of 
necrosis, and evidence of hemorrhage among other distin-
guishing characteristics should be considered as a holistic 
assessment of malignancy. If deemed necessary, DWI, PWI, 
or MRS may provide supplemental radiologic information. 
Second, early surgical resection should be the principal 
approach to treating both low-grade and high-grade gliomas. 
While some centers may adopt a wait-and-watch approach 
for suspected LGG, we believe this is a suboptimal approach 
to care for three reasons: (1) this will inevitably result in 
an increased lesion size when surgery becomes necessary 
and may increase the risk of malignant transformation [16]; 
(2) as has been shown in previous studies, including our 
own, there is a considerable possibility that lesions appear-
ing “low-grade” may, in fact, be malignant; and (3) there is 
a clear benefit to early tumor resection in terms of overall 
patient survival [25]. Thus, we believe that aggressive sur-
gical resection should be the principal approach to treating 
both low-grade and high-grade gliomas. Third, extensive 
intraoperative mapping and awake-surgeries may allow 
for the greatest degree of tumor resection with minimal 
post-operative neurologic deficits. In cases where tumors 
that are highly disseminated, located in eloquent cortex, 
show extensive invasion of the dominant lobe, or are seen 
in patients with Karnofsky scores < 70 or with significant 
medical comorbidities, surgical resection should be deferred 
for biopsy and medical and/or radiologic treatment.

Conclusion

In the largest series of its kind, we have shown that the pres-
ence of non-enhancing gliomas of high-grade may be rela-
tively common. Particularly in patients older than 60 years, 
we have found a clinically significant probability that non-
enhancing lesions radiographically suspicious for glioma 
may be HGG, and thus early biopsy may be warranted in 
patients with minimal medical comorbidities and good func-
tional status. Lack of enhancement should not be the sole 
factor that precludes biopsy and diagnosis, and thus early 
initiation of adjuvent chemoradiation therapy.
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