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Immunological classification of gliomas
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Abstract

Background: Gliomas are heterogeneous in the tumor immune microenvironment (TIM). However, a classification
of gliomas based on immunogenomic profiling remains lacking.

Methods: We hierarchically clustered gliomas based on the enrichment levels of 28 immune cells in the TIM in five
datasets and obtained three clusters: immunity-high, immunity-medium, and immunity-low.

Results: Glioblastomas were mainly distributed in immunity-high and immunity-medium, while lower-grade
gliomas were distributed in all the three subtypes and predominated in immunity-low. Immunity-low displayed a
better survival than other subtypes, indicating a negative correlation between immune infiltration and survival
prognosis in gliomas. IDH mutations had a negative correlation with glioma immunity. Immunity-high had higher
tumor stemness and epithelial-mesenchymal transition scores and included more high-grade tumors than
immunity-low, suggesting that elevated immunity is associated with tumor progression in gliomas. Immunity-high
had higher tumor mutation burden and more frequent somatic copy number alterations, suggesting a positive
association between tumor immunity and genomic instability in gliomas.

Conclusions: The identification of immune-specific glioma subtypes has potential clinical implications for the
immunotherapy of gliomas.

Keywords: Glioma, Lower-grade glioma, Glioblastoma, Tumor immune microenvironment, Immunological
classification, Immunogenomic profiling, Clustering

Background
Gliomas comprise nearly 80% of all brain malignancies
and included lower-grade glioma (LGG) and glioblast-
oma (GBM) [1]. LGG has lower grades (II, III) and a
more favorable prognosis, while GBM has the highest
grade (IV) and a more unfavorable prognosis [1]. Both
LGG and GBM are heterogeneous in molecular profiles.
For example, the TCGA network classified LGG into
three subtypes: IDH mutation and 1p/19q codeletion,
IDH mutation and no 1p/19q codeletion, and IDH wild-

type [2]. Based on gene expression profiles, Verhaak
et al. identified four molecular subtypes of GBM: pro-
neural, neural, classical, and mesenchymal [3]. Certain
studies have investigated the immunological heterogen-
eity of gliomas based on tumor immune signatures
[4–5]. Doucette et al. found that antitumor immune re-
sponses predominated in the mesenchymal subtype of
GBM [4]. Wu et al. identified immune-specific subtypes
in diffuse LGG [5]. A recent study [6] comprehensively
analyzed the tumor microenvironment of the brain and
demonstrated multifaceted enrichment of immune cells
within gliomas and brain metastasis.
Recently, cancer immunotherapies, such as immune

checkpoint blockade [7] and chimeric antigen receptor
T cell immunotherapy [8], have been utilized in treating
various malignancies [9]. Nevertheless, currently, these
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strategies are beneficial to only a subset of cancer
patients. Thus, identifying the factors determining the
different immunotherapeutic responses is crucial for im-
proving the cancer immunotherapeutic responsiveness.
Some such factors have been identified, such as PD-L1
expression [10], DNA mismatch repair deficiency [11],
and tumor mutation burden (TMB) [12]. Also, the “hot”
tumors having dense T cell infiltration are more likely to
respond to immunotherapy [13]. Thus, differentiating
“hot” tumors from “cold” tumors may facilitate the selec-
tion of cancer patients responsive to immunotherapy. In
a previous study [14], we developed a method to identify
three immune-specific subtypes of triple-negative breast
cancers based on immunogenomic profiling, which had
high, medium, and low levels of immune infiltration, re-
spectively. Using similar methods, other investigators
have identified immune-specific subtypes in other cancer
types, such as lung cancer [15] and LGG [5].
In this study, we performed clustering analyses of gli-

omas based on the enrichment levels of 28 immune cells
in the tumor microenvironment in five different datasets.
We identified three subtypes of gliomas: immunity-high,
immunity-medium, and immunity-low. We compared
molecular and clinical features between these subtypes,
including pathways, gene ontology, genomic features,
tumor progression, and clinical outcomes. The identifi-
cation of immune-specific subtypes may provide new in-
sights into the pathogenesis of gliomas and potential
clinical implications for the immunotherapy of this
cancer.

Methods
Datasets
We downloaded five gene expression profiling datasets for
gliomas, including TCGA-glioma (GBM and LGG) from
the TCGA data portal (https://portal.gdc.cancer.gov/),
GSE16011 [16] from the NCBI gene expression omnibus
(https://www.ncbi.nlm.nih.gov/geo/), and CGGA301,
CGGA325, and CGGA693 from the Chinese Glioma
Genome Atlas (http://www.cgga.org.cn/). We also down-
loaded the somatic mutation and somatic copy number al-
teration (SCNA) profiling datasets for TCGA-glioma from
the genomic data commons data portal (https://portal.gdc.
cancer.gov/). A summary of these datasets is presented in
Additional file 1: Table S1.

Single-sample gene set enrichment analysis
We used the single-sample gene set enrichment analysis
(ssGSEA) score [17] to quantify the enrichment level of
an immune cell or signature, pathway, or biological
process in a tumor sample. Based on gene expression
profiles, ssGSEA calculates the enrichment score of a
gene set in a sample, which represents the degree to
which the genes in the gene set are coordinately up- or

downregulated in the sample. The gene sets representing
immune cells or signatures, pathways, and biological
processes were included in the analysis (Additional file
2: Table S2).

Clustering analysis
We hierarchically clustered gliomas based on the enrich-
ment levels of 28 immune cell types. The 28 immune
cell types included CD56-bright natural killer (NK) cells,
effector memory CD4 T cells, eosinophil, CD56-dim NK
cells, type 17 T helper cells, activated B cells, monocytes,
memory B cells, activated CD4 T cells, type 2 T helper
cells, plasmacytoid dendritic cells, neutrophils, macro-
phages, effector memory CD8 T cells, myeloid-derived
suppressor cell (MDSC), immature B cells, T follicular
helper cells, NK cells, immature dendritic cells, mast
cells, type 1 T helper cells, activated dendritic cells, cen-
tral memory CD4 T cells, gamma delta T cells, central
memory CD8 T cells, regulatory T cells, activated CD8
T cells, and natural killer T cells [18].

Calculation of immune score and tumor purity
We used ESTIMATE [19] to calculate the immune score
and tumor purity for each tumor sample. ESTIMATE
evaluates immune scores (the fraction of immune cells)
in tumor samples based on immune gene expression sig-
natures. The immune score represents the immune infil-
tration level in the tumor.

Calculation of gene amplification frequencies
We calculated the amplification frequency of a gene in a
group of tumor samples as the proportion of the tumor
samples with the copy number gain in the gene based
on the SCNA profiling dataset for TCGA-glioma.

Survival analysis
We compared the overall survival (OS) and disease-free
survival (DFS) between the immune-specific subtypes of
gliomas. We used Kaplan–Meier curves to show the sur-
vival time differences and the log-rank test to evaluate
the significance of survival time differences.

Pathway and gene ontology analysis
We identified the KEGG [20] pathways highly enriched
in immunity-high and immunity-low gliomas by GSEA
[21] with a threshold of adjusted P value < 0.05. We
identified the gene modules (gene ontology) highly
enriched in immunity-high and immunity-low gliomas
using WGCNA [22].

Quantification of molecular and genomic features
The TMB of a tumor sample was the total count of its
somatic mutations. We used the MATH algorithm [23],
which measures the width of the allele frequency
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distribution, to evaluate the intratumor heterogeneity
(ITH) scores of tumor samples. The ITH scores were
calculated using the function “math.score” [23] in R
package “maftools” with the input of “maf” files. We
used GISTIC2 [24] with the input of “SNP6” files to cal-
culate arm-level SCNA frequencies and focal SCNA
levels for each tumor sample and compared them be-
tween immunity-high and immunity-low gliomas. The
“maf” and “SNP6” files were downloaded from the
TCGA data portal (https://gdc-portal.nci.nih.gov/).

Class prediction
We first normalized attribute values (immune cell en-
richment levels or ssGSEA scores) by Z score and trans-
formed all attribute values into the range between -3
and 3 by setting an attribute value as 3 if it was greater
than 3 and setting an attribute value as -3 if it was less
than -3. We utilized the Random Forest (RF) classifier
[25] to predict the glioma subtypes. In the RF, the num-
ber of trees was set to 500, and the features included all
28 immune cells. We evaluated the classification per-
formance using the accuracy and the weighted F-score.
We performed the class prediction using the R package
“randomForest”.

Statistical analysis
We used Spearman’s correlation test to evaluate the cor-
relation between pathway activities (ssGSEA scores) and
immune scores calculated by ESTIMATE [19] in gli-
omas. We compared the enrichment levels of stemness
and epithelial-mesenchymal transition (EMT) scores be-
tween immunity-high and immunity-low gliomas using
the Mann–Whitney U test. In comparing the frequencies
of gene somatic mutations and SCNAs between
immunity-high and immunity-low gliomas, we used
Fisher’s exact test. We compared the ratios of two differ-
ent immune signatures between immunity-high and
immunity-low gliomas using Student’s t test. The ratios
were the base-2 log-transformed values of the mean ex-
pression levels of all marker genes in the first immune
signature divided by those of all marker genes in the sec-
ond immune signature. We used the Benjamini-
Hochberg method [26] to adjust for multiple tests.

Results
Identifying glioma immune subtypes based on
immunogenomic profiling
On the basis of the enrichment levels of 28 immune cell
types, we hierarchically clustered gliomas in five datasets
(TCGA-glioma, GSE16011, CGGA325, CGGA693, and
CGGA301). We obtained three clear clusters in all five
datasets: immunity-high, immunity-medium, and
immunity-low (Fig. 1). The immune scores were signifi-
cantly different between immunity-high, immunity-

medium, and immunity-low subtypes: immunity-high >
immunity-medium > immunity-low, in all five datasets
(one-tailed Mann–Whitney U test, P < 0.001) (Fig. 2a).
In contrast, tumor purity showed an opposite trend:
immunity-high < immunity-medium < immunity-low, in
all five datasets (one-tailed Mann–Whitney U test, P <
0.001) (Additional file 3: Fig. S1). Moreover, HLA genes
consistently displayed markedly different expression
levels in the three subtypes: immunity-high >immunity-
medium > immunity-low (ANOVA test, P < 0.001) (Fig.
2b and Additional file 4: Fig. S2). The interferon re-
sponse scores were significantly different between the
three subtypes: immunity-high >immunity-medium >
immunity-low (one-tailed Mann–Whitney U test, P <
0.01) (Fig. 2c). The amplification of many cytokine and
cytokine receptor genes was much more frequent in
immunity-high than in immunity-low in TCGA-glioma
(Fig. 2d). Altogether, these data confirmed the signifi-
cantly distinct tumor immune microenvironment and
tumor immunity between the three subtypes.
Although the 28 immune cell types correlated with

both immune-promoting and immune-inhibiting signa-
tures, and they were consistently more highly enriched
in immunity-high than in immunity-low gliomas (Fig. 1),
we observed higher ratios of immune-promoting/im-
mune-inhibiting signatures (CD8+/CD4+ regulatory T
cells and M1/M2 macrophages) in immunity-high than
in immunity-low gliomas (two-tailed Student’s t test, P <
0.001) (Fig. 2e). Another interesting finding was that
PD-L1 expression levels were significantly different be-
tween the three subtypes in the five datasets: immunity-
high > immunity-medium > immunity-low (ANOVA
test, P < 0.05) (Fig. 2f).

Overlapping between the immune-specific subtyping and
other subtyping methods in gliomas
We found that GBMs were mainly distributed in
immunity-high and immunity-medium, while LGGs
were distributed in all the three subtypes and predomi-
nated in immunity-low (Additional file 5: Fig. S3). We
found that immunity-low included a higher percentage
of IDH-mutated LGGs than immunity-high, while
immunity-high included a higher percentage of IDH-
wildtype LGGs than immunity-low (Fisher’s exact test, P
< 0.001) (Fig. 1) in TCGA-glioma. This is consistent
with previous findings that IDH1 mutations are preva-
lent in LGG, which constituted a majority of immunity-
low gliomas (Fig. 1). The mesenchymal and neural
GBMs were mainly classified into immunity-high, and
classical and proneural GBMs were mainly included in
both immunity-high and immunity-low (Fig. 1). The pre-
domination of antitumor immune responses in the mes-
enchymal subtype of GBM has been demonstrated in
previous studies [4].

Feng et al. Journal of Neuroinflammation          (2020) 17:360 Page 3 of 12

https://gdc-portal.nci.nih.gov/


Fig. 1 Hierarchical clustering of gliomas based on the enrichment levels of 28 immune cell types in five different datasets. Three clear clusters in
all five datasets: immunity-high, immunity-medium, and immunity-low
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Prediction of the immune-specific subtypes of gliomas
We used GSE16011 as the training set and the other
four datasets as test sets. The 10-fold cross-validation
(CV) accuracy in GSE16011 was 93.7%. The prediction
accuracies were 81.0%, 80.3%, 73.0%, and 83.1% in
TCGA-glioma, CGGA325, CGGA693, and CGGA301,
respectively (Fig. 3). The weighted F-scores in these pre-
dictions were 93.2%, 74.5%, 78.7%, 73.5%, and 81.8% for
GSE16011, TCGA-glioma, CGGA325, CGGA693, and
CGGA301, respectively. Furthermore, we repeated the
prediction process by using TCGA-glioma, CGGA325,
CGGA693, and CGGA301 as the training set, respect-
ively, and the other datasets as test sets. We obtained
similar results (Fig. 3). These data indicate that the im-
munological classification of gliomas is reproducible and
predictable. Interestingly, the importance weights of the
features (28 immune cell types) in RF varied among dif-
ferent training sets (Additional file 6: Fig. S4). For ex-
ample, the central memory CD8 T cell had higher
importance weights in TCGA-glioma and CGGA693
than in the other datasets. Several features, including ef-
fector memory CD8 T cell, myeloid-derived suppressor
cell, natural killer cell, and macrophage, had high im-
portance weights across all the datasets. In contrast,
some other features, including effector memory CD4 T
cell, type 17 T helper cell, CD56 dim natural killer cell,
plasmacytoid dendritic cell, eosinophil, monocyte, and
neutrophil, had low importance weights in all the data-
sets. These results suggest that some features are not
important in distinguishing between the three glioma
immune subtypes, and the prediction performance could
improve if the unimportant features are filtered out.

Characterizing clinical and molecular features of the
immune-specific subtypes of gliomas
Survival prognosis
We found that immunity-low had better OS than
immunity-medium and immunity-high in all five data-
sets (log-rank test, P < 0.001) (Fig. 4a). In contrast, the
OS was not significantly different between immunity-
medium and immunity-high in four datasets. Also, in
the TCGA-glioma dataset, immunity-low had better DFS
than immunity-medium and immunity-high (log-rank
test, P < 0.001), and there was no significantly different
DFS between immunity-medium and immunity-high
(log-rank test, P = 0.242) (Fig. 4a). These results are in-
consistent with previous studies showing that high im-
munity was associated with better survival in some
cancers, such as triple-negative breast cancer (TNBC)
[14, 27–29], indicating intertumor heterogeneity. To
demonstrate that the survival difference between these
subtypes is associated with their different enrichment
levels of immune signatures, we compared the survival
between high-immune-score (upper third) and low-

immune-score (bottom third) gliomas. We found that
high-immune-score gliomas had a worse survival
prognosis than low-immune-score gliomas (Fig. 4b),
confirming that the survival difference between the
immune-specific subtypes is associated with their differ-
ent immune enrichment levels. Again, the negative cor-
relation between immune signatures and survival
prognosis in gliomas is in contrast with their positive
correlation shown in many other cancer types, such as
TNBC [27], gastric cancer [30], and head and neck squa-
mous cell cancer [31].

Pathways
We identified KEGG [20] pathways highly enriched in
immunity-high and immunity-low by GSEA (Fig. 5a). As
expected, the immune-associated pathways were highly
enriched in immunity-high, including cytokine–cytokine
receptor interactions, intestinal immune network for IgA
production, natural killer cell-mediated cytotoxicity,
leukocyte transendothelial migration, chemokine signal-
ing, Toll-like receptor signaling, Jak–STAT signaling,
antigen processing and presentation, B and T cell recep-
tor signaling, NOD-like receptor signaling, Fc gamma R-
mediated phagocytosis, apoptosis, Fc epsilon RI signal-
ing, and primary immunodeficiency (Fig. 5a). This result
confirmed the high immunity of immunity-high gliomas.
Besides, we found many cancer-associated pathways
highly enriched in immunity-high, including ECM-
receptor interaction, focal adhesion, MAPK signaling,
cell cycle, p53 signaling, VEGF signaling, glycolysis,
adherens junction, and PPAR signaling (Fig. 5a), suggest-
ing a positive association between these cancer-
associated pathways and glioma immunity. Indeed,
previous studies have revealed the positive association
between cell cycle [32], p53 [30], glycolysis [33], MAPK
[34], VEGF [30], and PPAR [35] and tumor immunity.
In contrast, immunity-low was enriched in pathways of
neuroactive ligand-receptor interaction, calcium signal-
ing, Wnt signaling, and tight junction, suggesting an in-
verse association between the activities of these
pathways and glioma immunity. Furthermore, the
cancer-associated pathways enriched in immunity-high
displayed a positive association with the immune scores,
while the pathways enriched in immunity-low showed a
negative correlation (Spearman’s correlation test, P <
0.05) (Fig. 5b).

Gene ontology
WGCNA [22] identified nine gene modules (gene ontol-
ogy) that significantly differentiated gliomas by subtype,
survival time, or survival status (Fig. 5c). Consistent with
previous results, the immune response was upregulated
in immunity-high while it was downregulated in
immunity-low (P < 0.001). The cell cycle was
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Fig. 2 Comparisons of immune signatures between three glioma immune subtypes. Immune scores calculated by ESTIMATE [19] (a), the
expression levels of HLA genes (b), interferon response scores (c), amplification frequencies of cytokine and cytokine receptor genes (d), ratios of
immune-promoting/immune-inhibiting signatures (CD8+/CD4+ regulatory T cells and M1/M2 macrophages) (e), and PD-L1 expression levels (f)
were compared between immunity-high, immunity-medium, and immunity-low or between immunity-high and immunity-low subtypes of
gliomas. *p < 0.05, **p < 0.01, ***p < 0.001. It also applies to the following figures

Fig. 3 Performance in predicting the glioma immune subtypes based on the enrichment levels of 28 immune cells by the Random Forest
algorithm. Each of the five datasets as the training set and the others as the test sets by turns. F-score, the weighted average of F-scores
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Fig. 4 (See legend on next page.)

Feng et al. Journal of Neuroinflammation          (2020) 17:360 Page 7 of 12



hyperactivated in immunity-high and immunity-medium
while inactivated in immunity-low (P < 0.01). The extra-
cellular matrix was highly enriched in immunity-high
versus immunity-low (P < 0.01). As expected, the enrich-
ment levels of these gene ontologies were associated
with worse survival in gliomas (P < 0.01). In contrast,
the neuron projection was highly enriched in immunity-
low relative to the other subtypes (P < 0.01) and was as-
sociated with better survival in gliomas (P < 0.01).

Tumor phenotypes
We compared several tumor phenotypes between
immunity-high and immunity-low gliomas. These tumor
phenotypes included tumor stemness, EMT, and grade
that indicate the tumor progression. We found that
immunity-high had markedly higher tumor stemness

and EMT scores in five and four datasets, respectively
(one-tailed Mann–Whitney U test, P < 0.01) (Fig. 5d).
Immunity-high included many more high-grade tumors
(grade IV) than immunity-low in TCGA-glioma and in
GSE16011 (P < 0.01, odds ratio = 9.2). These results in-
dicate that elevated immunity is associated with tumor
progression in gliomas. This is in line with the negative
correlation between tumor immunity and survival prog-
nosis in gliomas.

Molecular and genomic features
As expected, immunity-high gliomas displayed signifi-
cantly higher TMB compared to immunity-low gliomas
in TCGA-glioma (P = 7.16 × 10−8; median TMB, 70 ver-
sus 52) (Fig. 6a). Accordingly, the predicted tumor
neoantigens [36] were more abundant in immunity-high

(See figure on previous page.)
Fig. 4 Comparisons of survival prognosis between the glioma immune subtypes and between high-immune-score (upper third) and low-
immune-score (bottom third) gliomas. Kaplan–Meier curves showing that immunity-low had better overall and/or disease-free survival than
immunity-medium and immunity-high (a) and that high-immune-score gliomas had a worse survival prognosis than low-immune-score gliomas
(b) in the five glioma datasets. The log-rank test p values are shown

Fig. 5 Comparisons of pathway activity, gene ontology, and tumor phenotypes between the glioma immune subtypes. a Immune- and cancer-
associated pathways highly enriched in immunity-high versus immunity-low identified by GSEA [21]. b The positive correlation between cancer-
associated pathways enriched in immunity-high and immune scores versus the negative correlation between the pathways enriched in
immunity-low and immune scores. Spearman’s correlation test p values and correlation coefficients (ρ) are indicated. c Nine gene modules (gene
ontology) that significantly differentiated gliomas by subtype, survival time, or survival status identified by WGCNA [22]. d Immunity-high has
significantly higher tumor stemness and epithelial-mesenchymal transition (EMT) scores than immunity-low gliomas
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than in immunity-low gliomas (P = 0.007; median
neoantigens, 8 versus 7) (Fig. 6a). We found that arm-
level SCNAs were more frequent in immunity-high than
in immunity-low gliomas (P = 2.09 × 10−5, 0.001, 2.44 ×
10−5 for amplification, deletion, and total alterations, re-
spectively) (Fig. 6b). Also, focal SCNA levels were higher
in immunity-high than in immunity-low gliomas (P =
4.14 × 10−12, 1.90 × 10−12, 4.61 × 10−14 for amplification,
deletion, and total alterations, respectively) (Additional
file 7: Fig. S5). These results indicate that immunity-high
gliomas have higher levels of SCNAs than immunity-low
gliomas, a finding different from that in most other can-
cer types [37]. Immunity-high gliomas showed lower
ITH scores than immunity-low gliomas (P = 1.52 × 10−6;
median ITH, 28.9 versus 38.3) (Fig. 6c). This is con-
sistent with the fact that the ITH may lead to tumor
immune evasion [38]. Interestingly, we found 72
genes more frequently mutated in immunity-high
than in immunity-low gliomas (Fisher’s exact test, ad-
justed P < 0.05, odds ratio > 2) (Fig. 6d). These

genes included ALK, DNAH10, 11&17, DUX4L13, 16,
17, 18&19, EGFR, EPHB2, FAT2, KALRN, MAPK2,
MUC16, NF1, PTEN, RB1, and ZEB2, some of which
were tumor suppressor genes (NF1, PTEN, and RB1)
and oncogenes (ALK and EGFR). The mutation of the
three members of DNAH genes (DNAH10, 11&17)
has been associated with favorable chemotherapy re-
sponse [39]. In contrast, three genes (IDH1, BAGE2,
and CIC) were more frequently mutated in Immunity-
low than in Immunity-high gliomas. IDH1 mutations
are prevalent in LGG and occur early during tumori-
genesis [40]. This is in accordance with our finding
that Immunity-low included a high percentage of
LGG samples (Fig. 1).

Discussion
In this study, we identified immune-specific subtypes of
gliomas based on the enrichment levels of 28 immune
cells in the tumor environment. Our data show that gli-
omas can be classified into three immune subtypes:

Fig. 6 Molecular and genomic features associated with the glioma immune subtypes in TCGA-glioma. a Immunity-high has significantly higher
tumor mutation burden (TMB) and neoantigens than immunity-low gliomas. b More frequent arm-level somatic copy number alterations in
immunity-high versus immunity-low gliomas. The red asterisks indicate the chromosome arms in which immunity-high gliomas are more
frequently amplified or deleted than immunity-low gliomas. c Lower intratumor heterogeneity scores in immunity-high than in immunity-low
gliomas. The intratumor heterogeneity scores were evaluated by the MATH algorithm [23]. d Seventy-two genes more frequently mutated in
immunity-high than in immunity-low gliomas
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immunity-high, immunity-medium, and immunity-low.
Furthermore, this immune-specific classification was
stable and predictable, as shown in five different data-
sets. We demonstrated that immunity-low had a mark-
edly better survival prognosis than the other subtypes,
and this survival difference was associated with the dif-
ferent immune signature enrichment levels. These find-
ings are contrary to those shown in many other cancer
types, including TNBC [14, 27], gastric cancer [30], and
head and neck squamous cell cancer [31]. It indicates
the specificity of the association between tumor immun-
ity and clinical outcomes in gliomas. A potential explan-
ation for this is that the inflammatory tumor
microenvironment promotes the progression and ex-
acerbation of gliomas [41]. Nevertheless, immunity-
medium shows no significant better survival than
immunity-high, although immunity-medium has signifi-
cantly lower levels of immune signatures than
immunity-high (Figs. 1 and 2). The reason could be the
higher TMB and stemness scores in immunity-medium
versus immunity-high that worsen outcomes in
immunity-medium. Likewise, we found numerous im-
mune- and cancer-associated pathways highly enriched
in immunity-high versus immunity-medium (Additional
file 8: Fig. S6). Collectively, these data suggest that other
factors may affect outcomes in gliomas in addition to in-
flammation and lymphocyte infiltration.
In the 28 immune cell types for clustering analyses,

there are both immune-stimulatory (such as NK cells,
activated CD8 T cells, and activated B cells) and im-
munosuppressive signatures (such as MDSC and regula-
tory T cells). We found that the enrichment levels of all
these immune cells followed the same pattern:
immunity-high > immunity-medium > immunity-low
(Additional file 9: Fig. S7). Additionally, PD-L1 is an
anti-tumor immunosuppressive molecule [42], whose ex-
pression levels also followed the pattern (Fig. 2f). Actu-
ally, the immune-stimulatory signatures are often
activated in parallel with the immunosuppressive signa-
tures [31, 33]. The ratios of immune-stimulatory/im-
munosuppressive signatures may determine the effect of
anti-tumor immune responses. Consistent with the im-
mune signatures, the ratios of immune-stimulatory/im-
munosuppressive (CD8+/CD4+ regulatory T cells and
M1/M2 macrophages) were the highest in immunity-
high and the lowest in immunity-low, suggesting that
immunity-high and immunity-low have the strongest
and weakest anti-tumor immune responses, respectively.
Unfortunately, unlike many other cancer types [27, 30,
31], the elevated anti-tumor immune responses instead
worsen outcomes in gliomas.
Immunity-low included a higher percentage of IDH-

mutated and a lower percentage of IDH-wildtype LGGs
than immunity-high, indicating that IDH mutations have

a negative correlation with glioma immunity. This is
consistent with previous study showing that IDH muta-
tions were associated with low immune infiltration in
gliomas [43, 44]. To exclude the potential impact of IDH
mutations on our immunological classification of
gliomas, we separated gliomas into IDH-wildtype and
IDH-muted groups and compared the immune signa-
tures between the three immune subtypes within both
groups, respectively. We observed the results similar to
the prior findings (Additional file 10: Fig. S8). That is,
within the IDH-wildtype group, the enrichment levels of
immune signatures followed the pattern: immunity-high
> immunity-medium > immunity-low. The same pattern
was also shown within the IDH-muted group. These
data indicate that the significantly different levels of im-
mune infiltration between the three immune subtypes of
gliomas are not attributed to their significantly different
mutation frequencies of IDH.
Besides immune signaling pathways, many cancer-

associated pathways were highly enriched in immunity-
high gliomas, such as MAPK signaling, cell cycle, p53
signaling, VEGF signaling, glycolysis, and PPAR signaling
(Fig. 5a). Moreover, immunity-high gliomas had signifi-
cantly higher tumor stemness and EMT scores and a
higher percentage of high-grade tumors than immunity-
low gliomas. These results indicate that immunity-high
gliomas are more progressive, aggressive, and poorly
prognostic than immunity-low gliomas.
Immunity-high gliomas have denser immune infil-

tration, active antitumor immune responses, and
higher PD-L1 expression levels than immunity-low
gliomas. Since both abundant immune cell infiltration
[13] and high PD-L1 expression [10] are determinants
of the active response to anti-PD-1/PD-L1 immuno-
therapy, immunity-high gliomas might have a better
outcome in the immunotherapy setting. Thus, the
immune-specific classification may facilitate the opti-
mal stratification of glioma patients responsive to
immunotherapy.
The immune landscape of glioma has been investi-

gated in several recent studies [45–47]. For example,
Thorsson et al. [45] identified six immune subtypes of
pan-cancer and found that the immunologically quiet
subtype was mostly composed of LGG, which contained
the lowest level of lymphocyte infiltration. This is con-
sistent with our result that LGGs were predominated by
immunity-low. Wang et al. [46] defined three transcrip-
tional subtypes of GBM: proneural, mesenchymal, and
classical, and showed that M1 and M2 macrophages
were more enriched in the mesenchymal GBMs. This is
accordant with our result that the mesenchymal GBMs
were mainly classified into immunity-high. Marinari
et al. [47] revealed that tumor lymphocyte infiltration
was an adverse prognostic factor in gliomas, consistent
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with our results. Overall, our unsupervised machine
learning method well recaptured the immunological het-
erogeneity of gliomas.

Conclusions
The antitumor immune response is an adverse prognos-
tic factor in gliomas, a phenomenon different from that
observed in other cancer types. Based on immunoge-
nomic profiling, gliomas can be classified into three
stable subtypes: immunity-high, immunity-medium, and
immunity-low. Compared to immunity-low gliomas,
immunity-high gliomas are more progressive, aggressive,
and poorly prognostic, but could be more responsive to
anti-PD-1/PD-L1 immunotherapy. The identification of
immune-specific glioma subtypes has potential clinical
implications for the immunotherapy of gliomas.
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