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A novel methylation signature 
predicts radiotherapy sensitivity 
in glioma
Yuemei Feng1,6, Guanzhang Li2,6, Zhongfang Shi1, Xu Yan1, Zhiliang Wang2, Haoyu Jiang3, 
Ye Chen1, Renpeng Li3, You Zhai2, Yuanhao Chang2, Wei Zhang3,4,5,7* & Fang Yuan1,7*

Glioblastoma (GBM) is the most common and malignant cancer of the central nervous system, and 
radiotherapy is widely applied in GBM treatment; however, the sensitivity to radiotherapy varies 
in different patients. To solve this clinical dilemma, a radiosensitivity prediction signature was 
constructed in the present study based on genomic methylation. In total, 1044 primary GBM samples 
with clinical and methylation microarray data were involved in this study. LASSO-COX, GSVA, Kaplan–
Meier survival curve analysis, and COX regression were performed for the construction and verification 
of predictive models. The R programming language was used as the main tool for statistical analysis 
and graphical work. Via the integration analysis of methylation and the survival data of primary GBM, 
a novel prognostic and radiosensitivity prediction signature was constructed. This signature was found 
to be stable in prognosis prediction in the TCGA and CGGA databases. The possible mechanism was 
also explored, and it was found that this signature is closely related to DNA repair functions. Most 
importantly, this signature could predict whether GBM patients could benefit from radiotherapy. In 
summary, a radiosensitivity prediction signature for GBM patients based on five methylated probes 
was constructed, and presents great potential for clinical application.

Glioblastoma (GBM), the most common intracranial malignancy, is a highly therapeutically resistant and fatal 
 disease1,2. The median survival time of GBM patients is 14.4 months, and the overall survival (OS) is also limited, 
varying from less than 3 months to more than 3 years3,4. At present, the standard therapy for GBM is to safely 
resect the tumor to the maximum extent, and then perform chemo- and  radiotherapies5. However, in clinical 
practice, it has been found that some GBMs are very susceptible to recurrence due to insensitivity to adjuvant 
therapy, while others are sensitive to adjuvant therapy. Therefore, the screening of the postoperative adjuvant 
therapy sensitivity-related biomarkers is of great significance for clinical treatment guidance and prognosis 
judgment.

DNA methylation, an important genomic epigenetic modification, is of great value in the prediction of can-
cer treatment  sensitivity6. The prediction of the sensitivity of GBM patients to chemotherapy (temozolomide) 
via the MGMT promoter methylation level has been widely conducted in clinical  practice7. In recent years, 
the sensitivities to radiotherapy of many tumors, such as those due to esophageal  cancer8, cervical  cancer9, 
 laryngocarcinoma10, breast  cancer11, and even  GBM12, have been found to be related to the alteration of DNA 
methylation patterns. However, there are no similar prediction models that can predict GBM radiotherapy sen-
sitivity that can be applied in clinical practice. Therefore, the present study was conducted to address this gap.

In this work, a gene methylation signature was constructed to predict the sensitivity of GBM to radiotherapy. 
First, methylation sites related to radiotherapy sensitivity were screened via the analysis of the methylation 
microarray data of primary GBM patients with long- and short-term survival after radiotherapy. Subsequently, 
the most representative methylation probes were screened by LASSO-COX  analysis13. Finally, five candidate 
methylation probes were obtained to build a novel methylation signature. The performance of the signature was 
then validated on the TCGA and CGGA databases, and its related biological functions were explored. It was 
found that the signature is closely related to the DNA damage repair function, and can be used to predict the 
prognosis of glioma patients.
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Results
A novel prognostic and radiosensitivity prediction signature was built based on five meth-
ylation probes. To determine the methylation probes associated with radiotherapy sensitivity, 50 primary 
GBM patients who underwent radiotherapy only after surgery were assigned into either the radiosensitive group 
or radio-resistant group. A t-test was performed to compare the differentially expressed methylation probes 
between the two groups, and 32 probes were obtained for further analysis (Fig. 1A). To further screen out the 
most representative methylation probes, five probes and their corresponding coefficients were identified by 
LASSO-COX dimension reduction analysis (Fig. 1B,C). Finally, a novel prognostic and radiosensitivity predic-
tion signature was constructed based on the probes (Fig. 1D). The in-depth analysis of this prediction signature 
in gliomas was conducted as follows. 

The landscape of signature and clinical characters in gliomas. The prediction signature was applied 
to the TCGA database to further validate its predictive performance. The risk scores of 928 patients in the TCGA 
database were calculated based on the expressions of their representative methylation probes, and the median of 
the score was defined as the cutoff. A heatmap revealed the relationships between risk scores and WHO grade, 
age, gender, TCGA subtype, IDH1 status, 1p/19q status, and MGMT promoter (Fig.  2A), and it was deter-
mined that, excluding gender, each characteristic had an asymmetrical distribution. Higher-grade, older-aged, 
IDH1-wild, 1p/19q-non-codeletion, and unmethylated-MGMT promoter patients were mostly distributed in 
the higher-risk segment. The same method was used to investigate the CGGA database, and 116 patients were 
included (Fig. 2B). The cutoff of the risk group in the CGGA database was defined as − 1.12, which was the same 
as that of the TCGA database. It is clear that the relationships between the risk scores and WHO grade and IDH1 
status in the CGGA database were the same as those in the TCGA database. The statistical analysis of these rela-
tionships was subsequently carried out. 

The relationship between signature and clinical characters in gliomas. The relationships between 
the signature risk score and various clinical features were investigated via the TCGA and CGGA databases. In 
the TCGA database, it was found that the risk score in WHO IV gliomas was higher than those in WHO II and 
WHO III gliomas (Fig. 3A), and the same trend was found in the CGGA database (Fig. 3B). In both the TCGA 
and CGGA databases, the risk scores between different genders were found to have no significant differences 
(Fig. 3C,D). Among the transcriptome subtypes, the risk score was found to be relatively higher in the mes-
enchymal subtype (Fig. 3E,F). In terms of molecular pathology, the risk score was found to be much higher in 
IDH1 wild-type and 1p/19q-non-codeletion gliomas (Fig. 3G,H). The MGMT promoter methylation status was 

Figure 1.  Analysis of methylation using the TCGA database. (A) Differentially expressed methylation 
probes between the radiosensitive and radio-resistant groups. (B) Differentially expressed methylation probes 
determined by LASSO-COX. (C) The coefficients of five methylation probes selected by LASSO-COX. (D) A 
novel risk score calculated based on coefficients and the TCGA database.
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found to be an important indicator of chemosensitivity in gliomas, and the correlations between the risk score 
and MGMT promoter methylation status suggests that the former might be related to chemotherapeutic drug 
sensitivity (Fig. 3I–L). Some difference analysis of the CGGA database revealed the same trends as those of the 
TCGA database but were not statistically significant, which was most likely due to insufficient samples.

The signature was closely related to DNA repair functions. Gene ontology (GO) function enrich-
ment analysis was performed to explore the biological functions associated with the signature. The five biological 
functions in the TCGA database were the “microtubule-based process,” “response to wounding,” “response to 
drug,” “cellular response to hypoxia,” and “inflammatory response” (Fig. 4A). In CGGA, the most risk score-
related biological functions were found to be “regulation of cell shape,” “oxidation–reduction process,” “regula-
tion of apoptotic process,” “angiogenesis,” and “response to drug” (Fig. 4B). To integrate the results, “cell damage 
repair” and “response to drug” were highlighted, and it was concluded that the signature was associated with 
DNA mutation and the DNA repair functions in gliomas. As was expected, patients in the high-risk group had 
much higher aneuploidy scores and more gene mutation, which might have been due to the changed DNA repair 
functions (Fig. 4C). To verify this hypothesis, the correlations between the radiosensitivity prediction signature 
and DNA repair signatures obtained from the MD Anderson Cancer Center were investigated. Impressively, 
the radiosensitivity prediction signature was found to be significantly correlated with almost all DNA repair 
functions (Fig. 4D). In summary, the radiosensitivity prediction signature risk score was found to be likely to 
be associated with genomic instability caused by DNA repair function changes, which are one of the causes of 
poor prognosis.

The radiosensitivity prediction signature, as an independent prognostic factor, is a predictor 
of radiosensitivity in glioma patients. The signature was applied to the TCGA and CGGA databases to 

Figure 2.  The relationships between risk score and clinical information (A) in the TCGA database and (B) in 
the CGGA database.
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evaluate its performance of prognostic prediction. As shown in Fig. 5A–D, patients in the high-risk group had a 
shorter OS and PFS than low-risk patients. In addition, univariate and multivariate COX regressions were per-
formed to evaluate the comprehensive prognostic prediction value of the risk score and clinicopathologic char-
acteristics. Univariate COX regression revealed that the WHO grade, age, 1p/19q status, IDH1 status, MGMT 
promoter status, and signature risk score were notably related to the survival in the TCGA database (P < 0.0001). 
Additionally, the multivariate COX regression revealed that the WHO grade, age, 1p/19q status, and risk score 
were screened as independent prognostic factors (Fig. 5E). In the CGGA database, the WHO grade, IDH1 status, 
radiotherapy, and risk score were found to be independent prognostic factors (Fig. 5F). By applying the risk score 
to the subgroups of grade, IDH1 status, 1p19q status, and MGMT methylation status, reliable predictions were 
obtained (Figs. S2, S3). Due to the limitations of patient numbers, the patients from the CGGA and TCGA data-
bases were combined for further analyses. In both databases, 117 patients who only underwent postoperative 
radiotherapy were found. According to the radiosensitivity prediction signature, 98 patients were classified into 
the high-risk group, and 19 patients were classified into the low-risk group. Prognostic analysis demonstrated 
that patients in the low-risk group, rather than in the high-risk group, significantly benefitted from postoperative 
radiotherapy (Fig. 5G,H). The receiver operating characteristic (ROC) curve analysis showed that risk score had 
a good efficiency for predicting the 1–5 years of OS and PFS of patients TCGA and CGGA databases (Fig. 6).

Figure 3.  Correlations between risk scores and clinical features in the TCGA and CGGA databases. (A,B) 
Correlation between risk score and WHO grade in the TCGA and CGGA databases. (C,D) Correlation between 
risk score and gender in the TCGA and CGGA databases (CL classical, ME mesenchymal, NE neural, PN 
proneural). (E,F) Correlation between risk score and transcriptome subtype in the TCGA and CGGA databases. 
(G,H) Correlation between risk score and IDH1 status in the TCGA and CGGA databases. (I,J) Correlation 
between risk score and 1p/19q status in the TCGA and CGGA databases. (K,L) Correlation between risk score 
and MGMT promoter status in the TCGA and CGGA databases.
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Discussion
Many studies have shown that high tumor heterogeneity is an important feature of GBM, and leads to significant 
differences in therapeutic  effect14. The development of genome sequencing technology has provided substantial 
assistance with tumor heterogeneity  research15. In recent years, many studies have focused on the treatment 
sensitivity of glioma patients based on transcriptome sequencing. However, due to the highly variable nature of 
the transcriptome, it was difficult to apply the results of these studies to clinical treatment guidance. Currently, 
emerging evidence has been found to confirm epigenetics; particularly, DNA methylation affects the genesis and 
development of other solid tumors, and reflects sensitivity to radiotherapy and  chemotherapy16. Additionally, the 
methylation level of the MGMT promoter region has been widely used as a predictor of chemotherapeutic drug 
sensitivity in gliomas. To find a stable predictor for the sensitivity of radiotherapy, an important adjuvant therapy 
for gliomas, the methylation data of the TCGA and CGGA databases was mined in this study. According to previ-
ous reports, patients with a survival time of greater than 18 months after postoperative radiotherapy were defined 
as long-term survivors (radiotherapy-sensitive group), and those with a survival time of less than 9 months were 
defined as short-term survivors (radiotherapy-insensitive group)17. By comparing the gene methylation differ-
ences and dimensionality analysis of the two groups, five candidate methylation probes were ultimately obtained.

These five methylation probes were located in the promoter regions (cg08958015, cg14046986, and 
cg24101359 were located in the CpG island, and cg14409858 and cg07684809 were located in the non-CpG 
island) of five different genes, namely CCDC65, RCSD1, GNMT, ENPP2, and GLIPR1L1. Gene regulation sites 
regulate gene expression, and thus play a role in DNA methylation. All five genes have negative correlations with 
the corresponding DNA methylation level, suggesting that the methylation of these five loci could affect differ-
ent biological functions by affecting the expressions of the genes. To explore the mechanism of the risk score in 
prediction, the biological functions of these five genes were reviewed. CCDC65 is an important subunit of the 

Figure 4.  The functions analyses of the signature. (A,B) GO function enrichment analysis in the TCGA 
and CGGA databases. (C) Correlation between the risk group and aneuploidy score or gene mutation in the 
TCGA database. (D) Correlation between the risk score and DNA repair functions in the TCGA database. 
(DR1: Homologous recombination; DR2: Repair of DNA-topoisomerase crosslinks; DR3: Fanconi anemia/
tolerance and repair of DNA crosslinks and other adducts in DNA; DR4: Editing and processing nucleases; 
DR5: Modulation of nucleotide pools; DR6: Base excision repair (BER)/DNA glycosylases: major altered base 
released; DR7: Chromatin structure and modification; DR8: Other BER and strand break joining factors/Other 
BER and strand break joining factors; DR9: Nucleotide excision repair (NER)/(XP = xeroderma pigmentosum); 
DR10: Direct reversal of damage; DR11: Ubiquitination and modification; DR12: Mismatch excision repair 
(MMR); DR13: Other identified genes with known or suspected DNA repair function; DR14: Genes defective 
in diseases associated with sensitivity to DNA damaging agents; DR15: Other conserved DNA damage response 
genes; DR16: TFIIH/Catalyzes unwinding in pre-incision complex; DR17: Non-homologous end-joining; DR18: 
DNA polymerases (catalytic subunits); DR19: Poly(ADP-ribose) polymerase (PARP) enzymes that bind to 
DNA; DR20: NER-related).
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nexin dynein regulatory complex (N-DRC), which is important in the regulation of ciliary and flagellar  motility18. 
Additionally, other researchers have found that cilium can combine with zinc finger E-box binding homeobox 1 
(ZEB1), leading to chemoresistance and radioresistance in  GBM19,20. Therefore, CCDC65 is speculated to impact 
radiosensitivity via cilium and ZEB1. The RCSD1 gene encodes the phosphoprotein CapZ-interacting protein 
(CapZIP), which contributes to the regulation of actin filament assembly and plays an important role in actin 
filament binding, which is an important biological behavior of  tumors21. GLIPR1L1 participates in the encoding 
of the glioma pathogenesis-related protein (GLIPR1), a member of the CAP superfamily, and could promote 
the proliferation, survival, and invasion of glioma cells and inhibit  apoptosis22,23. ENPP2 encodes ectonucleotide 
pyrophosphatase/phosphodiesterase 2(ENPP2), also known as Autotaxin, and catalyzes the generation of the 
lipid-signaling molecule lysophosphatidic acid (LPA)24, which participates in the development of the nervous 
system and tumor  progression25,26. Finally, GNMT plays a role in  hepatocarcinogenesis27. Thus, these five genes 
are associated with the malignant progression and treatment resistance of tumors.

Finally, a novel gene signature was established based on these five genes. To facilitate the clinical application 
of this signature, the cutoff values of the risk groups were the median values of the risk scores of the experimental 
groups (15), and the fixed cutoff value was − 1.12. And as the validation, the CGGA database employed the same 
cutoff value to TCGA database (Fig. 7, S1)28,29. The relationships between the signature risk score and the clin-
icopathologic and molecular features of gliomas in the TCGA database were analyzed. The results revealed that 
the risk score has a significant correlation with the clinical features of glioma, including TCGA transcriptome 
subtypes, WHO grade, IDH1 status, 1p/19q status, and MGMT promoter methylation status. These relation-
ships were also verified in the CGGA database. The biological functions associated with the risk score were also 
analyzed, and DNA repair functions and genomic instability were highlighted. As genomic alteration has been 
found to be an important feature of gliomas with poor prognosis, it was believed that the risk score could predict 
the prognosis of glioma patients by reflecting differences in DNA repair status after radiotherapy. Furthermore, 
the differences in DNA repair functions were also likely to be the internal cause of the differences in the radio-
therapy sensitivity of glioma patients. This is why risk score, which is closely related to DNA repair functions, 
can reflect the radiotherapy sensitivity of glioma patients. Subsequent prognostic analysis also confirmed that 
not only is the risk score an independent prognostic factor, but it could also predict postoperative radiotherapy 
sensitivity in glioma patients.

In conclusion, a stable prognostic prediction model based on methylation probe databases was constructed. 
On the macroscopic scale, the relationships between risk score and glioma clinical features and molecular pathol-
ogy were revealed. On the microcosmic scale, it was found that the risk score is associated with DNA repair func-
tions and genomic instability in gliomas. In terms of clinical transformation, the retrospective studies revealed 
that the risk score could predict the prognosis and radiosensitivity of glioma patients. These three aspects provide 
possible solutions to the clinical problem of judging the treatment effect of gliomas.

Figure 5.  The signature was found to well predict the survival information. (A,B) Risk score replied to 
survival information in the TCGA database (OS: P < 0.0001, PFS: P = 0.02). (C,D) Risk score replied to survival 
information in the CGGA database (OS: P = 0.002, PFS: P = 0.0023). (E,F) Univariate and multivariate Cox 
regression in the TCGA and CGGA databases. (G,H) Correlation between high or low risk score and the 
prognostic analysis after combining the patients in the CGGA and TCGA databases (High-risk: P = 0.49, Low-
risk: P = 0.015).
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Figure 6.  ROC curves showed the predictive efficiency of the signature and the 5 probes respectively on 1,2,3,4 
and 5 years of OS or PFS in TCGA and CGGA databases. (The curve of GNMT was covered by the curve of 
RCSD1 for coinciding in CGGA database) (A-T).

Figure 7.  The workflow.
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Methods
Patient cases and expression data processing. This study involved data from 1044 cases of glioma 
patients sourced from the CGGA and TCGA databases, and the clinical information is listed in Table 1. Among 
all the samples, there were 50 primary glioblastoma cases from the TCGA database that met the prognosis 
and treatment selection criteria. All methylation values used were beta values. All the TCGA expression data 
and survival information were downloaded from the official TCGA website (https ://cance rgeno me.nih.gov). 
Additionally, 116 cases from the CGGA database were included in this study. Each case was diagnosed by two 
neuropathologists based on the 2007 WHO classification guidelines. Tumor samples were acquired from newly 
excised tissue. The OS and progression-free survival (PFS) were calculated from the date of diagnosis to the end 
of the follow-up investigation. Sample collection and data analysis were approved by Beijing Tiantan Hospital 
institutional review board (IRB) and wrote informed consent was obtained from each participate. The study was 
conducted in accordance with the European Good Clinical Practice requirements (Declaration of Helsinki). The 
informed consents were obtained from all subjects.

Candidate methylation probe selection and methylation signature building. Data from the 
TCGA database was identified as the experimental group, and that from the CGGA database was identified as 
the verification group. According to previous research, an OS time of less than 9 months was defined as short 
survival, and that more than 18 months was defined as long  survival17. Student’s t-test was employed to analyze 
the data from the TCGA database to find radiotherapy sensitivity-related methylation probes, and included data 
from 43 short-survival and 7 long-survival primary GBM patients who underwent postoperative radiotherapy. 
Thirty-two probes that were significantly associated with radiotherapy resistance or sensitivity (P < 0.0001) were 
obtained for subsequent analysis. LASSO-COX analysis was then carried out for these candidate probes, and five 
candidate methylation probes were ultimately obtained. The risk score of each patient was calculated by the sum 
of the corresponding methylation probe values multiplied by the LASSO-COX coefficient.

Biological functional enrichment scores. The biological functional enrichment score of each patient 
was generated via gene set variation analysis (GSVA) based on tumor transcriptome sequencing data. GSVA 
was performed using the default parameters of the GSVA package in R as described in a previous  study30. The 

Table 1.  Clinical information of patients.

Characteristic No. of patients (TCGA) No. of patients (CGGA)

Age at diagnosis

Mean 50.4 39.2

Standard deviation 15.9 11.5

Gender

Male 492 67

Female 366 49

Not available 70 0

Grade

WHO II 215 57

WHO III 240 35

WHO IV 403 24

Not available 70

IDH1 mutation

Mutation 450 68

Wildtype 426 47

Not available 52 1

1p/19q codeletion status

Codeletion 170 14

Non-codeletion 743 102

Not available 15 0

Radiotherapy

Yes 341 65

No 22 5

Not available 565 46

Chemotherapy

Yes 273 40

No 90 30

Not available 565 46

https://cancergenome.nih.gov
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gene list for each biological function was downloaded from the AmiGO2 web portal (https ://amigo .geneo ntolo 
gy.org).

LASSO-COX dimension reduction analysis. LASSO-COX dimension reduction analysis was 
performed via the glmnet and survival packages in R. Finally, 5 genes and corresponding lambda values 
(CCDC65: − 0.461662078443408, GLIPR1L1: − 2.54802097904922, ENPP2: − 0.605554179151453, GNMT: 
-0.585136362253419, and RCSD1: − 1.020928295299) were obtained. The risk score of each patient was the sum 
of the DNA methylation degrees and their corresponding lambda values.

Statistical analyses. All statistical analyses were conducted using the R programming language (https ://
www.r-proje ct.org/, v3.5.0), SPSS 25.0 software, GraphPad Prism 7 software (GraphPad Software, Inc., La Jolla, 
CA), and the DAVID website (https ://david .ncifc rf.gov/summa ry.jsp). The prognostic significance was assessed 
by Kaplan–Meier curves. Gene ontology (GO) analysis were carried out to illustrate the signature survival dif-
ferences observed between high- and low-risk score groups. The correlations between two variables were verified 
by Pearson’s correlation analysis, and P < 0.05 was regarded as statistically significantly different.

Conclusions
Overall, a novel signature was established to predict the prognosis and radiosensitivity of glioma patients, which 
can provide possible solutions to the clinical problem of glioma treatment.

Data availability
The TCGA and CGGA data used to support the findings of this study were sourced from https ://cance rgeno 
me.nih.gov/ and www.cgga.org.cn/, respectively.
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