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I ntroduction

Glioblastoma multiforme (GBM) is the most commorl aggressive primary
malignancy of the central nervous system in adiihe Central Brain Tumor Registry of the
United States reports that GBM accounts for 47.7#rimary malignant brain tumorsDespite
advancement in treatment, GBM is considered indeardhtal, and has a 5-year survival rate of
5.6%: although more recent studies suggest 5 year slsviv the 20-30% range with tumor
treating fields (TTF) and the autologous tumor tgdgpulsed dendritic cell vaccine (DcVax-
L).2’3

The current standard used to monitor disease psigieand therapeutic response has
been magnetic resonance imaging (MRI), which isligwbtained pre- and post-operatively.
Patients are monitored about every 2 to 3 monttansSare usually repeated until progression is
detected, but sometimes there is an inability teatdumor progression using imagihgr there
is difficulty in differentiating true tumor progrsi®n from pseudoprogressidihe only reliable
method to determine the true nature of radiograph@anges in GBM is to perform a brain
biopsy, which has its risks. There is a need foroae cost efficient and reliable method of tumor
detection, such as circulating biomarkers. Theyaadilon of potential biomarkers in different
malignancies have been an area of great interdshi@mcoding RNAs have been at the forefront.
MicroRNAs (miRNAs) are a large family of short nonding RNAs that control gene
expression at the post-transcriptional level argllie®en shown to be detectable in different
bodily fluidsmaking it a likely candidat@.

Biogenesis of miRNAs

MiRNAs are short, single-stranded, non-coding RN\i#ed are encoded in the genome
and post-transcriptionally control gene expressfkmnoted in figure 1, miRNAs are synthesized
by RNA polymerase Il as a 30-base pair, doubleaged, stem-loop structure known as primary
MIiRNA precursors (primiRNA). The ribonuclease Dragiinds with DGCRS8, a double stranded
RNA binding protein, forming the Microprocessor qaex that is responsible for the cleavage
of primiRNA in the nucleu$® The primiRNA is released from the Microprocessoaasmall
hairpin-loop structure known as pre-miRNA. Pre-miRI¥ then exported to the cytoplasm by
the Ran-GTP-dependent Exportin-5 (XPO5) and pra&ckby Dicer, a helicase-RNase llI
hybrid? Dicer cuts the pre-miRNA near the terminal loopagating a miRNA duplex that is
then dissociated (See Figure 1).

The guide strand of the miRNA duplex is loaded ardArgonaut (Ago) protein,
forming an active RNA Interference Effector Comp(B4SC)X° The 5’ end of the miRNA
contains a 2-7 nucleotide domain called “the seldt is vital in the recognition of its target
gene'! Once bound to its target gene, the miRNA: RNA clemjis involved in regulation of the
MRNA species via degradation, sponging, splicing, @her mechanisms.

Regulation of miRNAs




The half-life of miRNAs varies widely, but are geally several days; however, some
miRNAs have a more rapid turnoVéit has been shown that there are certain prothtscan
prolong the half-life of miIRNAs. For example, eunde suggests that the overexpression of
Argonaute proteins increase the stability of miRMAcelerating their degradatidh.

Transcription factors, such as p53, MYC, ZEBs, BOD1 have been shown to either
upregulate or downregulate the expressions ofréiffemiRNAs™ The expression of miRNAs
can alter due to modifications such as methylabilomutations to their promoters. Post-
transcriptionally, their expression can also chahgeere are alterations in the steps of their
biogenesis. Mutations or epigenetic modificatidmest tause an alteration in the activity of key
enzymes, such as Dicer or Drosha, can downregthlaieexpression’ For example, in the
presence of hypoxic stre€5GFR suppresses the development of certain miRNAsaiteat
tumor-suppressor-like in characteEGFR was found to associate through phosphorylation with
AGO2 protein, reducing the binding of AGO2 to Dicand thus suppressing the biogenesis of
mature miRNAS”

Role of miRNA in RNA Degradation

MiRNAs usually decrease gene expression throughtigsaction with their 3’
untranslated regiotf. MiRNAs typically do not completely silence thedrget gene, instead they
reduce their expression via different mechanisnoh s1i3 RNA degradation, induced de-
adenylation, reduced ribosome occupancy, sequiesti@tmRNA, as well as many other
mechanism&® It is important to note, that not all interactidnsolving miRNAs result in
reduction of gene expression.

Role of miRNA in RNA Sponging / Competing

The activity of miRNA is modulated by distinctiveechanisms; including sponge and
non-sponge modulators. Sponge modulators are mRIKAsncoding RNAs, which share
miRNA binding sites with other RNAs that are taggeby the miRNA? Some endogenous
circular RNAs (ceRNA) function as miRNA spongesttimapair miRNA activity through
sequestration, thus increasing the expressioneafiRNA target gené& For example,
circNT5E promotes glioma progression by sponginB#h?2a and subsequently upregulating
levels of NT5E, SOX4, PI3KCA, p-Akt, and p-SmadSome artificial sponges are designed as
specific competitive inhibitors of miRNA seed fara#?* Artificial miRNA sponges have been
used to study the simultaneous effects of seveifRN#s >

Non-sponge modulators include RISC components, as@kGO proteiné? For
example, the binding of a RISC complex to a mRN@eéamay have the capacity to supplant
other RNA binding proteins that are repressivedture. Such is the case of miRNA-466|
antagonizing tristetrapolin in TLR-triggered madnages, leading to an increase in expression in
cytokine interleukin 16°

Role of MiRNA in RNA Splicing




Abnormal alternative splicing plays a role in canimemation. Intron removal is
catalyzed by the spliceosome, a macromolecular ogonsisting of small nuclear RNAs and
proteins. Studies have reported miRNAs as indiegtilators of alternative splicing by targeting
the expression of splicing factd?s.Serine/arginine-rich splicing factors (SRSFs)ar®ng a
family of key splicing factor§”?® As a prototypical splicing factor, SRSF1 (SF2/A8mds to
exonic enhancers and stimulate alternative splitifidnere is increased levels of expression of
SRSF1 in glioma and higher expressions are assdaieth worse prognosé$Meseguer et al.
noticed that miR-10a and miR-10b target SR&Fnother study observed that SF2/ASF is also
regulated by a negative feedback loop in which mifrecessing is involve®.SR proteins also
auto-regulate in a negative feedback loop. Incibésesls of SR proteins promote the increase
of unproductive spliced variants of their own tramst.* MiRNAs target other splicing
regulators. MiR-124 downregulates the RNA-bindimgtein PTBP1, a repressor of nervous
system-specific splicindf. Furthermore, miR-10a and miR-10b target TRA2GBM cells, thus
promoting tumor proliferatiof> TRA2B is a nuclear splicing regulator that stimulates th
insertion of alternative exori$ The microprocessing of intronic miRNAs also proentite
splicing of host introns. For example, the micra@ssing of miR-211 promotes the splicing of
melastatirt>

Role of miRNA in N6-M ethyladenosine (m6A)

Of the many modifications detected in mMRNAs, m64his most prevalerit*’ The m6A
modification occurring within the RNA motif knowrs &RRACH?>®**influences the processing
of mMRNA from its splicing and translation to itsgiadation*’

RNA methylation regulators include proteins whvefite (or add methyl groups),
read, and erase the methyl grolipgvriter proteins include the methyltransferase Bki4
(METTL3/METTL14) complex, Wilms' tumor 1-associagiprotein (WTAP), VIRMA and
RBM15 make up the m6A methyltransferase compfé% Of the non-heme Fe I#-KG-
dependent dioxygenase AIKB family proteins, thenfass and obesity associated gene (FTO)
and ALKBHS5 are known to demethylate the m6A sffeSReader proteins, such as those of the
YTH domain-containing family (YTHDF), can recognittee m6A sites and through its
interactions, carry out specific functions incluglimuclear transport, translation and decay of
mRNAs***

A large proportion of 3'UTRs contain m6A sites prding miRNA sited! Although
mMiRNA mediated regulation and degradation of mRNears to be a primary mechanism by
which miRNA regulate mRNA translation and protexpeession, new data has suggested that
some miIRNA may bind a RRACH motif on the 3'UTR oRIA, initiating FTO mRNA m6A
demethylation and nascent protein translation Sgere 2). Although it is unclear how similar
mMiRNA bind to and regulate the rheostat of mMRNArdegtion versus translation, it appears that
mMiRNA regulation of MRNA processing is a criticés in protein translation and cellular
regulation?®




Export of miRNAs into the Blood via Exosomes

MiRNAs can stably exist in bodily fluids via: exoses, loaded on HDL, or bound by
AGO?2 proteins outside of vesicl&$>? First discovered in 1983, extracellular vesiclE¥) are
divided into three major subtypes including exossrié’ Exosomes are membrane vesicles of
endosomal origin that release upon the fusion dfivesicular bodies and the plasma membrane
of the cell”>*° The inward invagination of endosomal membranes teanultiple intraluminal
vesicles that form multivesicular bodigsEndosomal Sorting Complexes Required for
Transport (ESCRTS) are essential in the formatfanwtivesicular bodies and are associated
with their secretion as exosont&s?

Exosomes can target neighboring cells in surrountigsues or distant organs through
circulation (See Figure 3). GBM cells can produxesemes containing mRNA, miRNA and
proteins that can be taken up by normal host eellsmay be functional in their new
environmenf’**Exosomal miRNAs perform one of two functions upetease into the
cytoplasm. They can act as regulators of targe¢ger as ligands that can activate the immune
system by binding to toll-like receptors (TLE) activating a prometastatic inflammatd&ry.
GSCs-derived exosomes that overexpress miR-21lsarba internalized by endothelial cells
and promote angiogenesis through the increaseRf2hiand VEGF secretibhand miR-26a,
which promotes angiogenesis and proliferaffbAnother example is miR-1246 which is highly
enriched in hypoxic exosomes derived from glioma plays a role in the induction of M2
macrophage polarizatidfi.

Potential of miRNAsfor Liquid Biopsy

There is currently a lack of reliable diagnostichieiques for GBM that can be used for
early detection and monitoriffgAlthough PET scans and spectroscopy have beengite,
their specificity is not high and these technigaesnot commonly used®® On MR, it is often
difficult to differentiate between tumor progressj pseudoprogression, and radionecrbsis.
Pseudoprogression occurs in 10-30% of GBM patieittsn the first 12 weeks of treatment,
especially in GBMs with MGMT promotor methylatidhlt is induced by a local inflammatory
response to treatment that manifests radiographiedh an increase in contrast enhancement
that seems suggestive of tumor progress$iottRadionecrosis, on the other hand, is the direct
effect of radiation therapy to local tissue andlth@d brain barrier that may also mimic tumor
progression on imagind. These are situations that usually resolve wittioher treatment, but
could potentially lead to unnecessary procedurgsamature discontinuation of standard
treatment.

In light of the expense of imaging and the occaaiamability to determine disease
progression, alternative means should be furthploead. If non-invasive liquid biopsy
technigues could prove reliable in discerning treatt response, clinicians would have a new
tool in patient management which could be less esipe and more accurate than our current
imaging techniques. Variations in miRNA expressibase been detected in several diseases,
including GBM/®"® Detecting miRNAs in biological fluids is relatiyeéasier and safer than




detecting proteins in brain tissue. Their stahiligtative convenience of extraction, detection,
and quantification makes it possible for circulgtmiRNAs to be used effectively as
biomarkers’’

As listed in tables 1-2, various studies have ifiedtpotential miRNAs in the blood and
CSF of patients that could be used as biomafRef§*%Each miRNA plays an epigenetic role
in the regulation of tumorigenesis and progresdidRNASs appear to allow cells to adapt to
their environment, permitting them to survive hyoand tumor therapy, including radiation
and chemotherapy. For example, miR-21, which has Bown to be upregulated in GBM
patients, plays a role in tumor progression, argjiegis and resisting apoptoSis-*>MiR-10b,
miR-106a-5p, miR-185, miR-210 play roles in tumozgression and invasion and are
upregulated in sera of GBM patiedt§**°MiR-29, miR-127, miR-137, miR-197, miR-205,
miR-485 are downregulated and play tumor suppresses in GBM.****?°MiR-221/miR-222,
MiR-223, miR-125b-2 plays roles in tumor sensitiid temozolomide (TMZ)?"**°MiR-128
and miR-301a play roles in glioma sensitivity tdiegion*® 3!

MiRNAs are remarkably stable in plasma and serwthay are resistant to RNase
activity, and can be exposed to various storagéitons such extreme pH and multiple freeze-
thaw cycles****MiRNAs can be found either free within serum ofC8r locked within lipid
membranes know as exosomes. Exosomes are a stibgétacellular membrane vesicles
ranging from 30 to 150 nanometers in diameter. Tdayy several specific molecules, such as
DNA, RNA (miRNA), and proteins from a host to aipgent cell>*®> Exosomal miRNAs have
emerged as promising biomarkers as they are extyestable under various conditions such as
different temperature storad& There is an abundance of extracellular vesiclggasma, with a
concentration of approximately *f&Vs per milliliter of plasma° The profiling of EVs need to
be further pursued as they may be involved in fitaechanisms of GBM diagnosis.

These characteristics make them appealing potdntialarkers for a liquid biopsy, but
most importantly, many studies have reported thgribstic significance of various miRNAs.
Zhang et al., observed that serum miR-145-5p wgrsfeiantly downregulated in the samples
from patients with GBM compared to control samplesey reported that miR-145-5p might be
a reliable diagnostic marker for GBM with an AUCM®D895, sensitivity of 84.6% and specificity
of 78.0%%° Roth et al. quantitatively analyzed 1158 maturBNAs in 20 blood samples from
GBM patients and found miR-128 and miR-342-3p tsigaificantly dysregulated compared to
control samples. Using machine learning, they olethia miRNA signature that could
differentiate between the blood samples of patiestts GBM and healthy controls with an
accuracy of 81%, sensitivity of 79% and specificify81%:

MiRNAs also may be found in and have diagnostieptél when isolated from CSF
samples. Baraniskin et al., reported overexpressionR-15b and miR-21 in the CSF samples
of patients with glioma compared to control subj&¢hen combined in expression analysis,
there was a sensitivity of 90% and specificity 60% in distinguishing patients with glioma and
control subjects as well as patients with primaNSdymphoma®’ A recent study also
demonstrated that the miR-1246 levels in the CSERM¥ patients is higher compared with



levels found in patients with low grade gliomas.s¥ionportantly, the levels of miR-1246 in the
CSF decline post-resection in GBM patieffts.

Several exosomal miRNAs have been reported as fEdtprognosis biomarkers. One
study proved that extracellular vesicles from C8Fwtd from individuals with GBM exhibited
significant increase in levels of miR-21 versus-omcological patients with a sensitivity of
87%, specificity of 93% and AUC of 0.9%2 In another study, Santangelo et al. reported the
diagnostic accuracy of a serum panel for GBM caimgjf exosomal miR-21, miR-222, and
miR-124-3p; yielding an AUC of 0.87. The expressudthese miRNAs sharply decreased after
tumor resection in patients with high grade gliortfds another study, miR-320 and miR-574-
3p were also significantly elevated in exosomekated from sera of 75 GBM patient and were
associated with a GBM diagnosis.

MiRNAs have been associated with histopathologicatles of gliomas. Wang et al.
analyzed nine cell-free miRNAs from the plasma @{GBM patients and matched healthy
individuals, but only three were shown to be sigaifitly dysregulated. MiR-21 was
significantly upregulated in GBM patients compatedhealthy individuals with ROC curve
(AUC) value of 0.9300, 90% sensitivity, and a 108Bécificity. MiR-128 and miR-342-3p were
significantly downregulated in the plasma of GBMigats with AUC of 1.000, 90% sensitivity
and a 100% specificit{? They were also able to depict an association thithexpression levels
of miR-342-3p with histopathological grades of gh@as. The dysregulated levels of expression
of this miRNA, along with miR-21 and miR-128, reted to nearly normal postoperativéfy.
Xiao et al. demonstrated that the up-regulatiomi®-182 might be correlated with clinical
glioma progression. Using circulating cell-free riiB2, they could distinguish between patients
with high-grade glioma from healthy individuals wibUC of 0.815% Yue et al., noted that the
expression of miR-205 in the serum of glioma pasielemonstrated a stepwise decrease with
ascending pathological grade. After tumor resectioa levels of expression increased and once
again decreased with recurrert®eLan et al., reported that serum exosomal miR-30ds
significantly upregulated in high grade glioma a@uachor resection resulted in decreased levels
of expression. Recurrence of the tumor would omgéreincrease its level of expressiohFhis
suggests that these specific miRNAs may have pgaterge as non-invasive biomarkers for a
liquid biopsy.

MiRNAs could also potentially play a role in monitay treatment response. Seigal et al.
noted higher levels of miR-10b and miR-21 expressgicthe sera of GBM patients undergoing
treatment with bevacizumab compared to levels tiedefcom their pretreatment seérdThey
also noted that the level of expressions from tinei§&NAs negatively correlated with tumor
diameters in patients treated with bevacizumaby i not see this correlation in patients
treated with TMZ:*" Dysregulation of some miRNAs may reflect the amtior effect of therapy
and therefore, the monitoring of these circulatim@NAs could eventually predict the effects of
therapy'3®

It is noteworthy to point out that dysregulated &S have been associated with
prognosis in GBM patients. Xiao et al. demonstrabed higher levels of expression of miR-182



in the plasma is related with worse patient sutvivZhang et al. found that miR-145-5p
strongly correlates with KPS scores, IDH1 mutatiadlioresistance as well as the extent of
tumor resectiofi® Wang et al., described the correlation betweenléwels of serum miR-485-
3p expression and poor progression-free survivalaerall survival®® Lan et al. also noticed
am association with levels of exosomal miR-301th&serum with lower KPS scor&sin one
study, Zhao et al reported dysregulated miRNAsnma ®f patients that had potential prognostic
value. They reported that increased levels miR&flaniR-106a-5p, miR-222-3p and decreased
levels of miR-182 and miR-145-5p were significarasociated with lower probability of 2-year
overall survival. They also observed that incredsedls of miR-20a-5p and miR-17-5p
correlated with increased hazard of dé4tBrinivasan et al developed a ten-miRNA expression
signature to predict survival in GBM patients andrfd that there was overexpression of miR-
17-5p, miR-20a, and miR-106a in samples of patieitts shorter or median survival’ These
conflicting reports could be due to differencesldiinition of survival terms$*° Yue et al.,
observed a correlation with low levels of miR-20tldower KPS score. Patients with elevated
expression of miR-205 in their serum had a longerall survival compared to patients with
lower levels*® These results suggest that miRNAs could serveagpstic predictors of
glioblastoma.

Challengesfor Application of miRNAs as Biomarkers

Despite the stability, ease of detection, and eraging results of circulating miRNAs,
many challenges remain before their widespreadtamom clinical use. There are many
different potential miRNA biomarkers, differentifis (blood, serum, plasma, urine CSF) as well
as methodologies for their isolation and detectidrere are currently no standard protocols for
sample collection and preparation or methods agdssssent and application for circulating
biomarkers. The heterogeneity between studies mtkeshallenge to compare data between
different study groups and to summate their da@ssess the value of miRNAs as biomarkéts.
Even the diversity of the study population may ietpaiRNA levels. Various studies have
shown a difference in race specific miRNA expressim other pathological states and may
influence miRNA expression in patients with braimbrs™*****0One study evaluated the effect
of clinical parameters such as gender and fastinggulating expression profiles in healthy
individuals and they observed that gender-assat&tendance variations are sntéfl.
Additionally, patient’s physiological expressiowdds vary according to overall lifestyle, meal
ingestion and circadian rhythtfr

The type of bodily fluid acquired for miRNA isolati is a biological variable that may
impact the miRNA profile. It is important to noteat miRNAs have been found to be
dysregulated in various types of samples suchrasngglasma, exosomes, CSF, urine, saliva,
and tissues. As noted in tables 1 and 2, bothfiealand exosomal MiR-21 have been found
upregulated in the plasma and CSF of patients @BM. Unfortunately, there is also
discrepancies between levels of expression amangatious types of bodily fluid$® For
example, Zhi et al., noticed the upregulation gfressions of miR-106a-5p and miR-181b-5p in




the serum of patients with GBM, while previous népaupport the downregulation of these
miRNAs in tissue sampléé.0ne study has shown that miR-128 levels were wpaéed in the
peripheral whole blood of GBM patients, althoughvdeegulated GBM tissues and s&ta'®
MiR-128 levels in whole blood is probably falselgwated due to miRNA release from red
blood cell lysis suggesting that the coagulatiacpsses may influence the total amount of
miRNA present in samplé$! Even in studies focusing on CSF, there are discreips from
samples extracted from lumbar or cisternal origime exosomal miRNA signature panel
developed by Akers yielded a sensitivity of 67% apdcificity of 80% in differentiating GBM
patients from healthy controls when detected inasof cisternal CSF. The sensitivity and
specificity of lumbar CSF were 28% and 95%, regpelyt, further complicating an analysis of
that miRNA'’s utility in diagnositics*®

The outcomes of miRNA analysis can be influencegdrjous factors in sample
processing ranging from sample collection, pres@mmahandling and miRNA detection. The
RNA extraction techniques differ from study to stu@ne study compared isolation methods of
exosomal RNA and observed variations in miRNA cohgend amount because of
methodological difference$! Kopkova et al. advocated for standardization ey tompared
different commercially available RNA extractionkand found that their usage significantly
influenced results?® Furthermore, there is currently no commerciallgitable method for CSF
miRNA gquantification. Many kits used in studies Baang miRNAs in CSF were designed
specifically for isolating miRNA from cells, tisswe serum/plasma samples. These issues
suggest need for standardization before widespri@dal adoption.

There is also a wide range of techniques that eamskd for initial screening of RNA
detection such as NanoString, Next Generation Segug, and TagMan. Afterwards, miRNA
expression levels are usually confirmed with quatitie RT-PCR. While qRT-PCR is the most
conventional method to estimate levels of miRNAresgpion in specimen, it does have some
limitations. Quantitative determination of low anmsi of miRNA is the main challenge for
gPCR, leading to low sensitivity and accurdA®RT-gPCR is not able to precisely distinguish
samples with lower than ten miRNA copié&Furthermore, among studies using gRT-PCR,
there is great variability as most of them usetiedaquantification with different molecules for
normalization. Different miRNA expression normalzean lead to significantly different
quantifications of expression level®'*°A global consensus to establish a gold standard of
MiRNA expression data normalization needs to obefiore miRNAs get closer to clinical
utilization.

Most studies present the limitation of the smalésiof their cohorts, therefore they
require further validation of their findings in ¢gar cohorts. Larger studies are required to
determine the effectiveness of miRNAs as biomark&irsce there is heterogeneity in GBM, it
will be difficult to predict GBM from only one miRA. MiRNA also overlap with other
conditions and there are discrepancies among saniiR-21 levels have been shown to be
increased in brain tissue, serum and exosomestiehpawith GBM. It is also upregulated in
breast, hepatocellular, colorectal, ovarian anémskeveral types of cancers This suggest that



mMiRNA is not specific of a cancer type, and thusiBNA panel may have increased prognostic
and diagnostic accuracy for GBM. The ideal cliniceldel must have high sensitivity and
specificity, but must also have a suitable costetifeness. Cost benefit models should be
developed to determine the number of miRNAs indllithea panel, thus the panel can be easily
translated in a clinical setting.

Conclusion

GBM is the most aggressive primary brain tumorntdging appropriate biomarkers
could aid clinicians in the determination of diagisp prognosis and treatment monitoring.
MiRNAs derived from peripheral bodily fluids havegh potential as GBM biomarkers.
However, there needs to be a consensus on optianizatd standardization of their analytical
process to overcome the lack of reproducibility apdcificity of studies. Only then, can we get
closer to utilizing miRNAs in the clinical setting.
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Figure 1: MicroRNA biogenesis. In the nucleus, miRNA genes are transcribed bARN
polymerase Il (RNA Pol Il) into primary miRNAs (pmiRNAS). They are cleaved in the
nucleus by Drosha and DGCRS8 into precursor miRN#s-MiRNAS). They are exported from
the nucleus by Ran-GTP-dependent Exportin-5. Irctteplasm, pre-miRNAs are cleaved by
Dicer into miRNA duplexes. The guide strands ofdoplexes are loaded onto Argonaut 2(Ago
2) proteins, as part of active RNA InterferenceeEffibr Complexes (RISCs), resulting in mature
mMiRNAs. The other strands of the duplexes are stibpedegradation.

Figure 2: MicroRNA Binding and Effects. DNA is transcribed into messenger RNA (MRNA)
by RNA polymerase | (RNA Pol I). N6-methyladenosmedifications can occur on an
adenosine of an RNA motif known as RRACH that gutated by writers such as the m6A
methyltransferase complex composed of methyltraaséelike 3/14 (METTL3/METTL14)
complex, Wilms' tumor 1-associating protein (WTARP)IRMA and RBM15. MiRNA may bind

a RRACH maotif on the 3’'untranslated of mMRNA, iniirgy fat mass and obesity associated gene
(FTO) mRNA m6A demethylation. ALKBH5 also demethglst m6A sites. Readers, such as
YTH domain-containing family proteins (YTHDF) caarcy out specific functions such as
translation, degradation and splicing

Figure 3: Exosomal Transfer of MicroRNA. MiRNA genes are transcribed in the nucleus of
donor cells as primary miRNAs that are then exmbttethe cytoplasm. There, they are
processed by Dicer into pre-miRNA and the RISC dempmto mature miRNA. Mature miRNA
can be directly transferred to circulation via roiggsicles (MVs) shed by the plasma membrane.
Mature miRNAs and even some pre-miRNAs, can alssoped by Endosomal Sorting
Complexes Required for Transport (ESCRTS) into sondwes that will become multivesicular
bodies (MVBs). GTPases Rab 27a and Rab 27b dock$/AtBhe plasma membrane and assist
with its release as exosomes. These membrane-dexarders fuse with recipient cells;

allowing extracellular miRNAs transported via theseriers, to alter the gene expression of
recipient cells.



Table1l: MiRNAsIdentified in the Blood

MiRNAS Regulatory Status References
miR-21 Upregulated 78-82
miR-15b, miR-21 Upregul ated 82
miR-20a-5p, miR-106a-5p, miR-222-3p Upregul ated 83
miR-106a-5p, miR-181b-5p Upregul ated 84
miR-182 Upregul ated 85
miR-185 Upregul ated 86
miR-210 Upregulated 87
miR-221/222 Upregul ated 88
miR-340, miR-576-5p, miR626 Upregul ated 89
miR-454-3p Upregul ated 90
miR-514a-3p, miR-592 Upregulated 91
Exosomal miR-301a Upregulated 92
Exosomal miR-320 and miR-574-3 Upregul ated 93
Exosomal miR-21, miR-222 and miR- Upregulated 94
124-3p
miR-23a, miR-133a, miR-150, miR-197, Downregul ated 95
miR-548b
miR-302c-3p, miR-484, MiR-493-3p, Downregul ated 78
miR-514a-3p, miR-592, miR-1260a
miR-182 and miR-145-5p Downregul ated 83
miR-145 Downregul ated 96
miR-29 Downregul ated 97
miR-125b Downregul ated 98,99
miR-137 Downregul ated 100
miR-205 Downregul ated 101
miR-310, let-7g-5p, miR-7-5p Downregul ated 89
miR-342-3p Downregul ated 78, 102
miR-383-5p Downregul ated 91
miR-497 Downregul ated 95, 99
miR-485-3p Downregul ated 103
miR-628-3p Downregul ated 102
miR-203 Downregul ated 104
miR-128 Upregulated in whole blood, 102, 105

but downregulated in plasma



Table2: MiRNA Identified in CSF

MiRNAs Regulatory Status References
miR-10b, miR-21 Upregulated 106-109
miR-15b, miR-21 Upregulated 107,108
miR-21-5p, miR-218-5p, miR-193b- Upregulated 106, 110
3p, MiR-331-3p, miR374a-5p
miR-106, miR-17, miR-27a, miR-130, Upregulated 108
miR-25, miR-23a
miR125b, miR-223, miR-451, miR- Upregulated 111
711, miR-935
Exosomal miR-21 Upregulated 112
miR-1246 Upregulated 66
miR548c-3p, miR520f-3p, miR27b-3p Downregulated 106
and miR-30b-3p
miR-128 Downregul ated 108
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Abbreviation List:

Ago: Argonaut

AKT: protein kinase B

AMPK: 5’AMP-activated protein kinase

Bim: Bcl-2-like protein 11

ceRNA: endogenous circular RNAs

CSF: Cerebrospinal fluid

DcVax-L: lysated pulsed dendritic cell vaccine
EGFR: Epidermal growth factor receptor

ESCRT: Endosomal Sorting Complexes Required fongpart
EV: extracellular vesicle

FTO: fat mass and obesity associated gene

GBM: Glioblastoma multiforme

GLI1: glioma-associated oncogene homolog 1
GOLPHS3: Golgi Phosphoprotein 3

GSCs: glioma stem cells

HOXD10: homeobox D10:

IDH1: isocitrate dehydrogenase 1

KPS: Karnofsky Performance Scores

LKB1: liver kinase B1

IncRNA: long noncoding RNA

M6A: N6-methyladenosine

MAPK: mitogen-activated protein kinase

METTL: methyltransferase like protein

MGMT: O°-methylguanine-DNA methyltransferase
MIiRNA, miR-: MicroRNAs

MMP: Metalloprotease

MRI: magnetic resonance imaging

MmTOR: mammalian target of rapamycin

NFkB: nuclear factor kappa-light-chain-enhanceadtfvated B cells
OLIG: Oligodendrocyte transcription factor
PDGFRA: platelet-derived growth factor receptor A
PKC: protein kinase C

PPAR«y: peroxisome proliferator-activated receptor-
PRC1/2: polycomb repressor complex 1/2
primiRNA: primary miRNA precursors

PTEN: phosphatase and tensin homology

RISC: RNA Interference Effector Complex

RODL1.: regulator of differentiation 1

SRSFs: Serine/arginine-rich splicing factors
SOX9: SRY-Box 9

TGIF2: Transforming growth factdretainduced 2
TMZ: temozolomide

TLR: toll-like receptors

TTF: tumor treating field

UTR: untranslated region



VEGFA: Vascular Endothelial Growth Factor A
Vps20: vacuolar protein sorting-associated pra2&in
WTAP: Wilms' tumor 1-associating protein

XPO: Exportin

YTHDF: YTH domain-containing family proteins



