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Glioneuronal tumors are very rare CNS neoplasms that demonstrate neuronal differentiation, composed
of mixed glial and neuronal cells. The majority of these lesions are low grade and their correct classification
is crucial in order to avoid misidentification as ‘ordinary’ gliomas and prevent inappropriate aggressive
treatment; nevertheless, precise diagnosis is a challenge due to phenotypic overlap across different his-
tologic subtype. Surgery is the standard of therapeutic approach; literature concerning the benefit of
adjuvant treatments is inconclusive and a globally accepted treatment of recurrence does not exist. Tar-
getable mutations in the genes BRAF and FGFR1/2 are recurrently found in these tumors and could take
a promising role in future treatment management.
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Glioneuronal tumors are a heterogeneous group of CNS neoplasms with neuronal differentiation, exhibiting a
pure neuronal pattern or a mixed glial and neuronal phenotype [1]. The revised fourth edition of the World Health
Organization (WHO; Geneva, Switzerland) Classification of Tumors of the Central Nervous System, published in
2016, is both a conceptual and practical revolution in brain tumor classification systems, introducing for the first time
molecular biology in addition to histology in order to define many tumor entities, according to the era of personalized
therapies [2]. According to the 2016 WHO classification, the group of neuronal and mixed glioneuronal neoplasms
currently includes dysembryoplastic neuroepithelial tumor (DNET), ganglioglioma, anaplastic ganglioglioma,
desmoplastic infantile ganglioglioma/gangliocytoma, central and extraventricular neurocytoma, paraganglioma,
cerebellar liponeurocytoma, papillary glioneuronal tumor, rosette-forming glioneuronal tumor and primary diffuse
leptomeningeal glioneuronal tumor (DLGNT) [2] (Table 1).

Though this latest version of the WHO classification is recent, in the last few years, many cases have been
reported of glioneuronal neoplasms with distinctive morphological features that are still not formally included in
any classification [3,4].

Gangliogliomas are the most common histologic subtype, characterized by genetic alterations of the MAP kinase
pathway, in particular BRAF V600E mutation, other alternative BRAF mutations or fusions, KRAS mutations,
NF1 mutations or FGFR mutations or fusions [5]. BRAF V600E mutation represents a valuable diagnostic marker
and constitutes a novel and promising therapeutic target for molecularly selected CNS neoplasms in a clinically
meaningful way.

Currently the literature of neuroglial tumors is poor and limited to small case series; we thus provide a compre-
hensive review to summarize presenting symptoms, radiological findings, prognosis and treatment options.
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Table 1. Grading of neuronal and mixed neuronal-glial tumors according to the 2016 CNS
WHO classification.
Neuronal and mixed neuronal-glial tumors Grading

Dysembriplastic neuroepithelial tumor I

Gangliocytoma I

Ganglioglioma I

Anaplastic ganglioglioma III

Dysplastic cerebellar gangliocytoma I

Desmoplastic infantile gangliocytoma and ganglioglioma I

Papillary glioneuronal tumor I

Rosette-forming glioneuronal tumor I

Diffuse leptomeningeal glioneuronal tumor I

Central neurocytoma II

Extraventricular neurocytoma II

Cerebellar liponeurocytoma II

Paraganglioma I

Ganglioglioma
Epidemiology
Ganglioglioma is a rare well differentiated glioneuronal neoplasm composed of a combination of dysplastic mature
ganglion cells with neoplastic glial cells, representing approximately 0.4–1.7% of all brain tumors [6–10]. It is
classified grade I by the 2016 WHO system and generally occurs in children and young adults before age 30 with
a slight preponderance in males [11–13].

Clinicopathological & molecular findings
Gangliogliomas commonly occur in the supratentorial region, mostly in the temporal lobe (up to 85%), followed
by the frontal lobe. It can occasionally develop also in the brainstem, cerebellopontine angle, thalamus, optic nerve
and spinal cord [14].

Presence of a ganglioglioma in the temporal lobe is particularly epileptogenic; this in part explains the classical
clinical presentation with a seizure disorder, generally with a long standing history of epilepsy that is difficult to
control medically [6,13,15,16]. As reported by Pasquier et al. in a series of 327 patients with drug-resistant epilepsy,
ganglioglioma was found to be the second most common diagnosis [17]. Others presenting symptoms include
increased intracranial pressure, headache, nausea, vomiting, personality change, irritability and focal neurological
deficit. Cerebellar lesions present with ataxia, headache and hydrocephalus.

Prognosis is favorable and the disease-free survival rate is 97% at 7.5 years for patients with supratentorial
tumors [18] and 88% for those with spinal cord lesions [19]. However, despite often presenting as low-grade tumors,
recurrence or anaplastic progression can occur. Gangliogliomas can develop malignant degeneration of the glial
component, thus representing an anaplastic ganglioglioma, a distinct pathological entity corresponding to grade
III of WHO classification.

The genetic landscape of ganglioglioma appears to be distinct from several glial and glioneuronal neoplasms
and is defined by V600E mutation or alternative BRAF mutations or fusions, RAF1 fusion, KRAS mutation, NF1
mutation or FGFR mutations or fusions.

The activating BRAF V600E mutation is common and occurs approximately in 10–60% of gangliogliomas, with
highest prevalence in cortical tumors and lower frequency in spinal cord tumors [20–26]. Conversely, IDH mutation
or combined deletion 1p/19q exclude a diagnosis of ganglioglioma. However, BRAF V600E mutation is not
exclusive to ganglioglioma and has been described also in DNET, pilocytic astrocytoma, pediatric IDH-wild-type
astrocytoma, polymorphous low-grade neuroepithelial tumor of the young, pleomorphic xanthoastrocytoma and
epithelioid glioblastoma [26,27].

Several cases of pediatric grade I gangliogliomas have been identified harboring both H3 K27M and BRAF
V600E mutations, characterized by a relatively indolent course compared with diffuse midline glioma H3 K27M
mutant [28,29]. While a subgroup of gangliogliomas harbor the well-known BRAF V600E mutation, other genetic
alterations are poorly documented.
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Pekmezci et al. performed next-generation sequencing on a cohort of 40 gangliogliomas to provide a comprehen-
sive assessment of the genetic profile of this tumor entity [5]. Thirty-six patients harbored mutations in the MAP
kinase pathway; out of these, 18 patients harbored a BRAF V600E mutation, five a different BRAF mutation and
four had BRAF fusion. In the 13 cases lacking an identifiable BRAF alteration, several genetic mutually exclusive
alterations involving KRAS, NF1, FGFR1 and FGFR2 were found. No PRKCA, IDH1, IDH2, TP53, ATRX and
TERT mutations were identified, suggesting that the genetic landscape of ganglioglioma is unique and distinct
from the majority of diffuse gliomas, papillary glioneuronal tumors and chordoid gliomas [30,31]. Gangliogliomas
sometimes harbor the same BRAF mutations as pilocytic astrocytomas, such as the KIAA1549-BRAF fusion with
the appearance of a pilocytic astrocytoma but with foci of gangliocytic differentiation [25].

The prognostic role of BRAF mutation in ganglioglioma is still under investigation.
Dahiya et al. observed that positive BRAF V600E staining is associated with shorter recurrence-free survival [22].

Furthermore, the association between BRAF V600E mutation and CDKN2A deletion may be associated with a
worse outcome [32,33]. CDKN2A is a tumor suppressor gene and its loss acts as a ‘secondary hit’, which allows
malignant behavior, especially when combined with BRAF mutations.

Radiological features
The neuroimaging appearance is variable, but gangliogliomas often display a mix of solid and cystic components.
The computed tomography (CT) imaging of cerebral ganglioglioma is characterized by a nonenhancing cystic
lesion, eventually with a ring enhancement or with an enhancing mural nodule. The presence of calcifications is
usually extensive and is an important clue in diagnosing of ganglioglioma, especially in the case of small, solid
nonenhancing tumors.

On MRI, this tumor usually appears as a solid mass or a mixed solid-cystic mass, iso- to hypointense and
hyperintense on T1- and T2-weighted, respectively.

The differential diagnosis includes pleomorphic xantoastrocytoma, pilocytic astrocytoma and hemangioblas-
toma [34,35]. Although not common, ganglioglioma could be mistaken for a vascular malformation [36].

Treatment options
The current standard treatment of newly diagnosed gangliogliomas is complete surgical resection [18]. Preoperative
and postoperative MRI are useful to define the exact extent of surgery. The tumor location affects the possibility of
achieving radical surgery and impacts survival [37–39]. In particular, gangliogliomas of the midline present a poorer
outcome, with a higher risk of recurrence and mortality [40]. When gross total resection is achieved and a grade
I ganglioglioma is diagnosed, no adjuvant therapies are recommended. If resection is subtotal, a second surgical
attempt should be considered, given the prognostic impact of complete resection.

The role of adjuvant postoperative radiation therapy is undefined, it appears to reduce the relapse rate after
incomplete resection of high-grade lesions though its benefit is highly debated in cases of total resection or
partial removal of low-grade tumors [41–43]. In their retrospective study of 402 patients with ganglioglioma, Rades
et al. concluded that gross total resection does not require adjuvant radiation treatment. If resection is subtotal,
radiotherapy should be considered because it can improve local control, even if survival advantage at 10 years has
not been observed [44]. Radiation therapy can also be considered as an option for ‘salvage’ treatment in cases of
recurrent low-grade tumors [45,46]. Giving the usual young age and long-term survival of individuals with these
tumors, before considering the patient for radiotherapy, it is important to weigh its specific long-term toxicity
spectrum, in particular neurocognitive sequelae and focal deficits such as optic pathway injury.

The role of chemotherapy is still uncertain; it should be considered for patients with progressive tumors not
susceptible to re-resection or reirradiation [47]; nitrosoureas, temozolomide, etoposide, cisplatin, carboplatin and
cyclophosphamide have been reported to be effective.

Studies on progressive BRAF V600E-mutated melanomas have shown the effectiveness of the BRAF inhibitors
dabrafenib or vemurafenib [48]. Experience with these agents in BRAF V600E-mutated gliomas is limited to case
reports [49–55]. Rush et al. described the first case of a brainstem ganglioglioma harboring BRAF V600E mutation
that was successfully treated with vemurafenib and vinblastine, achieving complete resolution of symptoms and
significant overall decrease in the size of the lesion [49]. Starting from this first experience, other cases of ganglioglioma
successfully treated with RAF inhibitors have been accumulated, reinforcing the idea that MAPK pathway inhibitors
can be considered as a potential target therapy for these tumors (Table 2).
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Table 2. Positive responses to RAF or MEK/RAF inhibitors in ganglioglioma and anaplastic ganglioglioma.
Study (year) Treatment Best response Ref.

Rush et al. (2013) Vemurafenib + vinblastine (ganglioglioma one case) Partial response [49]

Del Bufalo et al. (2014) Vemurafenib (ganglioglioma one case) Partial response [52]

Shih et al. (2014) Dabrafenib + gemfibrozil (ganglioglioma one case) 60% overall reduction in tumor volume [53]

Aguilera et al. (2015) Vemurafenib (ganglioglioma one case) �70% decrease in tumor size [50]

Chamberlain et al.
(2016)

Dabrafenib (ganglioglioma threecases) Stable disease in two patients and a partial response
in one patient

[51]

Garnier et al. (2019) Vemurafenib (ganglioglioma one case) Partial response manteined 21 months after
treatment discontinuation

[54]

Pasqualetti et al. (2019) Dabrafenib (ganglioglioma one case) Major response [55]

Lucas Jr. et al. (2014) Vemurafenib (anaplastic ganglioglioma one case) Partial response [56]

Melatath et al. (2016) Dabrafenib (anaplastic ganglioglioma one case) Complete response [57]

Beland et al. (2018) Dabrafenib + trametinib (anaplastic ganglioglioma one case) Complete response [58]

Kaley et al. (2018) Vemurafenib + cobimetinib (anaplastic ganglioglioma one
case)

Partial response [59]

Marks et al. (2018) Dabrafenib/trametinib (anaplastic ganglioglioma 1 case) Complete response [60]

Kaley et al. (2018) Vemurafenib (anaplastic ganglioglioma one case) Partial response [59]

Toll et al. (2019) Dabrafenib/trametinib (anaplastic ganglioglioma one case) 85% decrease in tumor size [61]

As expected from experience in other cancers, acquired resistance to BRAF inhibitors may invariably develop,
as well as side effects, including skin rash, papillomas and squamous cell carcinomas. To date, there is no valid
therapeutic option for patients who progress on vemurafenib or having poor tolerability profile. Studies in BRAF
V600E-mutant melanoma showed that a subset of tumors develop resistance to BRAF inhibitors through molecular
events reactivating the MAPK pathway, such as NRAS, KRAS or MEK mutations.

This provided rationale for combined BRAF/MEK inhibition, which demonstrated superior outcomes in com-
parison with BRAF inhibitors monotherapy in BRAF V600E mutant melanoma. Supported by this evidence,
several cases of gangliogliomas have been published in which combined treatment with vemurafemib and MEK
inhibitor resulted in clinical benefit for patients. Marks et al. reported the case of an anaplastic ganglioglioma
with an important skin rash reaction from vemurafenib, who experienced good tolerability and tumor response
to the BRAF/MEK inhibitor combination dabrafenib plus trametinib [62]. Koelsche et al. observed that BRAF
V600E-mutated gangliogliomas frequently show lymphocytic infiltrates [63], suggesting an immunogenicity of
BRAF-mutated gangliogliomas and a potential role for immunotherapy in the future.

Certainly, targeted therapy is very promising in selected subsets of gangliogliomas and further studies are needed
to legitimize the use of these novel agents in such a rare group of tumors.

Anaplastic ganglioglioma
Anaplastic ganglioglioma is a glioneuronal tumor composed of dysplastic ganglion cells and an anaplastic glial
component with elevated mitotic activity. It is defined by a WHO grade III component and is associated with
significantly worse local control rates, strong potential for distant relapse and short overall survival.

Epidemiology
The incidence of anaplastic gangliogliomas is very rare and estimated at 0.02 cases/million/year [64], therefore
literature is limited to case reports and small retrospective case series.

Clinicopathological & molecular findings
Anaplastic ganglioglioma which most often affects children and young adults, is generally unifocal, highly epilep-
togenic and is known to arise from any part of the CNS, including the spinal cord as well as the cerebral ventricles,
even though the temporal lobe is the most common location. Selvanathan et al. reported 27% of cases arising from
temporal lobe, followed by 22% of cases in the frontal lobe [64]. Unlike gangliogliomas which almost always progress
locally, anaplastic gangliogliomas often exhibit diffuse failure within the craniospinal axis and leptomeninges. In
particular, in the case series reported by Lucas et al., all three patients experienced leptomeningeal failure [56]. Most
commonly the anaplastic transformation occurs in the glial component, resembling a high grade astrocytoma, while
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the neuronal component is relatively benign, although there are reports of anaplastic cells exhibiting both neuronal
and astrocytic features as well as sarcomatous differentiation [65].

Anaplastic gangliogliomas rarely occur as de novo tumors (cases not related to previous radiation therapy or prior
diagnosis), but more often have been associated with previous subtotal resection or radiotherapy of a low grade
ganglioglioma [66–71]. Literature review found only 31 anaplastic gangliogliomas not related to prior radiotherapy
or previous diagnosis [72]. The main pathologic findings of anaplastic gangliogliomas include increased mitotic
index, pleomorphism, microvascular proliferation, necrosis and gemistocytic differentiation pattern [73]. The BRAF
V600E mutation has been identified in a number of cases of anaplastic ganglioglioma and the incidence of this
mutation appears higher in pediatric population.

Radiological features
Radiological diagnosis is difficult due to the broad spectrum of solid and cystic lesions, the irregularity of contrast
enhancement and the variability in the calcification pattern. On MRI, anaplastic gangliogliomas generally appear
as a solid mass with a cystic component, hypointense on T1-weighted sequences and hyperintense on T2-weighted
images with irregular enhancement after the administration of gadolinium. Proton magnetic resonance spectroscopy
(1H-MRS), performed to measure the levels of metabolites in the tumors, can reveal a high choline peak relative to a
high N-acetylaspartate/creatine ration and increased lactate and lipid levels, which suggest anaplastic behavior [13].

Treatment options
Gross total resection is considered the standard of care for anaplastic gangliogliomas [64,74,75]. However, even after
a complete surgical resection tumor recurrence can occur; thus, many centers recommend adjuvant radiotherapy
or chemo-radiotherapy to improve tumor control and survival [64,74,75]. Even after adjuvant treatment survival is
poor.

In a retrospective study from the the National Cancer Institute’s Surveillance, Epidemiology and End Results
database, Selvanathan et al. analyzed a cohort of 58 adult and pediatric anaplastic gangliogliomas [64]. The median
overall survival was 28.5 months and univariate and multivariate analysis identified surgical resection and unifocal
disease as prognostic factors that could impact survival. No statistically significant benefit was found in overall
survival, but only a trend toward longer survival has been observed in patients who received adjuvant radiotherapy.
As admitted by the authors themselves, however, in this study, the small sample size may have influenced statistical
power and the information on tumor size, type of surgical resection and the use of radiotherapy or chemotherapy
is limited.

Another large series published is the French Brain Tumor Database study, which included 43 cases of anaplastic
ganglioglioma [57]. In this series, the total resection was achieved in 58.8% of patients. Adjuvant radiotherapy with
concomitant temozolomide – the standard Stupp protocol of combined chemo-radiotherapy for glioblastoma – was
performed in approximately half of the patients. Adjuvant radiotherapy alone was administered in approximately
30% of patients and adjuvant chemotherapy alone without radiotherapy in 6% of patients. Tumor recurrence rate
at 5 years was about 100% and median overall survival was 24.7 months. The subgroup with the best overall
survival (37.3 months) was that of patients treated with gross total resection and adjuvant radio-chemotherapy [74].

Mallick et al. [75] performed a search of PubMed to find all the publications related to anaplastic ganglioglioma
to establish the optimum treatment of this tumor type. A total of 40 publications with overall 69 patients were
found eligible. It has been observed that patients undergoing a gross total resection have a significantly better overall
survival compared with those with a subtotal resection, but neither adjuvant radiation, nor chemotherapy were
found to have any impact on progression-free or overall survival. Also, this analysis failed to elicit any advantage
of adjuvant radiation and chemotherapy and the authors concluded that the small sample and the heterogeneity
of treatments may have affected the results. Therefore, they suggest, as reasonable approach, radiation for patients
who received a gross total resection and adjuvant radiation or chemotherapy or a combination of both in case of
subtotal resection or for disease at eloquent location. It is important to note that in all these large case series, median
overall survival is poor and does not exceed 30 months.

Positive responses to targeted therapy with RAF inhibitor or MEK/RAF inhibitor combination therapy have been
reported in anaplastic ganglioglioma refractory to other treatments (Table 2) [56,58,60,61]. Kaley et al. published the
Phase II, histology-independent VE-BASKET trial for BRAF V600-mutant nonmelanoma patients. Patients with
BRAF V600-mutant glioma received vemurafenib 960 mg twice per day until they experienced disease progression,
unacceptable adverse effects or withdrew. Twenty-four patients with glioma, including malignant diffuse glioma
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(n = 11; six glioblastoma and five anaplastic astrocytoma), pleomorphic xanthoastrocytoma (n = 7), anaplastic
ganglioglioma (n = 3), pilocytic astrocytoma (n = 2) and high-grade glioma, not otherwise specified (n = 1), were
treated. Objective response rate was 25% and the median progression-free survival was 5.5 months. In particular,
one patient diagnosed with anaplastic ganglioglioma obtained a partial response and was treated for 13.8 months
for a confirmed clinical benefit rate of 33% (95% CI: 4.3–77.7%) [59]. On the basis of this evidence, a larger
prospective study is needed.

Dysembryoplastic neuroepithelial tumor
A DNET is a grade I mixed neuronal-glial tumor, causing drug-resistant epilepsy that occurs in the cerebral cortex
of children and young adults with a predilection for the temporal lobe.

Epidemiology
The incidence of DNETs is 0,03 person-year per 100.000, with a peak in the range between 10 and 14 years.

Clinicopathological & molecular findings
It is characterized by multinodular architecture consisting of columns of oligodendroglial cells interspersed with a
mucoid matrix with floating neurons [76,77]. Histological variants of DNET have been described, with additional
glial cell component and a nodular appearance [78–81]; the simplest form, instead, consists of unique glioneuronal
elements. DNET cells are positive for S100 protein, synaptofisin, neuronal nuclei, neurite outgrowth inhibitor
OLIG2 and MAP 2, but negative for GFAP.

DNETs are stable or very slow growing and require no postoperative adjuvant therapy [82]. Long-term clinical
follow-up usually demonstrates an extremely low rate of recurrence; however, the rare cases of recurrences and
malignant transformations legitimize the need for MRI surveillance, mostly after incomplete resection.

DNETs share with gangliogliomas FGFR1 and BRAF V600E mutations, the latter found in 27–51% of cases
(3283). The prevalence of BRAF V600E mutations is higher in the complex type and in the extratemporal location
(i.e., tumors in midbrain or brainstem). Prabowo et al. observed that the presence of BRAF V600E mutation is
significantly associated with an mTOR pathway overactivation in ganglioglioma and DNET [32]. In ganglioglioma
and DNETs, the presence of BRAF V600E mutation has been associated with the expression of phosphorylated
ribosomal S6 protein (pS6), a marker of overactivation of the mTOR pathway and a key regulator of cell growth
and proliferation. Interestingly, on the basis of this association, mTOR targeted treatment may be developed.

Radiological features
Cortical topography and the absence of edema and mass effect are the most important criteria for differentiating
DNETs from diffuse gliomas. In conventional MRI, DNETs present as multiple or single cystic lesions, hypointense
on T1-weighted and hyperintense on both T2-weighted and fluid attenuated inversion-recovery MRI. Noncystic
tissue is hypointense on T1-weighted images and hyperintense on T2-weighted and fluid attenuated inversion-
recovery images. On both CT and MRI, in approximately 20% to a third of the patients, a nodular, ring-like or
heterogeneous contrast enhancement may be observed. The enhancement can also be observed during the follow-
up in a previously nonenhancing tumor, these variations being usually considered ischemic and/or hemorrhagic
changes rather than an expression of malignancy.

Fiber tractography is also important for the differential diagnosis versus low-grade glioma. In DNETs, a pattern
of displacement of the fiber tracts is observed, while gliomas spread along white matter tracts.

Advanced MRI techniques – in other words, diffusion, perfusion and spectroscopy – may be useful in the
differential diagnosis for DNET versus other low-grade gliomas. Unlike low-grade gliomas, on diffusion-weighted
MRI, DNETs generally present a high apparent diffusion coefficient as the expression of low cellular density; such
values range between 2.38 and 2.78. On perfusion-MRI, DNETs have a lower relative cerebral blood volume value
than diffuse gliomas (range 0.66–0-99), due to the presence of ‘floating neurons’ and high-water content. Proton
magnetic resonance spectroscopy profile is characterized by a not decreased N-acetyl-aspartate/choline (NAA/Cho)
ratio, when compared with diffuse gliomas and a high myoinositol/creatine ratio, which ranges between 0.19 and
0.57. Identification of FGFR1 and BRAF V600E mutations limits the risk of misdiagnosis [83,84].

Treatment options
Complete tumor resection leads to a long-term seizure control [85–87], with 70–90% of resected patient seizure free.
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Central neurocytoma & extraventricular neurocytoma
Epidemiology
Central neurocytomas (CNs) represent about 0.1–0.5% of all brain tumors. CNs are more frequent among young
adults, with an incidence peak at about 30 years [88–93]. In several studies, it has been observed that there is a higher
incidence of CNs in Korea, Japan and India, which may be attributable to genetic interracial differences [94–97].

Clinicopathological & molecular findings
CN is composed of uniform round cells with neuronal differentiation and low proliferation index and it corresponds
histologically to grade II. It is usually supratentorial, occurring in the lateral ventricles or in the third ventricle,
especially in the region of the foramen of Monro. Attachment to the septum pellucidum seems to be a feature of
the tumor. CN may manifest as obstructive hydrocephalus with signs of increased intracranial pressure or with
distinct focal deficit.

The MIB-1 Labeling Index (MIB-1 LI) is an important prognostic tool for CN and is an accurate indicator
of tumor relapse and tumor grade. Imber et al. analyzed progression-free survival and overall survival in a cohort
of 28 patients and found that low MIB-1 LI (<4%) correlates with longer progression-free survival and overall
survival [98]. Similarly, Chen et al. found that a MIB-1 LI >2% may indicate a more aggressive disease course [99].

Many types of genetic mutations have been associated with CNs, in particular overexpression of N-MYC, IGF2,
PTEN, PDGF-D and NRG-2 [100].

Radiological features
The radiological features of CN are nonspecific; CT scans usually demonstrate a hyperdense mass in the lateral
ventricles. MRI shows a peri-ventricular mass, hypointense or isointense on T1-weighed images and isointense or
hyperintense on T2-weighed. Contrast enhancement can be variable, generally moderate-to-strong [91,101–103].

Treatment options
The gold standard of treatment is gross total resection, which often allows for a very high rate of tumor control
and long-term survival. In case of subtotal resection and/or an elevated MIB-1 LI, there may be an indication for
adjuvant radiotherapy. The use of chemotherapy is debated; the literature is limited to case reports and is very
heterogeneous with regard to scheme of chemotherapy and timing of initiation – upfront versus salvage treatment.
Brandes et al. reported three cases of neurocytoma treated with chemotherapy. Disease progressed in two patients
after surgery and adjuvant radiotherapy and in one patient after surgery. The treatment regimen included etoposide,
cisplatin and cyclophosphamide. Disease stabilization was observed in two patients and complete response occured
in one patient with long maintenance of the response [104]. Johnson et al. reported the case of a young woman
successfully treated with temozolomide. The patient had a recurrence 6 years after initial treatment with gross-total
resection, this recurrence was treated with repeat surgery followed by temozolomide and concurrent radiation for
5 weeks. Fourteen years after the first diagnosis and 6 years 9 months after the recurrence, the patient was clinically
stable [105].

Imber et al. analyzed a cohort of 28 patients treated at their institution between 1995 and 2014. In their case
series, four patients with recurrent CN received salvage chemotherapy. One patient, treated with CCNU, had
significant radiographic response with subsequent disease stabilization. Two patients, treated with temozolomide,
experienced 3 years of tumor stabilization followed by tumor progression in one case and slow progressive tumor
despite chemotherapy in the other case, respectively [98].

Occasionally, neurocytoma occurs outside the ventricles and is called extraventricular neurocytoma, an atypical
form that arises in the spinal cord or cerebellum. It is associated with worse outcome due to a higher proliferative
index and recur within a relatively short period of follow-up [106–109].

Diffuse leptomeningeal glioneuronal tumor
DLGNT is a new entity which has been included in the 2016 update of the WHO classification, characterized
by predominant and widespread leptomeningeal growth and an oligodendroglial-like cytology with elements of
neuronal differentiation. It has been described a high rate of KIAA1549-BRAF gene fusion or 1p/19q co-deletion in
the absence of IDH mutation. Due to the limited cases in literature, the WHO classification has not been assigned,
to date, a grade to this tumor entity.
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Clinicopathological & molecular findings
DLGNT was first described in 2010 [110], prior to that it was reported as ‘disseminated oligodendroglial-like
leptomeningeal tumor of childhood’ [111]. The cellular origin is unclear; the absence of brain parenchymal lesions
suggests an origin from neuroepithelial cells scattered in the meninges. The wide spectrum of histological and
radiological features can make this tumor entity difficult to diagnose. This tumor is characterized by diffuse
leptomeningeal growth, often without a recognizable parenchymal lesion (commonly in the spinal cord), with an
incidence peak in children and young adults. Histology demonstrates a monomorphic clear cell glial morphology,
reminiscent of oligodendroglioma, with immunostaining positivity for GFAP, OLIG2, S100 and synaptophysin
and negativity for IDH1. Microscopic cerebral fluid examination demonstrates elevated protein levels although
cytology is often negative.

A newly recognized entity is the multinodular and vacuolated pattern, a low-grade purely neuronal tumor
affecting adults, situated in the cerebral hemispheres, most often in the temporal lobe, composed of tumor cells
exhibiting nuclear immunolabeling for the HuC/HuD neuronal antigens and expression of other neuronal markers,
in particular synaptophysin and neurofilament while chromogranin is variable [112]. This tumor commonly harbors
BRAF fusions as well as 1p/19q co-deletion, 1p or 19q solo deletion [113]. IDH mutation is absent.

The prognosis is variable, with a majority of low-grade tumors showing relatively slow progression and a
subset of tumors with a more aggressive course, that shows features of anaplasia. Studies have indicated that
1p/19q co-deletion or 1p/19q solo deletion demonstrate a more aggressive biological behavior and are sensitive to
chemotherapy, especially temozolomide [114].

Radiological features
The MRI findings show two distinct patterns: one of diffuse leptomeningeal enhancing, the second of ’small cysts’
implants scattered all over the brain and spinal cord, especially along the surface of the posterior fossa and basal
brain regions, giving the distinctive neuroimaging profile of a diffuse ‘microcystic meningoencephalopathy’.

Treatment options
Complete surgical resection is difficult; radiotherapy and chemotherapy are valid option most notably in more ag-
gressive DLGNTs with high ki67 rate. Chemotherapy regimens include carboplatin and vincristine, temozolomide,
etoposide and bevacizumab [114].

Rosette-forming glioneuronal tumor
Rosette forming glioneuronal tumor is a grade I neoplasm that has biphasic cytoarchitecture with two elements:
neurocytes forming rosettes/perivascular psuedorosettes and astrocytic cells resembling pilocytic astrocytoma [115–

117].

Epidemiology
The incidence rate is not yet available, with about 100 cases reported in literature.

Clinicopathological & molecular findings
The term rosette-forming glioneuronal tumor was used for the first time by Komori et al. in 1998 [118]; it most
commonly occurs in young adults, occupying the fourth ventricle. Until the description of two cases in the
optic chiasm [119] and spinal cord [120], respectively, these tumors were believed to originate only in the posterior
fossa. To date, rare locations in the pineal region, cerebellar vermis, pons and septum pellucidum have also been
observed [121,122].

The spectrum of clinical symptoms is wide, including headaches, visual disturbances, nausea and vomiting,
vertigo, ataxia, cervical pain and neck rigidity [123].

They are low-grade tumors with lack of atypia and low Ki67 labeling indices [124]. Molecular studies of rosette-
forming glioneuronal tumors are few and have revealed only two recurrent genetic alterations; PIK3CA or FGFR1
mutations. IDH1/2 mutation and 1p/19q co-deletion are absent. In particular, PIK3CA mutations are missense
mutations in exon 20 (nucleotide 3140 A[G, H1047R) and in exon 9 (nucleotide 1624 A[G, E542K), while
FGFR1 mutations have been found in two patients: the FGFR1 N546K mutation (AAC->AAG, Asn->Lys) was
found in a 27-year-old woman and the K656E (AAG->GAG, Lys->Glu) in a 12-year-old boy. The presence

Future Neurol. (2020) 15(3) future science group



Glioneuronal tumors: clinicopathological findings & treatment options Review

of FGFR1 mutations in rosette-forming glioneuronal tumors may suggest a molecular similarity with pilocytic
astrocytoma [125,126].

Radiological features
These tumors are relatively circumscribed, with calcifications and a ring-shaped contrast enhancement, hypointense
on T1 and hyperintense or isointense on T2-weighted MRI sequences [123].

Treatment options
Management is usually through surgery with gross total resection providing better prognosis. Nevertheless, tumor
location and its frequent extension within the adjacent structures does not always permit a total resection without
surgical morbidity or neurological dysfunction. Due to their indolent nature, a subtotal removal is also considered
acceptable, whereas an aggressive approach can increase morbidity. In this tumor type, the recurrence rate is
extremely low, with only four cases of recurrence reported as of now [124,125,127].

Conclusion & future perspective
Glioneuronal tumors represent a heterogeneous group of neoplasms that exhibit neuronal differentiation, with a
pure neuronal differentiation pattern or with a mixed glial and neuronal phenotype [1]. The numerous new entities
recently described in the literature suggests that the wide spectrum of neuronal and glioneuronal neoplasms is
far from being exhaustively documented. Given the rarity of these neoplasms, the benefit of various management

Executive summary

Epidemiology & pathology of neuronal & glioneuronal tumors
• Neuronal and glioneuronal tumors are a heterogeneous group of CNS neoplasms that demonstrate neuronal

differentiation, with either a pure neuronal or a mixed glial and neuronal phenotype.
• Compared with other brain tumors they are very rare and therefore not well characterized; they mainly occur in

children and young adults, predominantly have a low-grade histology, with an indolent course and long-term
survival after surgical resection.

• Onset symptoms depend on tumor location, the most common being pharmacoresistant seizures, followed by
intracranial hypertension and focal deficits.

• Within this group, ganglioglioma is the most common histologic subtype and consequently also the best studied,
whose molecular biology is well known, which paves the way for new target therapies.

• The excellent prognosis and the malignant transformation potential of the glial component are the two most
remarkable findings in ganglioglioma.

• Radiological diagnosis presents a challenge due to the overlap of imaging features across different histotypes,
which complicates diagnosis.

• The MRI appearance of glioneuronal tumors could be very variable across the diverse histotypes but these
tumors, expecially WHO grade I, most often demonstrate similar neuroradiological findings: a solid-cystic mass
with enhanced peripheral ring and diffuse pattern of calcification.

Treatment options
• The conventional treatment for low-grade tumors involves surgical resection.
• Adjuvant treatments, though their exact role is unknown, may be considered individually based on pathological

subtypes and a proper assessment of risks and benefits. Adjuvant radiotherapy, in particular, may be
recommended in case of incomplete surgical resection and high proliferative index.

• The role of chemotherapy is unclear and generally reserved for savage therapy, with a vast heterogeneity of
schemes across the diverse histotypes but also within the same type of tumor.

• In case of disease progression, despite aggressive treatment with radiation and chemotherapy, BRAF and MEK
inhibitors represent a promising therapeutic option that may improve the disease course of glioneuronal tumors
in a clinically meaningful way.

Future perspective & conclusion
• Due to the rarity of these neoplasms, available studies comparing the benefit of various management strategies

are few. Thus, the level of evidence of recommendations is low.
• Identification of the molecular basis of this niche diseases is a challenge; prospective clinical studies with

BRAF-MEK inhibitors should be conducted, not only in patients who have already failed the radiotherapy and
chemotherapy, but also in the adjuvant setting where traditional therapies are associated with acute and
long-term toxicities, shifting the therapeutic algorithm toward an earlier integration of molecularly targeted
agents.
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strategies is not clearly established and the level of evidence of recommended treatments is low. Currently the
interest in this class of brain tumors is high, thanks to the increasing knowledge of molecular biology and the
remarkable responses to targeted therapies observed, especially in those with BRAF-mutated tumors.
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