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SUMMARY
Ependymoma (EPN) is a brain tumor commonly presenting in childhood that remains fatal in most children.
Intra-tumoral cellular heterogeneity in bulk-tumor samples significantly confounds our understanding of EPN
biology, impeding development of effective therapy. We, therefore, use single-cell RNA sequencing, histol-
ogy, and deconvolution to catalog cellular heterogeneity of the major childhood EPN subgroups. Analysis of
PFA subgroup EPN reveals evidence of an undifferentiated progenitor subpopulation that either differenti-
ates into subpopulations with ependymal cell characteristics or transitions into a mesenchymal subpopula-
tion. Histological analysis reveals that progenitor and mesenchymal subpopulations co-localize in peri-
necrotic zones. In conflict with current classification paradigms, relative PFA subpopulation proportions
are shown to determine bulk-tumor-assigned subgroups. We provide an interactive online resource that fa-
cilitates exploration of the EPN single-cell dataset. This atlas of EPN cellular heterogeneity increases under-
standing of EPN biology.
INTRODUCTION

Ependymoma (EPN) is a brain tumor commonly presenting in

childhood, which remains fatal in most children. Our understand-

ing of the biology underlying this tumor has greatly expanded in

the era of genomics, transcriptomics, and methylomics. Initial

transcriptomic studies identified supratentorial (ST) and poste-

rior fossa (PF) EPN as distinct biological entities (Taylor et al.,

2005). Further studies have identified two major groups within

PF EPN, based on transcriptomic (Hoffman et al., 2014; Wani

et al., 2012; Witt et al., 2011) and methylomic studies (Mack

et al., 2014; Pajtler et al., 2015), termed PF group A (PFA) and

PF group B (PFB). Two ST EPN subgroups have also been iden-

tified, those with a C11ORF95-RELA gene fusion (RELA) and a

rarer subgroup with YAP-MAMLD1 fusions (YAP) (Parker et al.,

2014; Pajtler et al., 2015). Bulk-tumor molecular studies have

identified distinct cellular processes associated with each of

these groups. PFB tumors have been shown to occur in adults

and older children and to harbor cilia-associated programs (Paj-

tler et al., 2015; Witt et al., 2011). On the other hand, PFA

commonly arise in younger children, who have a worse prog-
This is an open access article under the CC BY-N
nosis than those with PFB and have been shown to harbor bio-

logical processes associated with inflammation (Griesinger

et al., 2015; Witt et al., 2011). PFA have been shown to be epige-

netically distinct from PFB, harboring a CpG island methylator

phenotype (CIMP) (Mack et al., 2014). PFA has been further sub-

divided into two major subgroups: PFA1 and PFA2 (Pajtler et al.,

2018).

Classification of tumors into subgroups and inference of sub-

group-specific biological programs based on analysis of bulk-tu-

mor samples is, however, susceptible to misinterpretation. This

is apparent from single-cell transcriptomic analysis of glioblas-

toma multiforme (GBM), which revealed considerable cellular

heterogeneity within individual patient samples, including

cellular subpopulations with transcriptional programs corre-

sponding to GBM subgroups previously identified by bulk-tumor

profiling (Neftel et al., 2019; Patel et al., 2014). Despite the pres-

ence of multiple subpopulations within an individual tumor spec-

imen, the dominant cellular subpopulation dictates bulk-tumor

subgrouping and apparent biological phenotype. We, therefore,

hypothesized that PFA tumors comprise cellular subpopulations

corresponding to both PFA1 and PFA2 transcriptional programs.
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A few studies have investigated tumor-cell heterogeneity in

EPN. These include identification of a putative EPN cancer

stem cell (Taylor et al., 2005) shown to occupy perivascular

niches (Calabrese et al., 2007). A recent study used single-cell

RNA sequencing (scRNA-seq) to analyze childhood cerebellar

tumors, including EPN, and matched these with mouse cere-

bellar developmental cell lineages (Vladoiu et al., 2019), identi-

fying divergent populations of cells in PFA that resembled prena-

tal gliogenic progenitors. Immune-cell subpopulations within the

EPN tumor microenvironment are associated with clinical

outcome and specific molecular subgroups (Donson et al.,

2009; Hoffman et al., 2014). To more comprehensively catalog

the cellular heterogeneity of EPN, the present study analyzed

samples from the spectrum of childhood EPN subgroups using

scRNA-seq analysis.

RESULTS

scRNA-Seq Analysis of Childhood EPN Reveals
Classification-Subgroup-Specific Neoplastic Clusters
scRNA-seq was performed on 26 childhood EPN patient sam-

ples that had been disaggregated at the time of surgery and

viably banked at our institution during a 10-year period. Most

of these EPN samples were classified as PFA (n = 19) and

RELA (n = 5) based on bulk-tumor methylome profiling (Table

S1). The cohort also included one specimen from the PFB sub-

group, which is uncommon in childhood, and a single YAP sub-

group sample, which is a rarer variant of ST EPNs. The 19 PFA

samples were further assigned to more recently described

PFA1 (n = 12) and PFA2 (n = 7) subgroups based on methylome

analysis (courtesy of Dr. Martin Sill, Heidelberg, Germany). All

samples were from initial presentation, apart from three of the

five RELA samples that were from first recurrences. The Chro-

mium drop sequencing (drop-seq) platform (103 Genomics)

was used to generate transcriptomes at the single-cell level.

The goal of the study was to capture approximately 2,000 cells

per sample, a sufficient number of cells to provide a broad

view of the cellular heterogeneity of EPN. Cell Ranger (103 Ge-

nomics) and Seurat analyses were used to normalize and filter

cells, resulting in 18,500 cells (700+ per sample) that passed

quality controls (Figure S1). The reduced number of cells passing

quality-control thresholds is likely a result of the relatively abra-

sive mechanical disaggregation process and cryopreservation

that was required to obtain this large EPN sample series. Cell

gene-expression matrices were projected as 2D uniform mani-

fold approximation and projection (UMAP) plots, revealing multi-

ple clusters of cells that were either unique to, or shared be-

tween, samples (Figures 1A and S2A–S2C). PFA1/PFA2

samples clustered together in an intermixed fashion. In contrast,

RELA samples clustered largely according to individual sample

of origin, a pattern that has also been seen in high-grade glioma

and medulloblastoma scRNA-seq studies (Hovestadt et al.,

2019; Neftel et al., 2019; Patel et al., 2014). We applied Harmony

alignment (Korsunsky et al., 2018) to the entire EPN dataset to

identify potential commonalities in RELA and to correct for in-

ter-sample variations from experimental or sequencing batch ef-

fects across the entire dataset. Harmony alignment identified

multiple clusters (Figures 1B and S2A–S2C), a number of which
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revealed gene expression profiles consistent with subpopula-

tions of non-neoplastic cells: myeloid cells (SPP1, C1QC,

APOC1, and TYROBP), lymphocytes (CD3E, IL32, LCK, and

GZMA), and oligodendrocytes (APC, OLIG1, OLIG2, and

CSPG2). The remaining closely grouped clusters harbored

gene-expression profiles indicative of neoplastic EPN cells,

such as TNC and AQP4) (Araki et al., 2016; Wang and Owler,

2011).To further confirm neoplastic versus non-neoplastic clus-

ter designations, we performed inferred copy number variation

(CNV) analysis (inferCNV). This showed that non-neoplastic cells

portrayed balanced chromosomes, whereas neoplastic cells

from samples that showed CNVs by bulk-tumor-methylation

analysis (Table S1) revealed a high level of concordance in chro-

mosomal gains and losses (Figure S3).

For the present study, we focused on neoplastic cells (n =

11,200) to determine the extent of cellular heterogeneity and to

identify discrete neoplastic subpopulations. Neoplastic cells

were separated from non-neoplastic cells and re-clustered using

Harmony, again identifying cell clusters derived from multiple

PFA1/PFA2 patient samples but, now, also showing clusters

derived from multiple RELA patient samples (Figure S2D). Cells

revealed a predominant subgroup-specific separation, most

notably in the form of twomain groups of clusters corresponding

to either PFA (PFA1 and PFA2) or RELA samples (Figure 1C). A

degree of overlap between PFA and RELA cluster groups was

observe, with a portion of cells (19.1%) from PFA samples falling

within the RELA clusters group and vice versa (11.6%). To deter-

mine whether cells in non-corresponding subgroup clusters

were a result of over-alignment, ST and PF samples were re-

analyzed individually using Harmony. Cells that had previously

fallen into non-corresponding subgroup clusters formed were

shown to cluster discretely from most cells (Figure S2E). This

result further supports the existence of a portion of non-corre-

sponding subgroup cells in both PFA and RELA and provides

verification that Harmony alignment analysis did not over-correct

clusters. Smaller subgroup-specific clusters largely comprise

either PFB or ST-YAP were also observed (Figure 1C).

Seurat’s graph-based clustering approach identified 15

distinct neoplastic clusters, consisting of seven clusters in the

PFA cluster group, five in the RELA cluster group, and one

each corresponding to the single PFB and YAP samples (Fig-

ure 1D). Based on subsequent molecular characterization of

scRNA-seq subpopulations, the main five PFA clusters were

named ciliated EPN cells (CECs), transportive EPN cells

(TECs), undifferentiated EPN cells -1 and -2 (UEC-1s and UEC-

2s), and mesenchymal EPN cells (MECs). The three main RELA

clusters, which were less well defined are referred to as RELA-

sc1, -sc2, and -sc3. Major PFA and RELA scRNA-seq subpopu-

lations predominantly comprised cells from samples that were

classified according to their correspondingmolecular subgroups

(Figure 1E). The remaining minor PFA and RELA clusters (PFA-

sc6 and PFA–sc7; RELA-sc4 and RELA–sc5), were excluded

from further analysis because all were less than 2% of total cells,

and PFA-sc7 and RELA-sc4 were predominantly derived from

individual patient samples. A cluster composed of cells distin-

guished by mitosis-related gene expression, corresponding to

cycling cells, was also revealed and comprised cells from most

samples.
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Figure 1. scRNA-Seq Analysis of Childhood EPN Reveals Classification Subgroup-Specific Neoplastic Clusters

(A) Unaligned UMAP projection of single-cell expression data of 26 EPN patient samples reveals neoplastic clusters and non-neoplastic lymphocyte (lymph),

myeloid, and oligodendrocyte (oligo) clusters.

(B) Harmony alignment showing collapsed neoplastic clusters and discrete non-neoplastic clusters.

(C and D) Harmony re-alignment of neoplastic cells, colored by (C) classification subgroup and identified clusters (D). See also Figures S2.

(E) Subgroup proportions in major PFA and RELA clusters.
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PFA Conceals Multiple, Discrete, Intra-tumoral
Neoplastic Subpopulations
Neoplastic-cluster subpopulations were characterized by exam-

ination of individual marker genes, geneset enrichment analysis,

and inferred transcription-factor regulatory network activation.

Marker genes for each of the major PFA and RELA subpopula-

tions were generated by differential gene-expression analysis

(Figure 2A; Table S2). Looking first at the major PFA subpopula-

tions, the most abundant PFA subpopulation CECs was

distinguished by cilia-associated gene expression, including
DNAAF1, RSPH1, and CAPS (Figure 2A; Table S2), which we

had previously identified as an EPN-specific marker (Amani

et al., 2017). Multiple cilia-related gene ontology (GO) terms

were significantly enriched in the CEC subpopulation (Table

S3). We inferred active transcription factors in individual

neoplastic cell transcriptomes using SCENIC (single-cell regula-

tory network inference and clustering) (Aibar et al., 2017) and

identified discrete transcription factor activity profiles for each

major PF and ST subpopulation (Figure 2B; Table S4). Several

CEC-specific transcription factors were identified, most notably
Cell Reports 32, 108023, August 11, 2020 3
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Figure 2. PF EPN Conceals Multiple Discrete, Intra-tumoral Neoplastic Subpopulations

(A) Heatmap of gene upregulated in major PF subpopulations with key subpopulation signature genes indicated (full list in Table S2).

(B) Heatmap of themost significant neoplastic subpopulation-specific transcription factor (TF) regulatory networks identified using SCENIC (single-cell regulatory

network inference and clustering) analysis and ranked by fold difference (full list in Table S4).

(legend continued on next page)
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RFX2 and RFX3, which are critical for normal ependymal devel-

opment (Baas et al., 2006; Chung et al., 2012). RFX2 was also

previously identified as an EPN-associated super-enhancer

gene in a study that performed bulk-tumor mapping of active

chromatin landscapes (Mack et al., 2018). The abundant cilia-

related gene expression in CECs recapitulates the multi-ciliated

phenotype of normal ependymal cells responsible for coordi-

nated movement of cerebrospinal fluid in the ventricles. CEC

markers were also specifically enriched with ependymal cell-

specific genes (fold change [FC] = 30.2) (Figure 2C), which

have been defined by scRNA-seq analysis of normal ependymal

cells and quiescent neural stem cells in a transgenic mouse

model (Shah et al., 2018).

Similar to CECs, the TEC subpopulation revealed molecular

features of ependymal cell differentiation, namely expression of

transporter function-related marker genes, such as aquaporins

(AQP4 and AQP1), which have previously been documented in

EPN (Wang and Owler, 2011), and ion transporters, including

ATPase Na+/K+ transporters (ATP1A2 and ATP1B2) (Figure 2A;

Table S2). The ‘‘ion transmembrane transport’’ GOTERM gene-

set was, accordingly, highly enriched in TECs (Table S3). The

transportive phenotype in this subpopulation recapitulates

another function of normal ependymal cells, namely transport

of molecules between the ventricle lumen and the parenchyma

of the brain. Collectively, these data suggest that TECs and

CECs represent differentiated PFA subpopulations.

Subpopulations UEC-1 and UEC-2 lacked ependymal-func-

tion phenotypes, as indicated by negligible cilia- or trans-

porter-related geneset enrichment (Table S3) and were, there-

fore, termed ‘‘undifferentiated ependymoma cells-1’’ (UEC-1)

and UEC-2, respectively. UEC-2 and UEC-1 showed enrich-

ment for GOTERMs related to transcriptional regulation and

osteoblast differentiation (Table S3). UEC-1 was distinguished

from UEC-2 by enrichment of ‘‘somatic stem cell population

maintenance’’ GOTERM genes (including HES1, PBX1, and

SOX9). Conversely, UEC-2 was distinguished by RNA

splicing-related GOTERM enrichment. UEC-1 showed upregu-

lated gene expression and transcription factor activity in early

response genes FOS and JUN (Figures 2A and 2B; Tables S2

and S4). These established oncogenes, with roles in immediate

early response to trauma in normal ependyma (Katano et al.,

1998), have not previously been associated with EPN biology.

The apparent undifferentiated phenotype in UEC-1s and

UEC-2s prompted us to examine potential overlap of these

populations with neurodevelopmental cell lineages. UEC-1

and UEC-2 marker genes and activated transcription factors

included PAX3, which is expressed during early neurodevelop-

ment, notably being expressed in the embryonic ventricular lin-

ing but being absent from ependyma at later stages of develop-

ment (Goulding et al., 1991). PAX6, expressed predominantly

by UEC-2, is a marker of radial glia differentiation (Götz et al.,

1998; Suter et al., 2009), providing a link to previous studies

that identified radial glia-like cells as putative cancer stem cells

in EPN (Taylor et al., 2005). PF subpopulation marker genes
(C–F) Neoplastic subpopulation enrichments (hypergeometric test) of genesets fro

(Abbreviation: qNSC, quiescent neural stem cell); (D) human radial glia from scRN

radial glia); (E) mouse cerebellar developmental cell lineages isolated by scRNA-
were, therefore, compared with scRNA-seq transcriptional pro-

files of gestational human neocortical radial glia, which pro-

vided us with a close approximation of cerebellar radial glia.

The scRNAs radial glia dataset included profiles of ventricular

(vRG) and outer subventricular zone (oRG) radial glia subpopu-

lations, which are located in distinct niches and have distinct

neurodevelopmental roles (Pollen et al., 2015). General radial

glia genes were significantly enriched in UEC-1 (FC = 27.7)

and TEC (FC = 30.5) but not UEC-2 subpopulations (Figure 2D),

suggesting that the former are related to the radial glia lineage.

UEC-1s were distinguished from TECs by exclusive enrichment

of vRG-specific genes (FC = 18.8). In contrast, TECs had a

greater enrichment of oRG-specific genes (FC = 12.1) than

UEC-1s had (FC = 8.1). Previously defined EPN and neural can-

cer stem cell markers CD133 (PROM1), nestin (NES), EMX2,

NOTCH1, SOX2, and HES1 were examined, but none, apart

from HES1, were strongly restricted to UEC-1s (Figure S4A).

Recent mapping of mouse cerebellar developmental lineages

by scRNA-seq provided a comprehensive dataset that was

used to predict putative cells of origin in childhood cerebellar

tumors, showing that PFA most closely mirrored mouse glio-

genic progenitors, but with subpopulations resembling roof-

plate-like stem cells (Vladoiu et al., 2019). We compared our

PF subpopulations to these mouse cerebellar lineages and

found that, among these subpopulations, UEC-1s and TECs

showed the greatest overlap with mouse cerebellar develop-

mental lineages, most notably ventricular zone progenitors,

gliogenic progenitors-1, gliogenic progenitors-2, and astro-

cyte/Bergmann glia progenitors, but not roof-plate-like stem

cells (Figure 2E; Table S5A). UEC-1s showed a greater enrich-

ment of mouse ventricular zone progenitors (FC = 17.7) than

TECs did (FC = 14.2). In a similar pattern to oRG, gliogenic pro-

genitor-2 and gliogenic progenitor-1 genes were significantly

enriched in TECs (FC = 28.4 and FC = 19.5, respectively) but

to a lesser extent in UEC-1s (FC = 19.5 and FC = 8.9, respec-

tively). This also matches the enrichment pattern of mouse

ependymal layer quiescent neural stem cell genes that were

greater in TECs (FC = 26.6) than UEC-1s (FC = 14.2) (Figure 2C).

TECs, and to a much lesser extent UECs, were enriched for

astrocyte/Bergmann glia progenitor genes (FC = 31.9).

Vladoiu et al. (2019) used pseudotime trajectory analysis of

mouse cerebellar progenitor populations to demonstrate that

ventricular zone progenitors give rise to gliogenic precursors

and then astrocyte/Bergmann glia progenitors. UEC-1s may,

therefore, recapitulate this process as the PFA progenitor sub-

population, which gives rise to TECs. Collectively, UEC-1-spe-

cific enrichment of human vRG and mouse ventricular zone pro-

genitor genes suggest a potential common ventricular zone cell

of origin for PFA tumors. Indeed, ventricular radial glia and ven-

tricular zone progenitors may represent the same population of

cells, because midneurogenesis radial glia has been shown to

constitute most ventricular zone progenitors in most CNS re-

gions (Hartfuss et al., 2001). UEC-2s exhibited no significant

enrichment of radial glia or gliogenic progenitor genes,
m (C) normal ependymal layer cells genesets from scRNA-seq characterization

A-seq characterization (Abbreviations: vRG, ventricular radial glia; oRG, outer

seq (full dataset in Table S5A); and (F) GBM intratumoral anatomic structures.

Cell Reports 32, 108023, August 11, 2020 5
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suggesting that despitemolecular similarities to UEC-1, this sub-

population has a more-differentiated phenotype.

MEC was characterized by stress-response gene-expression

programs, namely angiogenesis, hypoxia, and glycolysis,

including genes such as VEGFA, CA9, CHI3L1, and CD44 (Fig-

ure 2A; Table S2). These genes have previously been described

as markers of a mesenchymal phenotype in EPN (Wani et al.,

2012). The nuclear factor kB (NF-kB2) transcription factor activ-

ity inferred in MECs (Figure 2B) is consistent with a response

to hypoxia and other cellular stress. MECs were enriched for

GBM pseudopalisading necrosis genes (http://glioblastoma.

alleninstitute.org) (FC = 49.7) (Figure 2F). Collectively, these

data suggest that MECs are undergoing epithelial-mesenchymal

transition (EMT), a phenotype that has recently been described in

PFA (Malgulwar et al., 2018) as a response to hypoxic stress,

which is also inferred by the presence of necrosis commonly

seen in PFA tumors.

PFA tumors were also shown to harbor a portion of cells that

fell into RELA clusters, predominantly RELA-sc3 and to a lesser

extent RELA-sc1 and RELA-sc2 (Figure 1E). These major RELA

subpopulations are described in more detail in the following sec-

tion. Being the most abundant RELA subpopulation in the

context of PFA, RELA-sc3s were designated as a major PFA

subpopulation. Comparison of RELA-sc3 with PFA subpopula-

tions revealed that RELA-sc3 shared similarities with TEC with

respect to radial glial cells and mouse cerebellar lineages,

showing enrichment of genes associated with oRGs (FC = 9.4)

and astrocyte/Bergmann glia progenitors (FC = 14.2) (Figures

2D and 2E).

We compared our PFA subpopulations to existing PFA

scRNA-seq data (n = 4) that was available from the recent study

by Vladoiu et al. (2019). Their study had identified heterogeneous

neoplastic cell subpopulations in each sample; two of which

showed significant overlap with the major PFA neoplastic sub-

populations identified in this study (Figure S4B).

RELA Tumors Harbor Less-Diverse Intra-tumoral
Subpopulations Than PFAs
Four major RELA subpopulations, RELA-sc1, RELA-sc2, RELA-

sc3, and MEC, emerged from Harmony analysis of the five RELA

scRNA-seq samples, with all but one containing all four subpop-

ulations (Figure S5A). RELA samples showed less intra-tumoral

heterogeneity than PFAs showed, and RELA subpopulations

showed less-distinctive transcriptomic profiles than PFA sub-

populations. Three of the five RELA samples were obtained

from first recurrences and, therefore, were previously treated

with radiation, but those samples did not cluster discretely

from those RELAs obtained at initial presentation. The differential

gene expression heatmap for the main RELA subpopulations

(Figure S5B) demonstrated overlapping expression of genes

across all three major RELA subpopulations, apart from MECs,

such as nervous system developmental gene HES4, which was

ubiquitously expressed (Table S2). RELA-sc1 and -sc2 shared

enrichments for ‘‘skeletal system development’’ and associated

gene ontologies, including such genes as COL9A3 and COMP,

and ‘‘negative regulation of Wnt signaling,’’ including genes

NOTUM and WIF1 (Table S3). Additionally RELA-sc1 and -sc2

showed overlap in inferred transcription-factor activity, notably
6 Cell Reports 32, 108023, August 11, 2020
RELA (Figure S5C). The predominant geneset enrichment distin-

guishing RELA-sc1, the most abundant RELA subpopulation,

was nervous system development genes, such as HES4, MDK,

HES6, and NEUROD2 (Table S3). RELA-sc2 marker genes

were enriched for Wnt signaling pathway genes, including acti-

vating Wnt ligandsWNT3A andWNT7B. The RELA-sc3 subpop-

ulation was distinguished by enrichment of ontologies related to

oxidative stress response with upregulation of PRDX1, PRDX2,

SOD1, and MT3. Because of the less-distinctive transcriptomic

characteristics of these RELA subpopulations, they were not re-

named based on inferred phenotypes, and analysis of these sub-

populations was not pursued as fully as that of the PFA

subpopulations.

Significant overlap of RELA-sample-derived cells with pre-

dominantly PFA subpopulation MECs was also observed (Fig-

ure 1E). In the context of RELA tumors, MECs likely are also likely

present as a result of hypoxic stress because necrotic zones

exist in RELA as well as in PFA tumors.

PFB and YAP Tumor Subpopulations Recapitulate
Previous Findings with Enrichment in the Markers of
Ependymal Differentiation and Quiescent Neural Stem
Cells, Respectively
Similar to CECs, PFB marker genes were also enriched for cilia-

associated genes (Tables S2 and S3), including CAPS and

RSPH1, and showed mouse ependymal-cell gene enrichment

(FC = 30.2) (Figure 2C). This is consistent with the cilia gene

expression previously described in PFBs, a marker of differenti-

ation that underlies their more indolent clinical behavior (Witt

et al., 2011).

The YAP subpopulation showed upregulation of consensus

YAP marker ARL4D (Figure S5B; Table S2) (Pajtler et al., 2015)

and transcription factors distinct from RELA samples, such as

FOXG1 (Figure S5C; Table S4), which is specifically activated

in the forebrain, a common site of YAP presentation (Andreiuolo

et al., 2019). YAP subpopulation markers were also significantly

enriched for quiescent neural stem cell (qNSC) (FC = 8.9) and RG

(FC = 19.4) genesets (Figures S5D and S5E).

PFA Neoplastic Subpopulations Are Transcriptomically
Related to Classification Subgroups
Each individual sample of the PFA sample was shown to

comprise at least two of the six major PFA subpopulations (18

of 19 PFAs) with only a single PFA sample being composed of

a single subpopulation (Figure 3A). Over half of the PFA samples

(12 of 19) contained all six major PFA subpopulations (6 of 12

PFA1s and 6 of 7 PFA2s). CEC subpopulations were predomi-

nant in PFA2 samples (45% of neoplastic cells), significantly

higher (FC = 5.6, p = 0.0021) than in PFA1 samples (7.9% of

neoplastic cells) (Figures 3A and 3B). This is consistent with pre-

vious data showing cilia-related ontologies as a hallmark of the

PFA2 subgroup and that of PFB as well (Pajtler et al., 2015,

2018; Wani et al., 2012; Witt et al., 2011). Accordingly, published

PFB marker genes were significantly enriched (FC = 24) in CECs

(Figure 3C). PFA1 and PFA2 subgroup marker genesets were

generated by dichotomizing our primary PFA transcriptomic da-

taset based on methylome subgroup assignation, showing

clearly that CEC subpopulation markers genes are significantly

http://glioblastoma.alleninstitute.org
http://glioblastoma.alleninstitute.org
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Figure 3. PFA Neoplastic Subpopulations Are Transcriptomic Related to Classification Subgroups

(A) Fraction of major PFA subpopulations within each PFA scRNA-seq sample, grouped according to major molecular subgroups PFA1 and PFA2.

(B) Average PFA subpopulation fractions in major PFA molecular subgroups.

(C and D) PF EPN subpopulation enrichment (hypergeometric test) of genesets from (C) consensus EPNmolecular subgroups PFA, PFB, RELA, and YAP; and (D)

PFA1 and PFA2 molecular subgroups.

(E) Consensus EPN molecular subgroup geneset enrichment in ST EPN subpopulations.
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enriched for PFA2 subgroup genes (FC = 25)(Figure 3D). TECs

constituted approximately 12% of PFA neoplastic cells and

were highly enriched for PFA signature genes (FC = 20) (Fig-

ure 3C), notably those genes putatively associated with ependy-

mal transport (AQP4, AQP1, and ATP1A2). TECs were ubiqui-

tously distributed across PFA samples, being slightly more

abundant in PFA2s (FC = 1.6) (Figures 3A and 3B) and, accord-
ingly, showed a moderate enrichment of PFA2-specific genes

(FC = 8.0) (Figure 3D). Similar to TECs, UEC-1s showed a signif-

icant enrichment of PFA signature genes (FC = 17) (Figure 3C).

However, they differed from TECs in that they were more abun-

dant (FC = 2.4, p = not significant [n.s.]) in PFA1s (19.4%) than in

PFA2s (8.35%) (Figure 3B) and were significantly enriched for

PFA1 subgroup-specific genes (FC = 12) (Figure 3D). UEC-2s
Cell Reports 32, 108023, August 11, 2020 7
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were not significantly associated with any EPN subgroups

tested. MEC subpopulation cells were more abundant (FC =

2.0, p = n.s.) in PFA1s (9.6%) than in PFA2s (4.9%) (Figures 3A

and 3B). Significantly, MECs showed a higher enrichment of

PFA1 marker genes (FC = 21) than any other EPN subpopulation

(Figure 3D). SharedMECand PFA1 genes included hypoxia (CA9

and ICAM1)-, glycolysis (LDHA and SLC2A1)-, mesenchyme

(CHI3L1 and 2, CD44, CAV1, and TGFBI)-, and inflammation

(CCL2 and CXCL2)-related genes. The finding that NF-KB2 TF

activity, previously documented in PFA1 (Griesinger et al.,

2017), is upregulated in MECs (Figure 2B) also suggest that

this subpopulation underlies the bulk-tumor PFA1 phenotype.

In the context of PF samples, RELA-sc3 cells were similarly

abundant in both PFA1s (10.1%) and PFA2s (8.7%). The single

PFB subpopulation showed moderate PFB subgroup geneset

enrichment (FC = 3.3) (Figure 3C). ST EPN subpopulations

showed enrichment with corresponding RELA- and YAP-sub-

group-signature genesets, except RELA-sc3, which showed

no RELA-subgroup-geneset enrichment (Figure 3E).

Histological Characterization of PFA Subpopulations
Identifies Co-localization of UEC and MEC in
Perivascular and Perinecrotic Zones
We sought to further explore the biology of PFA scRNA-seq sub-

populations using immunohistochemistry (IHC) to both verify

their distribution between samples across PFA1 and PFA2 sub-

groups and to map their histological spatial relationships. In this

study, we focused on those PFA subpopulations for which

distinct biological roles had been inferred from transcriptomic

profiles, namely CEC, TEC, UEC-1, and MEC. Subpopulation-

specific antibodies were developed for use in a cohort

formalin-fixed, paraffin-embedded (FFPE) material from 31 pri-

mary patient PFA samples (Table S1). CAPS and FOXJ1 were

identified as CEC-specific markers based on differential expres-

sion analysis (Figures 2A and S6; Table S2). Cytoplasmic CAPS

and nuclear FOXJ1 protein-expressing cells were colocalized in

sequential sections (Figure S7A), staining true ependymal

rosette cells in some cases, but most commonly being ex-

pressed by small clusters of cells scattered throughout the pa-

renchyma. CAPS and FOXJ1 were expressed in most PFA sam-

ples tested (26 of 31 and 27 for 31, respectively), and IHC

staining scores for these two CECmarkers were positively corre-

lated across the cohort, further supporting their subpopulation

specificity (Table S5B).

In general, TEC and UEC-1 subpopulation markers showed

less subpopulation specificity than did CEC and MEC markers

(Figure S6). TEC marker VIPR2 was expressed in cells of the tu-

mor parenchyma, with decreased expression in true ependymal

rosettes (Figure S7B). VIPR2 was expressed to a varying degree

in all samples, but showed no significant correlation with any

other subpopulation marker across the PFA FFPE cohort (Table

S5B).

UEC-1 markers FOS and COL9A2 were expressed in patches

of cells, often in perivascular or perinecrotic areas, which were

colocalized in some cases, but not in others (Figures 4A, 4B,

and S7C) and showed significant correlation of IHC staining

scores across the PFA histology cohort (Table S5B). FOS

expression was observed in all 31 PFA samples, apart from
8 Cell Reports 32, 108023, August 11, 2020
COL9A2, which was absent in �50% of the cohort. Localization

of UEC-1 in perivascular zones is consistent with previous

studies that identified a perivascular niche for putative EPN can-

cer stem cells (Calabrese et al., 2007; Taylor et al., 2005), further

supporting UEC-1 as a potential progenitor subpopulation in

PFA.

MEC-specific markers CA9, CAV1, and SLC2A1 were pre-

dominantly co-localized in sequential sections, staining large

swathes of cells (Figures 4B, 4C, and S7D). MEC-specificmarker

expression was commonly seen in perinecrotic regions, consis-

tent with our observation that MEC markers are enriched for

genes upregulated in GBM pseudopalisading necrosis zones

(Figure 2F) and with enriched stress-response-related gene

expression in this subpopulation. Across our PFA histology sam-

ple cohort, all three MEC markers were positively correlated,

CA9 and SLC2A1 showing the strongest correlation (Table

S5B). MEC markers were detected in most PFA samples tested,

being undetectable in only two PFA2 samples. CA9 expression

has previously been investigated in EPN and, consistent with

our study, was shown, along with VEGF mRNA, to be signifi-

cantly co-localized in perinecrotic areas and areas with aberrant

vascular patterning (Preusser et al., 2005).

Colocalization of MEC with UEC-1 was shown in most sam-

ples in zones of necrosis and aberrant vascularization (Fig-

ure 4B). Previous studies had explored the relationship be-

tween EPN cancer stem cells and vascular endothelial cells,

providing evidence that the latter secrete factors that maintain

the cancer stem cell population. We show here that the UEC-1

niche is largely constituted by MECs, which may, therefore,

also contribute significantly to the maintenance and renewal

of the putative cancer stem cell population in PFAs. Using a

large-scale map of ligand-receptor pairs (Ramilowski et al.,

2015), we investigated possible interactions between UEC-1

and MEC. This revealed a predominance of extracellular ma-

trix (ECM) receptor signaling between both cell types (Table

S5D). ECM receptor signaling can control a variety of cellular

activities, including neural stem cell maintenance (Xu et al.,

2014).

PFA Subpopulations Underlie Bulk-Tumor Subgroup
Assignment and Are Associated with Disparate Clinical
Outcomes
Bulk-tumor transcriptome data (Affymetrix HG-U133plus2) from

121 primary PFA EPN samples, which combined samples from

our institution with a large publicly available transcriptomic data-

set (Pajtler et al., 2018), were deconvoluted using CIBERSORT

(Newman et al., 2015) to estimate the fraction of each of the ma-

jor PFA neoplastic subpopulations. The relationship of subpop-

ulation proportions to PFA classification subgroups was as-

sessed in samples that were assigned to PFA1 or PFA2

subgroups based on bulk-tumor methylome analysis (Table

S1). As hypothesized from geneset-enrichment analysis of

scRNA-seq subpopulation markers (Figure 3C), MECs and

CECs were the prevalent subpopulations in PFA1s and PFA2s,

respectively (Figure 5A). Additionally, deconvoluted TEC and

UEC-1 fractions were significantly more prevalent in PFA2s

and PFA1s, respectively (Figure 5A). IHC subpopulation marker

expression was concordant with deconvoluted subpopulation
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Figure 4. Histological Characterization of PFA Subpopulations Identifies Co-localization of UEC and MEC in Perivascular and Perinecrotic

Zones

(A) Representative perivascular IHC staining pattern of UEC-1 marker FOS (brown) in three PFA patient samples (scale bars: 50 mm).

(B) Perinecrotic colocalization of UEC marker FOS (brown) and MEC marker CA9 (brown) in sequential sections from three PFA patient samples (black arrows,

necrosis; red arrows, aberrant vascularization). Scale bars: 500 mm (left panel) and 200 mm (right panels).

(C) Low-magnification images demonstrating grossly localized distribution of MEC marker CA9 (brown) in three PFA patient samples (scale bar: 2mm). See also

Figures S6 and S7.
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fractions, showing greater expression of CEC and TEC markers

in PFA2s and greater expression of UEC-1s and MECs in PFA1s

(Figure 5B). Pajtler et al. (Pajtler et al., 2018) recently identified

subtypes within PFA1 and PFA2 that demonstrated variable clin-

ical characteristics, which we examined for PFA subpopulation

associations. CEC subpopulation fractions showed the greatest

variability among subtypes, being significantly higher in PFA1c

than in other PFA1 subtypes, in particular PFA1a and PFA1e (Fig-

ure S8A). Conversely, UEC-1 and MEC deconvoluted fractions

were significantly higher in PFA1a than in PFA1c.
The relationship between deconvoluted subpopulation frac-

tions was examined, identifying a significant negative correlation

between CEC and MEC fractions (Figure 5C; Table S5C), and

concordantly, CEC and MEC IHC marker correlations were

also negatively correlated (Figure 5C; Table S5C). Of note,

CEC and MEC subpopulations occupied predominantly non-

overlapping histological zones (Figures S7A and S7D). Other

subpopulations fractions were significantly correlated; the stron-

gest of which was the positive correlation between UEC-1 and

MEC (Figure 5D). This finding, which was corroborated by IHC
Cell Reports 32, 108023, August 11, 2020 9



Figure 5. PFA Subpopulations Underlie Bulk-Tumor Subgroup Assignment and Are Associated with Variable Clinical Outcomes

(A and B) Differential subpopulation fractions (mean, error bars = SD) between PFA1 and PFA2 (A) inferred by deconvolution of PFA bulk-tumor transcriptome

profiles (n = 121); ****p < 10–13, ***p < 10–9, **p < 10–7, *p < 0.005 (see also Figure S8); and (B) scored by subpopulation IHC markers in FFPE samples (n = 31);

***p < 10–4, *p < 0.01.

(C and D) Subpopulation fraction correlation between (C) CEC and MEC, and (D) UEC-1 and MEC, based on deconvoluted fractions (left) and subpopulation IHC

marker scoring (right). See Tables S5B and S5C for full subpopulation correlation matrices.

(E and F) (E) Kaplan-Meier progression-free survival (PFS) and overall survival (OS) analysis of PFA with higher- versus lower-than-median, deconvoluted UEC-1

fractions. (F) Kaplan-Meier PFS association for higher- versus lower-than-median, deconvoluted TEC fraction.

(G) Kaplan-Meier overall survival associations for higher- versus lower-than-median MEC marker CAV1 IHC score. See Table S5E for full outcome analyses.
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(Figure 5D), also revealed a common perivascular, perinecrotic

localization for both UEC-1 and MEC (Figure 4B). A significant

negative correlation of the TEC deconvoluted fraction with

both UEC-1 and MEC fractions was also identified (Table S5C).

The dependence of bulk tumor subgroup assignment on un-

derlying MEC and CEC subgroup proportions explains the diffi-

culty in subgroup assignment for samples in which MEC and

CEC proportions are closely balanced. For example, in our

PFA cohort, we observed non-concordance in methylome and

transcriptome-based PFA1/PFA2 classification in 20% (9 of 44)

of samples tested (Table S1) in samples that contained balanced

proportions of MECs and CECs (Figure S8B). The difficulty in

molecular subgroup assignation is further complicated by the

heterogeneous intra-tumoral localization of subpopulations.

This is particularly evident for MECs that are distributed
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throughout the tumor in a grossly localized fashion (Figure 4C).

In these cases, sampling error is likely to lead to unreliable sub-

group assignation, being dependent on whether RNA/DNA is ex-

tracted from zones with high or low MEC abundance.

To further elucidate the biology of PFA subpopulations, we

examined their association with clinical outcome, using both de-

convoluted subpopulation fractions and IHC scores in the clini-

cally annotated sample cohort from our institution (Table S1).

Progression-free survival (PFS) and overall survival (OS) were

determined using Kaplan-Meier curve analysis and a log-rank t

test, with subjects divided according to clinical variables and

higher or lower than median deconvoluted subpopulation frac-

tions in the transcriptomic PFA cohort (n = 43; median follow-

up: 5.6 years). Consistent with previous studies (Pajtler et al.,

2018), our transcriptomic cohort demonstrated no difference in
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Figure 6. In vitro Perturbations and Pseudotime Analysis Identifies Developmental and Microenvironmental Stress Associated with PFA

Subpopulation Lineage Trajectories

(A and B) Neoplastic subpopulation signature enrichment (hypergeometric test p value) of genes upregulated (A) in PFA cell lines MAF-811 and MAF-928

maintained as non-adherent 3D neurospheres as compared with adherent monolayer cultures, and (B) in PFA cell lines MAF-811 and MAF-928 and short-term

culture from sample 1,239 in response to hypoxia. See also Figure S8C.

(C) Pseudotime analysis of PFA neoplastic cells with Destiny and Slingshot reveals divergent trajectories starting with UEC-1 and either (1) transitioning intoMECs

via UEC-2s, or (2) differentiating into TECs and then CECs. Abbreviation: DC, diffusion component. See also Figure S9.

(D) Schematic of hypothetical divergent PFA subpopulation trajectories either as a response to stress (e.g., hypoxia), or recapitulating normal developmental

processes in response to developmental cues.
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PFA or OS between PFA1 and PFA2 based on methylation sub-

group assignment (Table S5E). Deconvoluted subpopulation

fractions did, however, show significant outcome associations.

In particular, UEC-1 was significantly (p < 0.05) associated with

outcome, with higher-than-median fractions of UEC-1s being

associated with higher and lower risk of recurrence and death

(Figure 5E; Table S5E). Conversely, a higher-than-median frac-

tion of TECs was associated with a significantly longer PFS (Fig-

ure 5F) and a longer OS, but this did not reach significance by

log-rank t test (Table S5E). A higher-than-median fraction of

CECs and MECs, respectively, was associated with longer and

shorter survival, but neither of those reached significance (Table

S5E). These deconvoluted subpopulation fraction outcome

trends were reiterated in the smaller IHC study cohort (n = 31;

median follow-up: 5.6 years) (Table S5E), with MEC marker

CAV1 being significantly associated with shorter OS (Figure 5G).

In vitro Perturbations and Pseudotime Analysis
Identifies Developmental and Microenvironmental
Stress Associated PFA Subpopulation Lineage
Trajectories
Molecular characterization of PFA subpopulations revealed evi-

dence of lineage differentiation, which we further explored by
perturbation of EPN cell lines, short-term culture and pseudo-

time lineage trajectory analysis of scRNA-seq data. We recently

established PFA cell lines (MAF-811 andMFA-928), which, when

cultured as monolayers, showed increased MECs and

decreased CECs and TECs compared with primary tumor as

measured by deconvolution of transcriptomic profiles (Fig-

ure S8C). Our previous study of these cell lines demonstrated

that cells cultured as 3D structures harbored cilia-related gene

expression and archetypal EPN cellular architecture that was ab-

sent in cells grown as monolayers (Amani et al., 2017). Reanaly-

sis of these data demonstrated a significant enrichment of CEC

and TEC signature genes in those genes upregulated in 3D cul-

tures versus monolayers in both cell lines (Figure 6A), suggesting

that PFA differentiation is mediated, in part, by architectural

developmental cues. Gene expression in MECs suggests a

stress-response program, possibly because of hypoxic condi-

tions found in peri-necrotic tumor zones in PFA. We modeled

these conditions in PFA in vitro by culturing cell lines MAF-811

and MAF-928 under hypoxic conditions (2% O2, 72 h), demon-

strating a striking upregulation of MEC signature genes in both

cell lines (Figure 6B). Both cell lines were established from recur-

rent tumor samples and harbor a chromosome arm 1q gain. To

exclude the possibility that these results were related to these
Cell Reports 32, 108023, August 11, 2020 11
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factors, we repeated this experiment with a short-term culture

from a primary sample with no 1q aberrations (1,239), which

showed a consistent hypoxia response (Figure 6B). Collectively,

functional analyses demonstrate the adaptive capacity of PFA

cells that likely underlies their discrete subpopulation

characteristics.

PFA scRNA-seq data were subject to unsupervised lineage

trajectory analysis using Slingshot (Street et al., 2018) to identify

trajectories and order cells on a diffusion map produced by Des-

tiny (Angerer et al., 2015). We identified a divergent cellular tra-

jectory, in which UEC-1 developed into either (1) TECs and

then CECs, or (2) transitioned into UEC-2s then MECs (Fig-

ure 6C). Trajectory gene expression showed a continuous

gradual change across cell states for both trajectories (Figure S9)

Based on these in vitro and scRNA-seq analyses, we hypoth-

esize that divergent lineage trajectories exist in PFA (Figure 6D).

One branch represents a differentiating trajectories; the most

predominant of which is a recapitulation of normal ependymal

development, namely the development of TEC and CEC. This

PFA developmental trajectory, whereby UEC-1 develop into

more-differentiated progeny, conforms to the classic hierarchi-

cal lineage described by the cancer stem cell model, in which

a stem cell subpopulation that is associated with an aggressive

clinical phenotype differentiates into progressively less-aggres-

sive progeny presumably in response to developmental or differ-

entiation stimuli. Such stimuli include cellular architectural orga-

nization cues, a process that we recapitulated in vitro (Figure 6A),

potentially through planar cell-polarity signaling that has been

implicated as a requirement for ciliogenesis (Kim et al., 2010).

This PFA-specific cancer stem cell trajectory is further supported

by the selective enrichment of vRG and ventricular progenitor-

specific transcripts in UEC-1 (Figures 2D and 2E). Given the

favorable clinical behavior of EPN PF with a low proportion of

UEC-1 and a higher proportion of TEC (Figure 5E), differentiation,

agent treatment may, therefore, prove beneficial. In support of

this therapeutic strategy, we recently demonstrated PFA-selec-

tive efficacy of differentiating agent retinoid-analogs in vitro

(Donson et al., 2018). In the second-lineage trajectory. UEC-1s

undergo EMT to become MECs, a process that is likely driven

by microenvironmental stress stimuli, such as hypoxia and/or

nutrient deprivation (Figure 6D). Consequent MEC-mediated

vasculogenesis may then generate a perivascular niche that sup-

ports the putative PFA cancer stem-cell subpopulation UEC-1, a

hypothesis that is also supported by histological colocalization

of these subpopulations (Figure 4B). Functional testing of these

hypotheses will be required to more definitively characterize

the putative PFA populations revealed by the present, largely

molecular, study.

Resource: Childhood EPN Single-Cell Browser
We created a browsable web interface that integrates the

Harmony EPN scRNA-seq dataset with the University of

California, Santa Cruz (UCSC) Cell Browser format (http://

pneuroonccellatlas.org). This interactive resource allows users

to study the cellular restriction and expression level of transcripts

of interest at the single-cell level in childhood EPN. In addition to

raw gene expression values, we include imputed gene-expres-

sion values that were generated using adaptively thresholded
12 Cell Reports 32, 108023, August 11, 2020
low-rank approximation (ALRA) (https://www.biorxiv.org/

content/10.1101/397588v1).

DISCUSSION

In the present study, we used scRNA-seq to describe intra- and

inter-tumoral cellular heterogeneity in a well-characterized

cohort of childhood ST and PF EPNs (n = 26). PFA tumors in

particular appear to conceal multiple conserved andwell defined

subpopulations corresponding to normal ependymal functional

states, neurodevelopmental states and stress-response

mechanisms.

Two PFA subpopulations, CEC and TEC, recapitulated normal

ependymal phenotypes of cilia-function and cellular transport

respectively, evidence of differentiation processes that, consis-

tent with cancers in general, convey a favorable clinical

outcome. A recent scRNA-seq study that mapped mouse cere-

bellar developmental lineages and compared these with child-

hood cerebellar tumors, did not identify differentiated subpopu-

lations in PFA, postulating the existence of a differentiation block

in these tumors (Vladoiu et al., 2019). Our study contradicts their

hypothesis through identification of differentiated PFA subpopu-

lations. We believe this discrepancy is due to the absence of

ependymal cell types in their mouse cerebellar developmental

lineage comparators.

Our study identified an undifferentiated PFA subpopulation,

UEC-1, which is associated with a more-aggressive clinical

course. These characteristics, combined with pseudotime

cellular lineage analysis and in vitro functional assays, lead us

to hypothesize that UEC-1s are the PFA CSC population (Fig-

ure 6D). Consistent with earlier EPN CSC studies, UEC-1s reside

in perinecrotic and perivascular zones (Calabrese et al., 2007).

We now show that this CSC niche is largely composed of

MECs that may contribute to CSC maintenance and/or expan-

sion, an important area for further exploration. Comparison of

PFA subpopulations to scRNA-seq-defined neurodevelopmen-

tal lineages, namely of human radial glia (Pollen et al., 2015),

mouse cerebellum (Vladoiu et al., 2019), and mouse ependymal

layer (Shah et al., 2018), revealed significant overlap of the UEC-

1 subpopulation with VZ lineages, namely, human vRG and

mouse VZ progenitors. Vladoiu et al. (2019) combined deconvo-

lution of bulk-tumor PFA transcriptomes and scRNA-seq anal-

ysis of four PFA samples with mouse cerebellar developmental

lineage markers, identifying gliogenic progenitors as a putative

PFA cell of origin. Our study refines their findings, identifying

enrichment of gliogenic progenitor genes in UEC-1s but to a

greater extent in the more-differentiated TEC subpopulation, in

addition to identifying greater ventricular zone progenitor gene

enrichment in UEC-1.

The molecular characteristics of MECs underlie many of the

phenotypes that had previously been identified as hallmarks of

PFA and PFA1 subgroup tumors. The original study to define

PFAs showed that this subgroup was distinguished from PFBs

by enrichment of gene ontologies, such as angiogenesis,

VEGF signaling, tissue invasion, and response to hypoxia (Witt

et al., 2011). Conversely, the PFBs were distinguished by cilia-

related ontologies. A study contemporary to that one identified

a subgroup analogous to PFA that was defined bymesenchymal

http://pneuroonccellatlas.org
http://pneuroonccellatlas.org
https://www.biorxiv.org/content/10.1101/397588v1
https://www.biorxiv.org/content/10.1101/397588v1
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characteristics (Wani et al., 2012). Subsequent studies have

focused on the NF-kB2-driven inflammatory phenotype in PFA

(Griesinger et al., 2015; Griesinger et al., 2017). It is now apparent

that these functions that were previously ascribed to PFA1 are

specifically restricted to the MEC subpopulation of PFA. The

transition of UEC-1s to MECs suggested by pseudotime lineage

analysis recapitulates EMT, an essential process in embryogen-

esis and would healing, which, in cancer, results in tissue inva-

sion and pluripotency. All of the MEC-associated phenotypes

above are widely recognized to contribute to poor clinical out-

comes, and not surprisingly, MEC was associated with shorter

OS in our present study.

We demonstrated that the predominance of either MEC or

CEC subpopulations determined bulk-tumor subgroup assigna-

tion to PFA1 or PFA2, respectively, but that no subpopulations

was unique to either subgroup. This finding potentially explains

the difficulty in accurately classifying PFA to either subgroup,

as demonstrated by non-concordance to methylome and tran-

scriptome-based subgroup assignment in a portion (20%) of

samples. Indeed, these data suggest that the existence of

discrete PFA1 and PFA2 molecular subgroups is a misconcep-

tion. Rather PFA tumors are a continuum of varying ratios of

PFA1-like (MEC) and PFA2-like (CEC) subpopulations, with a

potentially common underlying biology and cell or origin. This

is an important consideration given that subgroup-specific tar-

geted therapies are being suggested based on the theory that

PFA1 and PFA2 are distinct. Thus, in addition to a misinterpreta-

tion of the cancer biology, neoplastic cell heterogeneity also con-

founds bulk-tumor-based subgrouping of tumors beyond a

certain threshold. The results of the present study show that

this threshold has been reached at the PFA1/PFA2 subgroup

level, as defined by transcriptomic analysis. Whether this caveat

extends to subgrouping based on methylation profiling is of crit-

ical importance in future PFA studies.

PFA contributes overwhelmingly to the high relapse rate in

EPN, which is fatal in more than 50% of children and has not

seen any therapeutic improvements in more than 30 years (Ram-

aswamy et al., 2016). Most children with PFA undergo complete

tumor resection and receive radiation when in a state of minimal

disease. In spite of that, the delayed relapse rate is high, with

70% relapsing by 10 years (Marinoff et al., 2017). This suggests

that relapse occurs from a subpopulation of resistant cells. Our

study identified two PFA subpopulations that were associated

with a more-aggressive clinical course, namely UEC-1 and

MEC. These subpopulations, therefore, represent novel candi-

date drivers of relapse in PFA, which could be specifically tar-

geted for therapeutic gain. Further functional and pre-clinical

studies are, therefore, required to more definitively demonstrate

the proposed progenitor-cell characteristics and therapeutic

resistance properties of these subpopulations.

Based on the results of recent studies in high-grade glioma

(Neftel et al., 2019; Patel et al., 2014), we had anticipated identi-

fying PFA subpopulations corresponding to bulk PFA1 and PFA2

subgroup profiling (MEC and CEC). However, scRNA-seq also

revealed the existence of additional conserved subpopulations

(notably TEC and UEC-1). These subpopulations harbor distinct

and clinically relevant biologies and, yet, were not apparent from

bulk-tumor transcriptomic analyses, obscured by the overpow-
ering transcriptomic profiles of MEC and CEC. This surprising

finding further underscores the power of single-cell analyses in

oncology research and the critical need to address cancer-cell

heterogeneity in our goal to provide effective therapy for this

devastating childhood tumor.
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CA9 rabbit Pab Novus NB100417; RRID:AB_10003398

CAPS rabbit Pab Novus NBP1-91746; RRID:AB_11016241

COL9A2 ThermoFisher PA5-63286; RRID:AB_2640030

FOS Origene TA806833; RRID:AB_2628246
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SLC2A1 Proteintech 21829-1-AP; RRID:AB_10837075

CAV1 ThermoFisher PA5-32297; RRID:AB_2549770

VIPR2 (VPAC2) ThermoFisher PF3-114; RRID:AB_2216680

Biological Samples

Human surgical samples (refer to Table S1) University of Colorado / Morgan Adams

Foundation tumor bank

Refer to Table S1

Critical Commercial Assays

Allprep RNA/DNA Mini Kit QIAGEN Cat #80204

Chromium Single Cell V2 and V3 Chemistry

Library Kit, Gel Bead & Multiplex Kit

and Chip Kit

10x Genomics Cats #120237

#120262

#120236

Deposited Data

scRNaseq and Affymetrix microarray data

superseries

GEO: GSE126025
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Experimental Models: Cell Lines
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single-cell-gene-expression/software/

overview/welcome

Seurat (version 2.0) Satija laboratory https://satijalab.org/seurat

DAVID (version 6.8) NCI https://david.ncifcrf.gov/

SCENIC (Aibar et al., 2017) N/A

Slingshot (Street et al., 2018) N/A

Destiny (Angerer et al., 2105) N/A

MolecularNeuropathology.org version 12 German Cancer Research Center (DKFZ) https://www.molecularneuropathology.

org/mnp

NMF Broad Institute https://cloud.genepattern.org

gSNAP (Wu and Nacu, 2010) N/A

Cufflinks (Trapnell et al., 2012) N/A

Illustrator 23.0.3 Adobe N/A
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Lead Contact
Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Andrew Donson (andrew.

donson@cuanschutz.edu).

Materials Availibility
This study did not generate any new unique reagents

Data and Code Availibility
No unpublished custom code, software or algorithm was used in this study. The accession number for the scRNaseq and transcrip-

tome data reported in this paper is Gene Expression Omnibus (GEO) database: GSE126025https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE126025. Data is also available in the browsable webresource of the full EPN scRNaseq neoplastic subpop-

ulation dataset is available at the Pediatric Neuro-oncology Cell Atlas (Database: pneuroonccellatlas.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Surgical material was collected at our institution at the time of surgery with consent (COMIRB 95-500). Samples were snap frozen for

bulk-tumor methylome (n = 52) and transcriptome analysis (n = 69) and a subset of these were collected into PBS for scRNaseq anal-

ysis (n = 26) (Table S1). ScRNaseq samples were rapidly dissociated into single cells using a mechanical process as described pre-

viously (Griesinger et al., 2013), viably cryopreserved and banked at < 80�C for later use. In this way we were able to batch samples

and thus limit experimental variancewithout compromising sample quality, as DMSOcryopreservation has been shown tomatch and

in some cases exceed the quality of fresh samples with respect to scRNaseq analysis (Wohnhaas et al., 2019).

EPN cell lines MAF-811 and MAF-928 were established as previously described (Amani et al., 2017). Cell lines were validated by

DNA fingerprinting through the University of ColoradoMolecular Biology Service Center utilizing the STRDNAProfiling PowerPlex-16

HS Kit (DC2101, Promega). Short term culture 1239 was established from disaggregated primary tumor that had been viably cryo-

preserved, and maintained as for EPN cell lines using Optimem media supplemented with 15% fetal bovine serum.

METHOD DETAILS

Tissue harvest for single cell suspension, single-cell RNA library preparation and sequencing
For scRNaseq, samples were thawed in batches and flow sorted (Astrios EQ) to obtain viable single cells based on propidium iodide

(PI) exclusion. With the study goal of performing scRNaseq on 2,000 cells per sample, we utilized a Chromium Controller in combi-

nation with Chromium Single Cell V2 and V3 Chemistry Library Kits, Gel Bead & Multiplex Kit and Chip Kit (10X Genomics). This

approach involves the isolation of single cells into microfluidic droplets containing oligonucleotide-covered gel beads that capture

and barcode the transcripts. Transcripts were converted to cDNA, barcoded and sequenced on Illumina HiSeq4000 and Nova-

Seq6000 sequencers to obtain approximately 50 thousand reads per cell.

ScRNaseq data analysis
Raw sequencing reads were demultiplexed, mapped to the human reference genome (build GRCh38) and gene-expressionmatrices

were generated using CellRanger (version 3.0.1). The resulting count matrices were further filtered in Seurat 3.1.0 (https://satijalab.

org/seurat/) to remove cell barcodes with less than 200 genes, more than 30% of UMIs derived from mitochondrial genes, or more

than 70,000 UMIs (to exclude putative doublets). This filtering resulted in 18500 single cells across all samples (Figure S1). After

normalization, these cells were clustered using the Seurat workflow based on dimensionality reduction by PCA using the 1,602

most variable genes. We applied Harmony (Korsunsky et al., 2018) alignment (theta = 2) to correct for inter-sample variation due

to experimental or sequencing batch effects. After assessment of clustering using a variety of dimensions, we used the default setting

of the first 20 harmony dimensions to cluster the data and perform dimensionality reduction using Uniform Manifold Approximation

and Projection (UMAP). Differential expression and marker gene identification was performed using MAST (Finak et al., 2015). After

exclusion of non-neoplastic cell populations the cells were re-clustered and re-projected to refine neoplastic subpopulation-specific

differential expression gene lists that were further filtered to remove ribosomal protein genes.

Chromosomal CNVs of single cells from scRNaseq were inferred on the basis of average relative expression in variable genomic

windows using InferCNV (https://github.com/broadinstitute/inferCNV). Cells classified as non-neoplastic were used to define a base-

line of normal karyotype such that their average copy number value was subtracted from all cells.

Neoplastic subpopulations were characterized by direct examination of neoplastic-subpopulation specific gene lists, enrichment

of comparator genesets and inference of regulatory gene networks. DAVID (Database for Annotation, Visualization, and Integrated

Discovery: https://david.ncifcrf.gov/; version 6.8) was used to measure enrichment of GOterm Biological Process Direct genesets in

subpopulation signatures, providing gene ontology mappings directly annotated by the source database. Subpopulation

signature genesets included the top 250 differentially expressed subpopulation markers ranked by adjusted p value and filtered
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to remove ribosomal genes (Table S6). Enrichment of select comparator genesets (Table S6) was performed by hypergeometric

testing. Normal mouse ependymal cell and qNSC genesets, human radial glia subpopulation genesets, and mouse cerebellar devel-

opmental lineage genesets were obtained from published scRNaseq datasets (Pollen et al., 2015; Shah et al., 2018; Vladoiu et al.,

2019). GBM intra-tumoral anatomic structure transcriptomic genesets were obtained from the Ivy Glioblastoma Atlas Project

[http://glioblastoma.alleninstitute.org/].

EPNmolecular subgroup PFA, PFB, RELA and YAP signature genesets (Table S6) were obtained by differential expression analysis

of published EPN transcriptomic dataset GSE64415 (Pajtler et al., 2015). Comparator genesets for classification subgroups PFA1

and PFA2 (Table S6) were obtained by differential gene expression analysis of our subgroup-classified bulk-tumor transcriptomic

data based on methylation profile classification (Table S1).

Single-cell regulatory network inference and clustering (SCENIC) was used to identify gene regulatory networks at the single cell

level (Aibar et al., 2017). Slingshot lineage analysis (Street et al., 2018) and Destiny diffusion mapping (Angerer et al., 2015) were uti-

lized for pseudotime modeling due to their ability to identify multiple trajectories.

Putative cell-to-cell communication between neoplastic subpopulations were identified based on overexpression of a receptor by

one cell type and overexpression of an interacting ligand by the other cell type. Overexpression of the receptor by a particular cell type

is defined as an incoming signal, and the expression of the ligand as an outgoing signal. Ligand-receptor pairs used in this analysis

were defined by Ramilowski et al. (2015). The product of ligand and receptor subpopulation-specific fold change was used to rank

communications between MEC and CEC.

Bulk-tumor methylome and transcriptome analyses
DNA and RNAwere extracted from snap frozen EPN-PF surgical tumor samples (QIAGEN, Allprep DNA/RNAmini kit). Forty nine sur-

gical tumor samples were from initial presentation and 3 samples (all RELA) from first recurrence (Table S1). Methylome analysis of

DNA frompresentation samples (n = 52) was performed using the Illumina 850Kmethylation array. Resulting IDAT fileswere uploaded

to MolecularNeuropathology.org (https://www.molecularneuropathology.org/mnp) which provided subgrouping into RELA (n = 4),

RELA-like (n = 1), YAP (n = 1), PFA (n = 44) and PFB (n = 2) molecular subgroups and chromosomal copy number variants (CNVs)

(Table S1). ST subgroup assignation was confirmed by IGV analysis of RNaseq (Illumina NovaSeq6000) profiles of ST samples,

with both RELA and RELA-like samples exhibiting C11ORF95-RELA fusions, and a YAP-MAMLD1 fusion in the YAP sample. Meth-

ylomic profiles of PFA samples were used to assign PFA samples to PFA1 (n = 27) and PFA2 (n = 17) and subtypes within these sub-

groups using the same approach as used by the study initially defining these subtypes (Pajtler et al., 2018)(courtesy of Dr. Martin Sill,

DKFZ, Heidelberg, Germany). Transcriptomic analysis was performed at our institution using the Human Genome U133plus2 Array

(Affymetrix) platform as described previously (Griesinger et al., 2017). Microarray CEL datafiles were background corrected and

normalized using the guanine cytosine robust multi array average (gcRMA) algorithm to generate a gene expression matrix of

log2 expression values. To reduce error associated with multiple testing, a filtered gene expression matrix was created containing

the highest expressed probe across all samples for each gene that possessedmultiple probe sets. This was further filtered to remove

probe sets that were expressed below a threshold level that denoted absence of expression in any sample. PFA samples were also

assigned to PFA1 and PFA2 subgroups based on transcriptomic profiles using non-negative matrix factorization (NMF; https://cloud.

genepattern.org) as described previously (Griesinger et al., 2017). PFA transcriptomic profiles segregated into 2 groups correspond-

ing to PFA1 (n = 22) and PFA2 (n = 22) (Table S1). Our microarray data were merged with primary PFA EPN transcriptomic datasets

from The German Cancer Research Center DKFZ, Heidelberg, Germany (Accession number GSE64415; n = 39) and St Jude

Children’s Research Hospital, Memphis, USA (Accession number GSE100240; n = 39) with full methylation-based subgroup anno-

tation (Courtesy of Dr. Marcel Kool, Heidelberg, Germany).

Deconvolution
CIBERSORT was used to perform deconvolution of bulk-tumor PFA transcriptomes of 44 patient samples, using scRNaseq subpop-

ulation signature genes (Newman et al., 2015). The combined transcriptomic dataset (n = 121) was used unlogged and used as the

mixture file. A signature gene inputmatrix was generated from log2 values of normalized raw scRNaseq expression data averaged for

each neoplastic and non-neoplastic cluster (Table S6). CIBERSORT was run using these datasets with 100 permutations.

Immunohistochemistry
Immunohistochemistry was performed on 5-mm formalin-fixed, paraffin-embedded tumor tissue sections using a Ventana autos-

tainer. All immunostained sections were counterstained with hematoxylin. Neuropathological review of staining and blinded IHC

scoring was then performed (A.G., A.M.D.). Antibody details are provided in Table S5F.

Survival studies
Survival data were obtainedwith ethics committee approval (COM-IRB 09-0906) (Table S1). All patients were treated at our institution

with standard treatment of gross total resection and radiotherapy (radiation withheld until > 1 year of age for those patients less than

one year old). Survival analyses were performed using Prism (GraphPad) software, with outcome censored at 10 years. Hazard ratios
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(HRs) for progression free survival (PFS) and overall survival (OS) were estimated using log-rank (Mantel–Cox) analysis of high versus

low (i) expression of each subpopulation as defined by median deconvoluted subpopulation fractions, and (ii) IHC as defined by me-

dian score.

Perturbation studies of PFA EPN in vitro

Microarray gene expression data from EPN PFA cell lines MAF-811 and MAF-928 that had been cultured as monolayers or 3D struc-

tures was obtained from a prior study by our laboratory (Accession number GSE86574) (Amani et al., 2017). We identified the top 250

most differentially overexpressed genes in 3D compared to monolayer-cultured cells (Table S6) which were then subject to hyper-

geometric analysis, as described above, to quantify enrichment of EPN neoplastic subpopulation-specific genesets (Table S6). For

hypoxia treatment, PFA EPN cell lines MAF-811, MAF-928, and a short term culture established from sample 1239 were cultured in

Optimem/15% FBS in as monolayer either (1) in hypoxic conditions (2%O2), or (2) in normoxia for 72 hours. RNA was then harvested

from cells using an Allprep RNA/DNA isolation kit (QIAGEN) and subjected to RNaseq as follows. Quality of extracted mRNA was

assessed using DNA Analysis ScreenTape (Aligent Technologies) to ensure sufficient quality for library preparation. Following quality

assessment, cDNA libraries were generated using the Universal Plus mRNA-Seq Sample Prep Kit (Nugen). Libraries were then

sequenced using the Illumina NovaSeq6000 platform with paired-end reads (2x151). On average 70 million reads were collected

for each sample. The resulting sequences were filtered and trimmed to remove low-quality bases (Phred score < 15). The remaining

sequences were analyzed using a custom computational pipeline consisting of the open-source gSNAP, Cufflinks. R was used for

alignment and discovery of differential gene expression. Reads were mapped to the human genome (GRCh38) by gSNAP. Gene

expression, as fragments per kilobase per million (FPKM), was derived by Cufflinks. Genes differentially expressed between hypoxia

and normoxia were ranked by difference in FPKM. The top 250 upregulated genes in hypoxia in each cell line (Table S6) were subject

to hypergeometric analysis to quantify enrichment of EPN neoplastic subpopulation-specific genesets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R bioinformatics, Prism (GraphPad), and Excel (Microsoft) software. Details of statistical

tests performed are included in figure legends. For all tests, statistical significance was defined as p < 0.05.
Cell Reports 32, 108023, August 11, 2020 e4
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