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Abstract
Radiomics is an emerging field that involves extraction and quantification of features from medical images. These data can be
mined through computational analysis and models to identify predictive image biomarkers that characterize intra-tumoral
dynamics throughout the course of treatment. This is particularly difficult in gliomas, where heterogeneity has been well
established at a molecular level as well as visually in conventional imaging. Thus, acquiring clinically useful features remains
difficult due to temporal variations in tumor dynamics. Identifying surrogate biomarkers through radiomics may provide a non-
invasive means of characterizing biologic activities of gliomas. We present an extensive literature review of radiomics-based
analysis, with a particular focus on computational modeling, machine learning, and fractal-based analysis in improving differ-
ential diagnosis and predicting clinical outcomes. Novel strategies in extracting quantitative features, segmentation methods, and
their clinical applications are producing promising results. Moreover, we provide a detailed summary of the morphometric
parameters that have so far been proposed as a means of quantifying imaging characteristics of gliomas. Newly emerging
radiomic techniques via machine learning and fractal-based analyses holds considerable potential for improving diagnostic
and prognostic accuracy of gliomas.

Key points
• Radiomic features can be mined through computational analysis to produce quantitative imaging biomarkers that characterize
intra-tumoral dynamics throughout the course of treatment.

• Surrogate image biomarkers identified through radiomics could enable a non-invasive means of characterizing biologic
activities of gliomas.

•With novel analytic algorithms, quantification of morphological or sub-regional tumor features to predict survival outcomes is
producing promising results.

• Quantifying intra-tumoral heterogeneity may improve grading and molecular sub-classifications of gliomas.
• Computational fractal-based analysis of gliomas allows geometrical evaluation of tumor irregularities and complexity, leading
to novel techniques for tumor segmentation, grading, and therapeutic monitoring.
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Introduction

With the increased research and development of computerized
methods to analyze radiological images comes a new frontier
for neuroimaging. Beyond qualitative interpretations,
methods that incorporate quantitative analyses are changing
the way we interpret images. Radiomics is an emerging field
that involves extraction and quantification of features from
medical images [1, 2]. These data reflect underlying patholog-
ical processes and in neuro-oncology can help to improve the
understanding of the biology and treatment of brain tumors.
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Radiomic features can be mined through computational anal-
ysis to produce quantitative imaging biomarkers that charac-
terize intra-tumoral dynamics throughout the course of treat-
ment [3]. This may allow earlier detection of therapy response
and subsequent tailoring of treatment to individual patients
[2–5].

Glioma is the most common primary brain tumor in adults,
representing over 80% of all diagnosed brain tumors [6].
High-grade gliomas (WHO grades III–IV) grow rapidly, infil-
trating the brain parenchyma irregularly while creating exten-
sive microvascular networks. Glioblastoma (GBM) carries the
worst prognosis of the high-grade gliomas, with a median
survival of 12–15 months despite surgery followed by adjunct
chemotherapy and radiotherapy [6]. However, survival and
response to chemotherapy are incredibly heterogeneous
among these patients. This stands in contrast to low-grade
gliomas (WHO grades I–II), which are far less aggressive.
Traditionally, the management of gliomas was based on their
histopathological grade determined by neuropathologists. In
recent years, however, specific molecular alterations have
been recognized as more prognostic than histological classifi-
cations [6]. This has led to an increased understanding of the
tumor’s genomics, proteomics, and epigenetics as well, and
the clinical relevance of these molecular features to therapeu-
tic response and outcome [7, 8]. Modern molecular assess-
ments include isocitrate dehydrogenase (IDH) mutations [9,
10], co-deletion of chromosome arms 1p and 19q (1p/19q)
[11, 12], O6- methylguanine–DNA methyltransferase
(MGMT) promoter hypermethylation status [13] and ATRX
mutations [14], among others. More recently, gene
expression–based molecular characterization of glioma, in-
cluding epidermal growth factor receptor (EGFR) amplifica-
tion [15] and CpG island methylator phenotype (CIMP) status
have emerged as predictive biomarkers of treatment outcome
and response [16]. Both molecular and histological classifica-
tion, however, require tissue analysis through stereotactic bi-
opsies or resection. These methods are limited by its invasive-
ness, sampling errors, and interpreter variability [17].
Moreover, there is substantial homogeneity and overlap of
imaging features for distinguishing different grades or sub-
types of gliomas.

Intra-tumoral heterogeneity is an important hallmark of
malignancy associated with poor prognosis. Increased hetero-
geneity has been linked to increased tumor adaptability,
resulting in higher proliferative capacity and survivability
leading to higher risk for treatment failure [18]. This is of
paramount importance in gliomas, where heterogeneity has
been well established at a molecular level as well as visually
in conventional imaging [19, 20]. Intra-tumoral heterogeneity
interferes with both molecular and histopathological assess-
ments as the analysis of the whole tumor can be challenging.
Clonal heterogeneity and genetic variations may be underrep-
resented in histopathologic sampling leading to sampling

errors and suboptimal treatment planning [14]. Radiomics
could overcome this limitation by spatially mapping areas of
distinct genetic features of the entire tumor [21]. Image-based
quantification of molecular heterogeneity could serve as a
powerful tool in identifying features that are predictive of
response or resistance to therapy [21, 22]. Surrogate imaging
biomarkers identified through radiomics could enable a non-
invasive means of characterizing biologic activities of
gliomas.

In this review, we explore the various features of
radiomics-based analysis with a particular focus on computa-
tional modeling, machine learning, and fractal-based analysis
in improving differential diagnosis and prediction of clinical
outcomes and responsiveness to therapy. In doing so, we pro-
vide a summary of the morphometric parameters that have so
far been proposed as a means of quantifying imaging charac-
teristics of gliomas.

Extracting quantitative image features

Radiomics involves computational methods to reproducibly
extract objective, quantitative data from radiologic images
[23]. The features are extracted from a defined region of in-
terest (ROI) that includes the whole tumor or specific regions
within it. Morphometric parameters are used to quantify visual
characteristics at different scales from ROIs, enabling voxel-
based analysis of tumor volumetric shapes and visual dynam-
ics. A standard model of radiomics analysis can be seen in
Fig. 1. Several approaches to extract radiomic features have
been described in the literature, demonstrating accurate
methods to capture tumor shape and textural information
[24]. Quantitative features can be categorized into the follow-
ing subgroups: shape features, first-order, second-order, and
higher-order statistics features. First-order statistics features
describe the distribution of individual voxels regardless of
spatial relationships (i.e., histogram-based properties) [25].
Second-order statistics features, generally described as “tex-
tural” features, are the statistical inter-relationships between
neighboring voxels [25]. This quantifies the spatial distribu-
tion of voxel intensities, and thus of intra-tumoral heterogene-
ity. Higher-order statistics features are extracted by applying
filters or mathematical transforms to images; for instance, to
identify repetitive or non-repetitive patterns, suppressing
noise or highlighting details [25]. An overview of these pa-
rameters can be found in Table 1. For their mathematical def-
initions and detailed explanations, it is suggested to consult
the specific literature [24–43].

Although the field of radiomics is progressing at an accel-
erating rate, it is important to appreciate the historical origins
of this complex process.Most of the aforementioned statistical
features are neither original nor innovative descriptors [44].
Indeed, the use of basic morphometric features to quantify
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image properties, as well as the use of filters and mathematical
transforms, can be traced back several decades in the field of
image analysis and engineering [44]. In clinical medicine, one
of the first studies to correlate imaging findings with histology
was published in 1988 [45]. With no advanced computational
techniques, Earnest et al. were able to demonstrate that en-
hancing regions on images of astrocytomas overlapped with
areas of neovascularity and cell proliferation as determined
through biopsy [45]. Thus, the novelty of radiomics relies on
the –omics suffix, a term originally used for molecular biology
disciplines. The term is now used for scientific fields that
generate complex high dimensional data from a single source.
A key advantage of -omics data is that these data can bemined
and extended to generate hypotheses. In clinical imaging, the
aim of radiomics is to initially capture as much data as possi-
ble and then to use downstream database mining to identify
image features with the highest diagnostic and prognostic
value.

Despite these recent advances in computational techniques,
extraction methods are inherently limited as they distil a com-
plex dataset of over a million voxels per magnetic resonance
(MR) imaging sequence down to a relatively small number of
quantitative features. In addition, many textural analysis studies
still remain on a two-dimensional level (extracting features
from a single slice). For a radiomic feature to be reliable, it must
fulfill two factors. First, the feature must be able to capture
distinct patterns that are associated with improved differential
diagnosis and clinical outcomes. And second, the feature must
be stable under various image acquisition parameters [46].
Although MR imaging technology has greatly improved in
the past decades, linking radiomic features to underlying tissue
dynamics has not been fully explored. Indeed, acquiring useful
radiomic features becomes increasingly difficult with temporal
variations in blood flow and tumor dynamics [47].

In recent years, there has been much effort to develop bio-
logically inspired radiomic features. These features build on
biologic hypotheses and can be used to define tissue-level data

Fig. 1 Flowchart illustrates the standard radiomics workflow and the use
of radiomics in clinical decision making. In this example, feature
extractions are being performed on a SWI sequence of a segmented
brain tumor. The process begins with acquisition of high-quality images.
A region of interest (ROI) is identified on these images that contain the
whole tumor or sub-regions within the tumor. These are segmented either

manually or through automated methods and rendered in three dimen-
sions (3D). Quantitative features are extracted and placed in a database
along with other clinical and genomic data. The database is then mined to
identify imaging features with the highest diagnostic, prognostic, or pre-
dictive value for outcomes of interest
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Table 1 Parameters used in radiomics-based analysis of gliomas

Parameters and main references Definition

First-order texture statistics

Entropy [24] Measures the inherent randomness in the gray level intensities of an image or ROI.

Uniformity [24] Measures the homogeneity of gray level intensities within an image or ROI.

Second- and higher order texture statistics

Gray-level co-occurrence matrix [26] Examines the spatial distribution of gray level intensities within an image through a 2D gray
tone histogram.

Angular second movement [24] Measures the textural uniformity of an image (also referred to as homogeneity).
Captures the two-dimensional complexity of the edge of the tumor abnormalities.

Inverse difference moment [24] Measures local image homogeneity as it assumes larger values for smaller gray tone
differences in pair elements.

Contrast [24] Measures spatial tone frequency of an image as the difference between the highest and lowest
values of a contiguous set of pixels.

Correlation [24] Measure of gray tone linear dependencies in the image.

Bounding ellipsoid volume ratio [27] Ratio of the tumor volume to the volume of the smallest ellipsoid that entirely encapsulates
the tumor. Captures the three-dimensional complexity of tumors.

Semi-axis diameter ratios [28] Ratios of the minor semi-axis length to the longest bounding ellipsoid semi-axis diameter.
Captures the three-dimensional complexity of tumors.

Margin fluctuation [27, 28] Captures the two-dimensional complexity of the edge of the tumor abnormalities.
Standard deviation of the difference between the ordered radial distances of the tumor edge

from the centroid to all the boundary points, smoothed with an averaging filter of length
equal to 10% of tumor boundary.

Mean intensity [29] Average intensity of the pixel values within the ROI.

Mean of positive pixel values [29] Average pixel values of only the positive pixel values within the ROI.

Standard deviation (SD) [29] Quantification of the variance from the mean value
(high SD indicating wide variation of pixel values).

Kurtosis [29] Peakedness (or pointedness) of the histogram of pixel values.
Positive kurtosis = more peaked distribution
Negative kurtosis = flatter distribution

Skewness [29] Quantifies asymmetry of the histogram.
Negative skewness = longer tail on left side of histogram
Positive skewness = longer tail on right

Gray-level run matrix (GLRL) [30] Number of contiguous voxels that have the same gray level value.
Characterizes the gray level run lengths of different gray level intensities in any direction.

Short runs emphasis (SRE) [30] Measures distributions of short runs. Higher values indicate fine textures.

Long runs emphasis (LRE) [30] Measures distribution of long runs. Higher values indicate course textures.

Gray level non-uniformity (GLN) [30] Measures the distribution of runs over the gray values. Low value when runs are equally
distributed along gray levels. Lower value indicates higher similarity in intensity values.

Run length non-uniformity (RLN) [30] Measures distribution of runs over run lengths. Low value when runs are equally distributed
over run lengths.

Run percentage (RP) [30] Measures the fraction of the number of realized runs and the maximum number of potential
runs.

Highly uniform ROI volumes produce a low run percentage.

Neighborhood gray tone difference matrix [31] One dimensional matrix where each gray level entry is the summation of the differences
between all the pixels with gray level value and the average gray level value of its
neighborhood.

Coarseness [31] Quantitative measure of local uniformity.

Busyness [31] Rapid intensity changes of neighborhoods in a given ROI.

Complexity [31] Quantifies the complexity of the spatial information present in an image.

Texture strength [31] Characterizing the visual esthetics of an image.

Local binary pattern (LBP) [32] Quantifies local pixel structures through a binary coding scheme.
Measures tumor microenvironment.

Scale-invariant feature transform (SIFT) [33, 34] Detects distributed key points with radius on tumor images.
Measures tumor spatial characteristics.

Histogram of oriented gradients (HOG) [35] Computes block-wise histogram gradients with multiple orientations.
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variation in tumors. This provides an opportunity to study
spatial variations and biologic evolution of tumors [46, 47].
For instance, spatial distances were used to quantitatively
measure glioblastoma heterogeneity [48]. Variations in spatial
distances within a defined tumor sub-region were associated
with distinct prognostic information. In another study, spatial
heterogeneity and early temporal changes in regions of high
and low perfusion in gliomas were predictive of physiologic
responses to radiation therapy [49]. Zhou et al. further pro-
posed a novel concept of extracting quantitative features from
distinct tumor sub-regions, such as by their local contrast en-
hancement, areas of edema, and cellularity in MR imaging
[50]. A more recent study also revealed that T2-FLAIR and
ADC sequences were inversely proportional to cell density
[51]. These novel radiomic features offer an opportunity to
quantitatively analyze the tumor environment, unlike the qual-
itative semantic features commonly used by radiologists to
describe lesions.

The importance of image segmentation

Segmentation methods can be broadly categorized into the
following: threshold-based, region-based, edge-based, de-
formable model, machine- and deep learning–based and
model-based [52]. A review of these methods can be found
in Table 2.

Segmentation is a crucial step of the radiomics process for
many reasons. First, data are extracted from the segmented
volumes. Moreover, different segmentation methods yield
very different geometrical parameters. In gliomas, this is par-
ticularly challenging due to their irregular borders. Currently,

there is no consensus whether investigators should seek the
ground truth or reproducibility of segmentation [1]. Manual
segmentation by expert clinicians is often considered the
ground truth, despite the high inter-reader variability. This
method is also time consuming, labor intensive, and not al-
ways feasible for radiomics-based analysis which often re-
quires very large datasets [2]. To this end, automated and
semi-automated segmentation methods are being explored to
minimize manual input and improve consistency and repro-
ducibility [68]. Whether reproducibility of segmentation out-
weighs the ground truth remains a controversial topic.
Ultimately, however, the validity of any given radiomic fea-
ture as a biomarker would have to be assessed on its ability to
predict the outcome of interest—i.e., a given molecular, geno-
mic, or clinical endpoint, rather than the “ground truth” as it
pertains to the method of segmentation.

Automated and semi-automated segmentation methods
have been introduced for various imaging modalities and an-
atomical regions. Both require maximum automaticity with
minimal operator interaction, accuracy, time efficiency, and
boundary reproducibility [2]. Certain algorithms use region-
growing methods that require an operator to set seed points,
thresholds, and iteration termination conditions within the
ROI [54]. Although these approaches are effective for rela-
tively homogenous lesions, intensive user correction is often
required for lesions that are heterogenous. For instance, glio-
mas reveal infiltrative growth with lack of clear boundary and
fixed growth pattern. Their complex pathological processes
can be seen as complex changes in brightness and texture on
MR images. Distinct tissues may have similar gray levels,
which makes accurate and reproducible segmentation of glio-
mas challenging [68].

Table 1 (continued)

Parameters and main references Definition

Measures tumor microenvironment.

Fractal

Fractal dimension (box-counting and
sand-box algorithms) [36–38]

A non-integer number between 0 and 2, in a two-dimensional space, or 0 and 3, in a
three-dimensional volume, that quantifies the space-filling properties of irregularly
shaped objects.

Outline box dimension [24] Evaluates the irregularity in shape of the image. (i.e., how much it deviates from classic
geometric figures)

Lacunarity [39] Pixel distribution of an image at different box sizes and at various grid orientations.
Describes the degree of non-homogeneity within an image.

Spatial filtering

Median filter [40] Reduces sparse noise. Sets each pixel in ROI equal to the median pixel value of its specified
neighborhood.

Entropy filter [41] Accentuates edges by brightening pixels which have dissimilar neighbors.
Sets each pixel in the ROI equal to the entropy (measure of disorder) of the pixel values

in its specified neighborhood.

Laplacian of Gaussian (LoG) filter [41] Laplacian filter is a derivative filter used to find areas of rapid change (edges) in an image.
Images are first smoothed using Gaussian filter before applying the Laplacian.
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Table 2 Summary of glioma segmentation methods

Segmentation Method description Advantages Disadvantages

Global and local
thresholding

Depend on measuring thresholds from the
histogram of an image.

Conceptually simple and
computationally fast.

Inapplicable to enhancing tumor areas.
[53]

Region based

Region-growing Begins from a single pixel or group of pixels
(seeds). Examines neighboring pixels for
similarity and are included to ROI.

Computationally simple.
Can correctly segment regions with

similar properties and generate
connected region. [54]

Partial volume effect limits the accuracy
of segmentation. [55]

Sensitive to noise or variation in intensity
(may result in holes or
over-segmentation).

Requires manual input for seed selection.

Watershed Treats pixels as a local topography
(elevation). The algorithm floods basin
until it reaches the watershed lines,
producing a complete contour of images.

Segments multiple regions
simultaneously.

Produces a complete contour of an
image (does not require contour
joining). [56]

Over-segmentation.

Edge based Based on identifying differences between
pixels to determine the boundaries of an
object.

Computationally fast
Does not require prior information

about image content. [52]
Sensitive to significant variations in

gray level values.

Resulting edge does not completely
enclose the object. [52]

Sensitive to image noise.

Machine learning based

Supervised Uses labeled training data. Can be used for different tasks by
simply changing the training set. [52]

Can reduce manual engineering task by
providing labeled data and
appropriate parameters for the
learning algorithm. [52]

Requires patient-specific training. [52]
Human variability in manually labeling

training data.

Unsupervised Training data are automatically labeled by
numerically grouping similar pixels.

Completely automated system. Number of regions often needs to be
pre-specified. [52]

Tumors can be divided into multiple
regions. [52]

Tumors may not have clearly defined
textural boundaries. [52]

Fuzzy C means Unsupervised segmentation by pixel
classification.

Unsupervised.
Tumor boundaries always converged.

[52]

Time consuming. [57]
Highly sensitive to noise and

heterogeneity.

Artificial neural
networks

Supervised clustering method. Extracted
features are fed through input nodes,
mathematical operations are applied and
classification is made as a final output.

Able to model non-trivial distributions
and non-linear dependences. [52]

Able to learn from historical cases and
automatically generate new rules.
[58]

Difficulty gathering training samples. [58]
Slow learning phase.

Markov random
fields

Unsupervised clustering method that
integrates spatial information into the
clustering process.

Able to represent complex
dependencies among data instances.
[52]

Difficulty selecting parameters that
control the strength of spatial
interactions. Requires algorithms that
are computationally intensive. [52]

Deep learning based (CNN)

Interconnected operating modules

Single path Unique flow of information: input data is
processed; feature maps are mined then
used for predicting label in the output
layer.

Fast computation and conceptually
simple. [59, 60]

Limited parameters.
Single flow of information. [59, 60]

Multi-path
(parallel)

Composed of different CNNs that work in
parallel to capture more comprehensive
features. [61]

Able to extract more diverse features.
Verdict is validated by interconnected

nodules.
Included information may provide

contextual information to network
(e.g., multi-resolution). [59]

Computationally intensive (data
preparation and processing). [59]

Multi-path
(series)

Different CNNs arranged in a series (cascade)
with input from previous network. This
makes the overall CNN deeper. [62]

Able to extract even more diverse
features.

Requires careful preparation in designing
network. [59]

Different networks may require training.
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Routine medical imaging techniques yield a wide variation
in acquisition parameters. For MR imaging, these include se-
quence-type, echo time, repetition time, number of excita-
tions, contrast-enhanced T1-weighted images, diffusion-
weighted, and fluid attenuation sequences [44]. Moreover,
different manufacturers offer different reconstruction algo-
rithms, and reconstruction parameters are modified at each

institution, with possible variations in individual patients.
These variables may affect image noise and texture, and con-
sequently the quality (and reproducibility) of the radiomic
features. In a given T1- or T2-weighted sequence, no voxel
intensity carries a fixed tissue-specific numerical value [44]. It
is important to consider that some acquisition settings may
yield unstable features, which may produce different values

Table 2 (continued)

Segmentation Method description Advantages Disadvantages

Enables refining information at any
stage. [59]

Could show minimal improvement.

Input modalities

Single
modality

For processing information from a single
imaging modality.

More adaptable to different situations.
(e.g., as T1 most commonly provides
datasets for tissue and sub-cortical
segmentation). [63]

Easily used for various modalities.

Single source of information.

Multi-modality For processing different sources of
information from multiple imaging
modalities.

Useful for gaining contrast information.
[63]

More parameters required than
single-modality. [59, 63]

Patch dimension

2D CNN Considers features from a single plane (i.e.,
axial, sagittal or coronal). [60]

Extensible to complex network
structures. [59, 60]

Flexible and adaptable.
Fast computation.

Heavily reliant on initial network design
for good results. [59, 60]

Excludes 3D nature of MRI.

2.5D CNN (or
tri-planar)

Provided with features from the 3 anatomical
planes (i.e., axial, sagittal, and coronal),
using a multi-path design.

Faster than 3D.
Accounts for 3D nature of MRI.
Gains implicit contextual information.

[64]

Computational more complex than 2D
CNN.

3D CNN Extracts 3D segments directly from the MRI
volume. [65]

Able to examine 3D MRI volume
directly. [59]

Better performance than 2D.
Gains implicit contextual information.

Expensive computational cost.
Scaling to larger features may be

computationally intensive.
May require large training data due to

large number of parameters (memory
requirements). [65]

Number of predictions at a time

CNN The traditional approach where a single patch
is processed by a network, returning a
single output. [59]

In theory, requires far less parameters
than FCN.

Time consuming—as a single patch yields
a single classification.

Fully
convolution-
al networks
(FCN)

The fully connected layers are replaced with a
fully convolutional layer—allowing dense
pixel-wise prediction. [66]

Quicker segmentation than CNN (some
can classify a single volume in one
shot). [59, 66]

Requires more parameters to be
established.

Requires more training samples.
May returnmore false positive predictions

when classifying enhancing tumors.
[59, 66]

Model-based

Parametric
deformable
models (active
contour or
snake)

Defined by a set of curves of internal and
external forces. Internal forces smooth the
curves, while external forces change the
direction of curves toward the edges of an
anatomical area.

Able to extract boundary features for
the same regions.

Can be used for 3D volumetric
segmentation without training data.

Able to accommodate for changing
biological structures over time. [67]

Depends on user-guidance to place land-
marks to steer the segmentation.

Sensitive to noise.
Requires initializing the contour that is

close to the ROI.
May converge to wrong boundaries in

heterogeneous lesions. [67]

Level sets Represents contour as the zero-level set of a
higher dimensional function, then the
method formulates the motion of the con-
tour as the evolution of the level-set func-
tion

Accommodates to topological changes.
Applicable to volumetric segmentation.

[52]

Expensive computational cost.
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when extracted under identical conditions. For instance, even
when scanning the same patient in the same position using the
same scanner with the same sequence over multiple sessions,
signal intensity may change, whereas tissue contrast remains
unaffected [69]. These limitations must be considered when
comparing radiomic features among patients as the process
relies on the numeric value of voxel intensity. One method
could be to perform textural analysis on features quantifying
the relationship between voxel intensities, not requiring values
of individual voxel intensity, or through image compensation
(normalization) before performing quantitative analysis [69],
such as the Brightness Progressive Normalization algorithm,
introduced by Russo C and published first by Di Ieva et al. in
2012 [70].

Clinical application of radiomics

Survival prediction

The survival prediction according to radiological features re-
mains a challenge in gliomas, above all in glioblastoma, due to
intra-tumoral heterogeneity. A recent genomic analysis by
Sottoriva et al. revealed extensive intra-tumor variability at
molecular, cellular, and tissue scales [71]. However, the clin-
ical relevance of the spatial imaging characteristics remains
enigmatic. Stratifying accurate prognosis of survival using
radiomic spatial features pushes gliomas closer to the para-
digm of precision medicine. With novel analytic algorithms,
quantification of morphological or sub-regional tumor fea-
tures to predict survival outcomes has produced promising
results. Recent progress in the clinical application of
radiomics is summarized in Table 3.

Morphometric analysis: shape, texture, and volume

There is paucity of evidence on computational image analysis
of tumor morphology and its prognostic implications. Prior
studies often used 2D or simple 3D features such as tumor
volume, with no control for prognostic variables, such as the
Karnofsky Performance Score (KPS) or patient age. To over-
come this shortcoming, Czarnek et al. demonstrated that after
controlling for these variables, algorithmic analysis of GBM
shapes was significantly prognostic of survival [27]. Using
automated tumor segmentation from FLAIR sequences, three
morphological features were found to be independently prog-
nostic of survival (p < 0.05): (a) glioma bounding ellipsoid
volume ratio, (b) margin fluctuation, and (c) angular standard
deviation. On FLAIR alone, margin fluctuation and angular
standard deviation were not statistically significant for prog-
nosis; however, when analyzed with post-contrast T1-weight-
ed MR images, both of these features were significant for
survival prediction [27]. Thus, this proves the importance of

analyzing multimodal parameters and the vast amount of in-
formation we can deduct from clinical imaging to shape our
clinical practice.

Similarly, in a recent retrospective study, Molina et al. re-
vealed the predictive potential of 3D textural heterogeneity of
GBMs in post-contrast T1-weighted MR images [74].
Textural features were quantified as spatial distribution of
voxel intensities, allowing visualization of heterogeneity pat-
terns within the segmented ROI of the tumor. These parame-
ters were classified as local (co-occurrence matrixes [CM]),
regional (run-length matrices [RLM]), or global (voxel inten-
sity histograms). High parametric values describing tumor ho-
mogeneity were associated with longer survival groups, while
high values in heterogeneity were associated with poor sur-
vival [74]. This produced a threshold for classifying subset of
patients into long- and short-term survivors, which may ulti-
mately guide patient selection for surgical resection.

With the rise of machine learning in clinical medicine,
predicting overall survival in GBM patients has reached a
new frontier. Sanghani et al. analyzed tumor volumetric,
shape, and texture features from multiple MR images to pre-
dict overall survival of patients using machine learning tech-
niques [76]. Survival groups were defined as short (<
10months), medium (10–15months), and long (> 15months).
Using a support vector machine (SVM) classification for fea-
ture selection, the morphological features were stratified into
two groups—2-class (< 400 days and > 400 days) and 3-class
(short, medium, and long as defined above) survival group
prediction. The feature selection and prediction framework
produced high accuracy for both classes in predicting overall
survival, where 2-class classification yielded 97.5% and 3-
class yielded 87.1%. These results testify to the power of
radiomics in predicting disease prognosis, thus providing in-
valuable information for tailoring treatment plans to individu-
al patients.

Sub-regional variability

Several studies have demonstrated that GBM heterogeneity is
not only limited to tumor margins but also involves peri-
tumoral brain parenchyma tissue. Analysis of these regions
and its microenvironment suggests cellular and molecular in-
teraction that contributes to tumor infiltration, breakdown of
blood brain barrier, and microvascular proliferation, ultimate-
ly leading to poorer prognosis [79]. Radiomics allows one to
study these subtle macro- and micro-scale changes within the
lesion through quantitative measurement. The clinical rele-
vance of these micro-architectural changes stands on two prin-
cipal hypotheses: (a) radiomic features derived from
multiparametric MRI sequences can reveal subtle quantitative
traits associated with tumor aggressiveness, and (b) these traits
are distinct between long- and short-term GBM survivors
[79].
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Table 3 Major developments in radiomics modeling for gliomas

Author (year) Study
population

Study methodology Major findings

Georgiadis et al.
(2009) [72]

67 1. Volume of interest (VOI) segmented from MRI series.
2. Volumetric textural features extracted (gray-level

co-occurrence and run-length matrices).
3. Bagging (bootstrap aggregation) of 3 LSFT-SVMs for

classification scheme.

3D volumetric textural analysis improved discrimination
accuracy between metastases, gliomas and
meningiomas.

Modified support vector machine (SVM) classifier using
least square features transformation (LSFT) improved
discrimination accuracy.

Zhou et al.
(2014) [50]

32 1. Linear normalization of tumor region.
2. Manual segmentation of ROI on T1+C.
3. 2D and 3D histogram analysis.

Long-term survival group had tumor habitats with high
enhancement and high cell density.

Poor survival group had tumors with increased regions of
low enhancement.

Yang et al.
(2015) [73]

82 1. Tumor regions manually segmented T1-w and FLAIR
MR images.

2. 5 sets of textural features extracted: segmentation-based
fractal texture analysis, histogram of oriented gradients,
run-length matrix, local binary patterns, Haralick fea-
tures.

3. Ensemble classifier (random forest) used to predict GBM
molecular subtype and 12-month survival status.

Textural features are predictive of molecular subtypes and
survival status in GBM.

Zhou et al.
(2013) [48]

16 1. Image data acquisition.
2. Tumor region identification.
3. Data normalization.
4. Image segmentation with OTSU algorithm.
5. Distance between two segmented regions measured.

Slow progression (> 500 days)—smaller distances between
ROI compared with fast progression.

Zhou et al.
(2017) [3]

32 1. Pair of tumor MRI slices selected as inputs.
2. Each sequence segmented by OTSU.
3. Tumor region separated into two sub-regions.
4. Spatial mapping to impose an overlap between

segmented sequences.
5. Features extracted from contrast-enhanced regions given

to machine-learning algorithm to build classifier to pre-
dict survival.

Spatial characteristics derived from tumor sub-regions of
edema (T2 and FLAIR) had the highest predictive value
of prognosis (81.25% accuracy).

Molina et al.
(2016) [74]

79 1. Semi-automated image segmentation.
2. Segmented image manually corrected.
3. 16 heterogeneity measures computed automatically.
4. Run-length matrix features used for regional heteroge-

neity.
5. Co-occurrence matrix features used for local heteroge-

neity.

3D textural heterogeneity measures computed on
post-contrast T1 MRI are predictors of survival.

Chang et al.
(2016) [75]

126 1. Volumetric tumor segmentation
2. Image registration, normalization and ADC submask

generation.
3. Imaging features extraction: histogram, shape,

multimodal parametric and textural.
4. Machine learning algorithm generated.
5. Kaplan-Meier analysis to evaluate progression-free sur-

vival and overall survival.

Machine learning techniques to analyze multimodal
imaging features could accurately predict survival in
patients with recurrent glioblastoma treated with
bevacizumab.

Gutman et al.
(2013) [4]

75 1. Pre-surgical MR images interpreted by 3 neuroradiolo-
gists for size, location and morphology using standard-
ized feature set.

2. Inter-rater analysis performed using Krippendorff α sta-
tistic and intra-class correlation coefficient.

3. Multivariate Cox regression models for association
between survival and tumor size/morphology.

4. Fisher exact test for relationship between imaging
features and genomics.

Overall survival was highly correlated to degree of contrast
enhancement and length of major axis of lesion.

A semiquantitative computed method using standardized
visual feature set improved estimation of contrast
enhancement.

Czarnek et al.
(2017) [27]

68 1. Five shape features automatically extracted from
manually segmented tumor regions.

2. 3D features: nearest neighbor interpolation betweenMRI
slices to reconstruct 3D tumor shape. Fitted smallest

Algorithmic 3D analysis of tumor shape is a strong
prognostic marker of survival independent of patient age,
Karnofsky Performance Score and tumor volume.
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Table 3 (continued)

Author (year) Study
population

Study methodology Major findings

bounding ellipsoid to the 3D tumor shape based on
Khachiyan algorithm.

3. 2D features: extracted from axial FLAIR and T1+C
images with largest tumor cross-section. Measured
margin fluctuation and angular standard deviation.

Mazurowski
et al. (2016)
[28]

22 1. Manual segmentation of pre-operative axial FLAIR im-
ages.

2. Extracted set of 5 features using computer algorithms.
3. 2D features: margin fluctuation and angular standard

deviation were calculated.
4. 3D features: minimum bounding ellipsoid ratio,

semi-axis diameter ratios.

The proportion of the tumor volume to the volume of the
smallest bounding ellipsoid is strongly predictive of
patient survival.

Sanghani et al.
(2018) [76]

163 1. Volumetric, shape and texture features extracted from
regions of edema, contrast-enhancement and necrosis.

2. Feature selection using recursive feature elimination
(RFE).

3. Linear support vector machine (SVM) used for survival
group prediction.

Overall survival can be predicted with high accuracy using
machine learning to analyze tumor volumetric, shape and
texture features.

Lao et al. (2017)
[77]

112 1. Segmentation of tumor sub-regions: necrosis,
enhancement and edema.

2. Handcrafted features extracted: geometry, intensity and
texture.

3. Deep features extracted from pre-trained CNNmodel via
transfer learning.

4. Four-step feature selection. Six most predictive deep
features selected.

5. Radiomics signature and radiomics nomogram
constructed.

Deep learning–based radiomics model can accurately pre-
dict overall survival by stratifying patients into high and
low-risk groups. Radiomic signatures identified through
deep learning outperformed manual extraction.

Li et al. (2017)
[78]

92 1. Image pre-processed then automatically segmented into
5 classes: non-tumor region and 4 tumor sub-regions
(necrosis, edema, enhancing and non-enhancing area).

2. High-throughput radiomics features extracted from tu-
mor sub-regions.

3. Feature reproducibility and prognostic performance
assessed.

Introduced a fully automatic multiparametric radiomics
model for pre-operative prediction of overall survival in
GBM patients.

Multiparametric radiomics signature offered better
prognostic performance than fixed-parameter signatures.

Prasanna et al.
(2017) [79]

65 1. Image pre-processing and registration. T2-w and FLAIR
were co-registered with T1+C.

2. Segmentation of tumor into 3 regions: parenchymal zone,
necrosis and enhancement.

3. 134 radiomic features obtained, resulting in 9 feature
sets.

4. Identified 10 most predictive features.
5. Random forest classifier used to determine ability of each

feature set in predicting survival groups.
6. Randomized 3-fold cross-validation performed.
7. Kaplan-Meier survival analysis used to compare survival

times between short and long-term survivors.

Peri-tumoral radiomic features outperformed features from
other regions (enhancing, necrosis) in predicting
survival.

Peri-tumoral radiomic features combined with clinical
features (age, KPS) weremore predictive of survival than
radiomic features alone.

Bahrami et al.
(2018) [80]

33 1. Volumes of interest (VOI) within FLAIR hyperintense
region were segmented.

2. Edge-contrast for each VOI was calculated using gradi-
ents of 3D FLAIR images.

3. Cox proportional hazard models were used to determine
relationship between edge contrast and
progression-free/overall survival. Age and extent of
surgical resection were used as covariates.

Texture analysis using edge-contrast of FLAIR hyperin-
tense regions may be predictive of survival in high-grade
gliomas treated with bevacizumab.

Low edge-contrast (vague borders) has poorer
progression-free survival and overall survival compared
with patients with high edge-contrast (sharp border).

Bisdas et al.
(2018) [81]

37 1. DKI acquired using spin-echo echo planar imaging DWI
sequence.

2. Tumor VOIs manually segmented around FLAIR
abnormality.

3. Texture features extracted from both DKI and FLAIR
VOIs.

Diffusional kurtosis imaging (DKI) accurately predicts IDH
mutational status.

Texture analysis and SVM analysis of DKI maps produced
biomarkers to distinguish IDH-mutant from
IDH-wildtype as well as grade II from grade III gliomas.
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Table 3 (continued)

Author (year) Study
population

Study methodology Major findings

4. SVM analysis for binary classification: glioma grading
and IDH mutation status.

5. Biomarker selection using recursive feature elimination.
Bae et al. (2018)

[82]
217 1. Radiomic features extracted from multiparametric MRI.

2. Random survival forest model trained with radiomic
features along with clinical and genetic profiles.

3. Incremental values of radiomic features assessed using
integrated area under the receiver operating characteristic
curve.

Radiomic phenotyping based on multiparametric MRI data
improves survival prediction when integrated with
clinical and genetic status in patients with GBM.

Bahrami et al.
(2018) [83]

61 1. Patients with grade II/III gliomas with molecular data and
MRI prior to radiation included.

2. Quantitative MRI features extracted—tissue heteroge-
neity (homogeneity and pixel correlation) and FLAIR
border distinctiveness (edge contrast).

3. T tests performed to determine whether patients with
different genotypes differed across the features.

4. Logistic regression with LASSO regularization used to
determine optimal combination of imaging and clinical
features for predicting molecular subtypes.

Quantitative FLAIR textural features (signal heterogeneity
and border sharpness) may serve as a useful imaging
biomarker for determining tumor molecular status in
grade II/III gliomas.

Chaddad et al.
(2018) [84]

40 1. Acquisition of pre-treatment MR images.
2. Registration of T1-w image with corresponding FLAIR

images and labelling of GBM subtypes (phenotype).
3. Multiscale texture feature extraction.
4. Survival analysis.

Using Laplacian-of Gaussian (LoG) filter to generate
multiscale texture features has the potential to predict
GBM survival.

Ditmer et al.
(2018) [29]

94 1. ROI manually segmented on T1+C images.
2. Textural analysis performed using filtration-histogram

method.
3. Parameters were correlated with WHO glioma grade

using Spearman correlation.
4. AUC calculated using ROC curve analysis to distinguish

tumor grades.

Quantitative measurement of heterogeneity using MRI
textural analysis can accurately discriminate high versus
low grade gliomas.

Darbar et al.
(2018) [85]

48 1. ADC values calculated in areas of greatest restriction in
solid tumor components.

2. Pattern of contrast enhancement recorded.
3. ROC analysis used to evaluate predictive potential of

ADC values for low grade gliomas.

ADC of tumor regions on pre-operative MRI can discrim-
inate high- and low-grade gliomas.

Low grade gliomas have significantly higher mean lowest
ADCs than high grade gliomas.

Osman A
(2019) [86]

163 1. Radiomic image features extracted locally from 3 tumor
sub-regions on multi-parametric MR images.

2. LASSO regression applied for feature selection.
3. Radiomic signature model of 9 features constructed.
4. Model tested for patient stratification into short

(< 10 months), medium (10–15 months) and long
survivors (> 15 months).

5. ML classification models trained then cross-validated.

A derived gray-level co-occurrence matrix feature was
found to be highly associated with survival—suggesting
intra-tumoral heterogeneity has an essential role in sur-
vival stratification.

Ensemble learning showed superior performance over the
tested ML classifiers.

Petrujkić et al.
(2019) [87]

55 1. Each tumor outlined on T1+C images.
2. ROI over imposed to corresponding T2-w and SWI im-

ages.
3. Tumor representation in these 3 sequences were

segmented.
4. Binary image obtained.
5. Quantitative parameters of fractal and texture analysis

were estimated—using box-counting method and
GLCM methods.

Textural features are more significant than fractal-based
features in differentiating glioblastoma from solitary
metastasis.

Yang et al.
(2019) [88]

1. Textural features from 30 parametric maps were
extracted using 4 models: global, GLCM, GLRLM,
GLSZM.

2. These features were then input into RBF-SVM combined
with attribute selection using SVM-RFE.

3. SVM model was trained and established using 10-fold
cross validation.

Gray-level size-zone matrix (GLSZM) combined with
gray-level 64 may be the optimal texture retrieving
model for glioma grading.
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In a recent experimental study, Zhou et al. identified quan-
titative spatial imaging biomarkers with prognostic value in
predicting survival outcomes [3]. Through two datasets of
patients with unresected GBM, tumor habitats were quantified
on multiple MRI slices (including contrast-enhanced T1,
FLAIR, and T2 sequences). Quantitative features from signal
enhancing tumor sub-regions revealed discriminative ability
in predicting survival groups. More specifically, spatial char-
acteristics derived from sub-regions of edema (co-occurring
MRI signals in FLAIR and T2-weighted images) displayed
the highest predictive ability in separating long-term (>
400 days) and short-term (< 400 days) survival groups.
Mapping sub-regions of edema yielded the highest accuracy
of 81.25% in predicting survival groups (p < 0.05)—indicat-
ing strong prognostic value of MRI-defined sub-regions in
GBMs.

With the same fundamental concepts, Lao et al. developed
a deep learning–based radiomics model to predict survival
outcomes in GBM patients [77]. Three tumor sub-regions
were segmented from multimodality MR images (T1, post-
contrast T1, T2, and FLAIR), including areas of necrosis,
enhancement, and edema. Handcrafted and higher-order deep
features were then extracted for selection, with the final aim of
selecting features with prognostic value. A six-feature
radiomics signature was constructed, and these signatures
were shown to accurately stratify 75 patients into high- and
low-risk groups, successfully predicting overall survival. All
six features were deep features derived from multiple tumor
sub-regions in post-contrast T1, T2, and FLAIR images. It is
not surprising that deep features extracted via transfer learning
outperformed traditional manual extraction in predicting over-
all survival—as higher-order imaging patterns can capture
more intra-tumoral heterogeneity [77]. Such radiographic het-
erogeneity of GBMs may reflect underlying genetic heteroge-
neity, which could explain treatment resistance and poorer
prognosis. However, this remains a complex hypothesis and
defining the correlation between deep features and genetic
characteristics requires further research. Despite the study be-
ing retrospective with a relatively small sample size, the pro-
posed radiomics model has the potential to shape pre-
operative management of patients with GBM.

Prasanna et al. similarly extracted radiomic features from
sub-regions of GBM habitat including enhancing tumors, ne-
crotic areas, and the peri-tumoral brain parenchyma zones
[79]. These features were derived from 65 pre-treatment
multiparametric MRI sequences (T1, T2, and FLAIR) in order
to distinguish long- and short-term survivors. Peri-tumoral
features were found to be more predictive across T2 and
FLAIR (p = 0.0006 and p = 0.003, respectively) compared
with enhancing areas or necrotic features. However, on post-
contrast T1, radiomic features from necrotic sub-regions were
more predictive of survival prognosis than peri-tumoral zones
(p = 0.006). Interestingly, when peri-tumoral features were

combined across multiparametric sequences, it revealed
higher predictive ability than radiomic features derived from
necrotic or enhancing areas. This result is reflected in other
studies that have demonstrated peri-tumoral edema onMRI as
a negative prognostic marker; however, the precise role of
peri-tumoral brain parenchyma zones in GBM prognosis re-
mains controversial. For instance, in a multi-institutional
study by Schoenegger et al., surrounding areas of edema were
identified as an independent prognostic marker, where pa-
tients displaying extensive edema had significantly poorer
overall survival compared with those with minimal edema
[89]. However, this finding was contradicted by Lacroix
et al. in a large series of 416 GBM patients where the extent
of edema was not a prognostic marker for overall survival
[90]. Thus, the prognostic implications of peri-tumoral edema
in GBM have been inconclusive in the literature. The reason
for these inconsistencies may be due to prior studies only
examining gross volumetric measurement of these areas.
Radiomics holds the potential to overcome these limitations
through capturing subtle local variations in image intensities
that are otherwise visually not appreciable.

Classification of glioma subtypes

The relationship between intra-tumoral heterogeneity and tu-
mor infiltrative capacity, response to treatment and overall
survival has been well established in the literature. Although
the current gold standard for grading gliomas involves histo-
pathological analysis, stereotactic biopsies, or resection, these
techniques are inherently limited by its invasiveness, sampling
error, and interpreter variability [17]. Moreover, there is sig-
nificant overlap of conventional and multiparametric imaging
features for differentiating high- and low-grade tumors. Thus,
radiomic analysis to quantify intra-tumoral heterogeneity may
improve diagnostic and prognostic accuracy allowing tailored
treatment planning and monitoring of therapeutic response.

As mentioned previously, textural analysis is a key tool of
radiomics in unraveling complex imaging patterns.
Algorithms can examine spatial distribution of gray levels in
an image, by incorporating a filtration-histogram approach
where textural features of varying intensities are quantified
using histogram-based statistical metrics [29]. Several studies
suggest that these extracted features may be of potential use as
spatial imaging biomarkers for GBM heterogeneity. This is
exemplified by a recent study by Skogen et al., where
histogram-based textural analysis of GBM on MR images
was able to accurately discriminate high- and low-grade tu-
mors [91]. Ditmer et al. further extended this notion through a
retrospective study of 94 patients to determine the accuracy of
radiomic-based filtration-histogram textural analysis in grad-
ing gliomas [29]. Their analysis found that fine texture fea-
tures on post-contrast T1 images have the strongest ability in
discriminating high- and low-grade gliomas. This reiterates
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the findings by Skogen et al. where fine texture scales were
also found to be the best discriminative feature, with a sensi-
tivity and specificity of 93% and 81% (p < 0.05) [29].

Despite the accumulating work in improving differentia-
tion of gliomas through radiomic models, there remains a
question of adding value to molecular sub-classifications. To
address this, Macyszyn et al. applied machine learning and
pattern recognition methods to predict GBM molecular sub-
types by extracting imaging phenotypes [92]. Tumors were
categorized into four subtypes through an isoform-level assay
classifier: (a) proneural, (b) neural, (c) mesenchymal, and (d)
classical. Molecular subtypes were predicted with an overall
accuracy of 75.76%. Imaging phenotypes that were most pre-
dictive for each subtype were (a) histogram of T2-FLAIR
intensity and mean T1 in enhancing tumors for proneural sub-
type, (b) T2 intensity histogram in areas of edema and tumor
location for neural subtype, (c) histogram of T2-FLAIR inten-
sity and mean T1 signal in edema for proneural subtype, and
(d) size of enhancing regions, T2-FLAIR intensity histogram,
and peak height on perfusion signals in areas of edema for
classical subtype. Several studies have shown similar findings
where specific molecular subtypes of GBM displayed unique
imaging phenotypes that could be extracted and used as non-
invasive biomarkers. For instance, mesenchymal tumors have
been found to have lower non-enhancing tumor volume and
surrounding edema intensity, proneural subtypes have signif-
icantly lower blood-brain barrier breakdown, and classical
subtypes are strongly associated with features of necrosis
and edema [92]. Unlike prior studies that involved tissue spec-
imen analysis, Macyszyn et al. demonstrated that molecular
subtypes of GBM can be accurately predicted using imaging
alone.

Computational fractal-based analysis

The application of fractalomics in neuroscience is relatively a
new paradigm [37, 38]. Fractal analysis is a tool used to math-
ematically assess morphological features (e.g., roughness and
geometrical complexity) of natural objects [37, 38].Within the
last decade, fractal analysis has become an attractive method
to quantify complex morphological features in computed to-
mography (CT) and magnetic resonance imaging [38]. More
recently, it has been applied in neuroimaging for automated
classifications to improve diagnostic and prognostic accuracy
[93–95]. Fractal dimension, a parameter used in fractal anal-
ysis, is a non-integer number between 0 and 2, in a two-
dimensional space, or 0 and 3, in a volume of interest, that
quantifies the geometrical complexity of natural objects and
their ability to fill the surrounding space in which it is embed-
ded [38]. Fractal dimension computation has been shown to
be useful in characterizing the complex morphology of the

brain cortex, thus suitable to distinguish pathophysiological
states in MR imaging [38].

Several experimental studies have used fractal analysis for
MR brain imaging classifications, given its unique ability to
evaluate the self-affinity at multiple scales and the long-range
correlations of an image [38]. Authors have hypothesized that
normal brain MRI has higher self-affinity and long-range cor-
relations compared with those with neuropathologies, and that
these morphological changes can be quantified using compu-
tational fractal-based analysis [38, 93–95]. For further details
regarding the theoretical principles of fractal-based analysis
and its clinical applications into the basic and clinical neuro-
sciences, see Di Ieva et al., references [37, 38, 96].

Fractal geometry of brain tumors

The geometrical structure of tumors tends to be complex
and irregular due to the uneven spatial distribution of their
cells and microvessels. In particular, brain tumors exhibit
irregular geometry during their growth process and are
apparent even in their microvascular networks and spatial
diffusion through time. Fractal-based analysis in neuroim-
aging has been fundamental in the geometrical evaluation
and quantification of tumor irregularities. Its precise abil-
ity to characterize geometric features of irregular and
complex natural objects has led to novel techniques for
tumor segmentation [58, 97, 98], tumor grading [97, 99],
and therapeutic monitoring [70, 97]. Parameters computed
by means of fractal analysis can be used to not only val-
idate tumor growth models but also to gain further clinical
and prognostic information in oncological patients [100].

Fractal-based parameters, such as the fractal dimension
(FD), have been increasingly used for tumor segmentation in
neuroimaging, oncologic grading, and evaluation of therapy
[101]. More specifically, MRI with contrast enhancement
[97], susceptibility-weighted MRI (known as SWI) [70, 99],
and histological specimens have been assessed by means of
fractal analysis [102–106]. For instance, Di Ieva et al. evalu-
ated the fractal dimension on 7 Tesla SWI-MRI for grading of
gliomas [99]. Their findings revealed an increasing trend of
the intra-tumoral SWI patterns’ fractal dimension with tumor
grade—1.682 ± 0.278 for grade II, 2.018 ± 0.517 for grade III,
and 2.247 ± 0.358 for grade IV gliomas. Statistically signifi-
cant difference was found between grade II and grade IV
gliomas (p < 0.05), which proved that fractal geometric anal-
ysis can accurately distinguish high- and low-grade tumor. In
an earlier study, fractal capacity dimension was used to eval-
uate the effects of antiangiogenic treatments [70]. This was
also performed on 7 Tesla SWI-MR images to monitor in vivo
the therapeutic response. These promising results testify to the
value of using fractal analysis on 7 T SWI-MRI to quantita-
tively examine malignant brain tumors and their dynamics
during antiangiogenic therapy.
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Fractal geometry analysis on post-contrast MR images has
also been applied by Iftekharuddin et al. [58, 97] and Zook et al.
[98] for brain tumor detection and FD estimation. They pro-
posed three modified box-counting algorithms where pixel in-
tensities can be viewed in the third dimension, rendering them
more suitable for fractal textural analysis. Using a feature ex-
traction methodology with a self-organizingmap, multiple frac-
tal parameters were derived from post-contrast T1, T2, and
FLAIR MRI modalities. Following this extraction, the authors
could train a supervised neural network to automatically classi-
fy image regions as tumorous or non-tumorous. Several authors
have also used FD to analyze the 3D tumor interface in GBMs.
Interestingly, Smitha et al. analyzed FLAIR sequences to assess
variations in fractal dimensions of the tumor contours in low-
and high-grade gliomas [39]. Low-grade gliomas yielded a FD
of 1.243 ± 0.127, while high-grade gliomas revealed 1.338 ±
0.248, with a statistically significant difference (p < 0.05).

A dataset of fractal dimensions correlates to a particular
feature of the brain tumor lesion, such as enhancing regions,
geometric texture, vascularity, and tumor interface. These fea-
tures are invaluable in characterizing the dynamic evolution of
brain tissue from normal to dysplastic and to neoplastic. Such
descriptors may greatly contribute to improving diagnosis and
therapeutic monitoring, and serve as the platform for develop-
ing innovative tumor growth models for optimizing therapy
and drug delivery.

Future perspectives

Substantial progress has been made in the field of
radiomics to improve our understanding of the biology
and evolution of brain tumors. Quantitative characteristics
derived from neuroimaging modalities enables imaging
surrogate biomarkers to be validated through machine
learning and fractal-based analyses. This allows subtle
variations in the intra-tumoral microenvironment to be
monitored throughout the course of treatment. Despite
the growing body of literature, there remains a need to
develop more specific and precise methods to apply quan-
titative imaging features in a clinical setting. Here, we
explore the challenges and opportunities that pertain to
brain cancer imaging and the application of radiomics in
neuro-oncology.

The role of big data

Modern healthcare has seen an exponential growth in biomed-
ical data generation and extraction from individual patients
[1]. Massive datasets, so-called “big data,” are required by
radiomic studies to validate deep learning–based approaches
and expand its clinical applications [107, 108]. Despite the
growing potential for radiomics, there remain logistical and

technical challenges in managing big data. With multiple data
sources (e.g., institutions) and various data types (e.g.,
multiparametric imaging data, gene expression profiles, and
clinical records), standardizing data collection and sharing be-
come incredibly complex [46]. Differences in image acquisi-
tion and reconstruction are covariates that must be addressed
in the mining of quantitative features. Standards will have to
be established across different image protocols and parameters
to validate results from radiomic models. Thus, there is a need
for mutual agreements between national, international, and
multi-institutional consortia to share data through centralized
or federated networks [1]. Initiatives such as The Cancer
Genome Atlas [109], The Cancer Imaging Archive [110],
and the Quantitative Imaging Network [111] have allowed
efficient sharing of clinical data and help validate imaging
biomarkers against an independent dataset. However, estab-
lishing high-quality benchmarks with complete clinical labels,
standard radiomic features, and molecular profiles remains to
be challenging at a larger scale. Growing efforts to improve
data sharing, experimental evaluation, and reproducibility will
push radiomics closer toward precision medicine.

The role of radiologists

In current practice, radiologic investigations are qualitatively
examined. The finalized reports often do not use a standard
lexicon, despite recent efforts such as the RadLex® [112].
Although guidelines exist for reporting, none are available
for reporting quantitative imaging features, let alone for
reporting highly complex radiomics features. Due to the lack
of standards, huge existing image repositories are essentially
inaccessible for curation. Moreover, archived medical images
are rarely re-accessed. The most practical solution would be to
capture data prospectively at the point of care. This may lead
to a transition from classic radiology to a future where radiol-
ogists actively participate in the curation of quantitative image
databases [1]. Generating high-quality image data would re-
quire considerable expertise in identifying, segmenting (with
computer assistance), and annotating (using a standardized
and mineable lexicon) the regions of interest [1]. For the
curation of high-dimensional data to become a reality, radiol-
ogists should be first convinced of its value, and the process
must be refined to work within the limitations of clinical prac-
tice. Indeed, we envision radiomics to become a valuable asset
to improving diagnostic accuracy and clinical decision mak-
ing. With further involvement of radiologists in the curation
and analysis of big data, radiomics will continue to push the
boundaries of precision medicine.

Developments in machine learning

As described previously, identifyingmultiparametric prognos-
tic imaging biomarkers remains a challenge when extracting
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large-scale radiomic features from numerous imaging modal-
ities. Development of machine learning algorithms to analyze
rich databases could prove to be beneficial in identifying clin-
ically relevant feature descriptors [46]. Sparse-learning
models, also referred to as lasso regularization [113], have
been used in other cancer pathologies to identify prognostic
imaging biomarkers—such as non-small cell lung cancer
[114]. Although its applicability in neuroimaging is still lack-
ing, recent developments in SVM learning and deep learning
models prove to be encouraging in classifying GBM subtypes.
However, the lack of widely available labeled medical data
poses a challenge for developing novel deep learning models
[46]. For instance, collecting a large enough database of can-
cer images with accurate histopathological labels is costly at
scale; thus, developing methods to integrate data with varying
clinical labels may provide the opportunity to input large
datasets for deep learningmodels [115]. The clinical relevance
of deep learning outputs from multi-scale medical data (e.g.,
multimodal MR imaging and genomics) remains uncertain;
however, the ability to extract concise imaging patterns via
artificial neural networks may guide future studies in devel-
oping large-scale radiomic models [116].

Developments in targeted therapy

Optimizing treatment selection for GBM requires further
research into developing specific radiomic signatures.
With neuroimaging modalities such as diffusion-
weighted sequences, there is growing evidence that ADC
maps may be beneficial to differentiate clinical outcomes
in GBM treated with radiation therapy concurrently with
temozolomide [117]. In fact, early variations in ADC
maps were identified as a potential marker for predicting
GBM recurrence [118]. As mentioned earlier, machine
learning and fractal-based analyses were also used to pre-
dict treatment responses to bevacizumab—where a de-
crease in the volume of FLAIR signal and contrast en-
hancement was found as a potential biomarker in estimat-
ing therapeutic success [119]. To further improve our un-
derstanding of intra-tumoral dynamics expressed as imag-
ing phenotypes, larger collection of radiomic features ex-
tracted at various diagnostic periods could provide an op-
portunity to describe tumor evolution before and after
treatment [120]. Distinguishing tumor growth between
pseudo-progression and pseudo-response continues to be
a challenge through imaging alone [121]; thus, develop-
ment of radiomic models to better characterize treatment
outcomes will push the field of neuro-oncology a step
closer to precision medicine. Although validation of
radiomic features as true predictors of treatment response
is yet to be defined, the growing depth of radiomic find-
ings combined with growing genomic and clinical data
may p rov ide th e oppo r t un i t y t o r ede f i n e ou r

understanding of GBM biology. In the coming years,
radiomic analysis, using fractal geometry or higher-order
statistical methods such as machine learning or deep
learning, will be eventually able to redefine tumor sub-
types paving way for discovery of new biomarkers, with
the final aim to improve decision making and patients’
treatment.

Developments in fractal analysis

In regard to fractal-based analysis, its efficacy in classifying
brain MR images has been well established through many
breakthrough studies in the field of biomedical engineering.
Prior studies [93–95] could be extended through optimizing
feature selection and applying the computational of the fractal
dimension and related parameters (e.g., lacunarity) to other
neuroimaging modalities such as functional MR images, CT,
and positron-emission tomography (PET). Zook and
Iftekharuddin proposed integrating tumor subtypes, geometri-
cal size, and the effect of noise when analyzing fractal dimen-
sions [98]. Wardlaw et al. suggested the removal of cardiac
and respiratory factors from the blood oxygen level–
dependent (BOLD) signals to better identify tumor sub-
regions of active metabolism [122]. Iftekharrudin et al. recom-
mended future studies to improve discrimination of various
brain tissues, i.e., white matter, gray matter, cerebrospinal flu-
id, and skull, in order to better distinguish solid tumors and
areas of edema [58]. In the computational era, fractal-based
analysis may be incorporated into diffusion tensor imaging
studies and even nuclear medicine tools. For instance, fractal
analysis of single photon emission computed tomography
(SPECT) and PET imaging may deepen our insight of
radiomics and may offer novel biomarkers that are clinically
applicable [123].

Conclusion

With novel imaging biomarkers being uncovered at an accel-
erating rate through radiomics, comes a new frontier for inte-
grating multiparametric data to improve the treatment of brain
tumors. Computational models are expanding with the use of
machine learning and fractal-based analysis, which are in-
creasingly becoming paramount for diagnostic and prognostic
accuracy. Over time, these models will have to be aligned with
tumor biology to maximize the clinical implications of
radiomics. Current obstacles in understanding tumor hetero-
geneity may be overcome through increased research in com-
putational models and extending those findings to the clinical
realm. Our review of the newly emerging radiomic techniques
via machine learning and fractal-based analyses demonstrate
the potential for improving diagnostic and prognostic accura-
cy of gliomas. The field of radiomics is a rapidly developing
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field with many avenues yet to be explored for further discov-
ery and innovation.
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