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Abstract
Purpose  Immunotherapy, activation of the immune system to target tumor cells, represents a paradigm shift in the treat-
ment of cancer. Immune checkpoint therapies, which target immunomodulatory molecules expressed on T-lymphocytes, 
have demonstrated improved survival in a variety of malignancies. However, benefit in glioblastoma, the most common and 
devastating malignant brain tumor, remains to be seen. With several recent clinical trials failing to show efficacy of immu-
notherapy, concerns have been raised regarding the impact of glucocorticoid use in this patient population that may impair 
the ability for immune checkpoint inhibitors to affect a response.
Methods  For this article we examined the mechanism by which immune checkpoint inhibitors activate, and glucocorticoids 
impair, T-lymphocyte function.
Results  In this context, we review the clinical data of immune checkpoint inhibitors in glioblastoma as well as the impact 
glucocorticoids have on immune checkpoint inhibitor efficacy. Finally, we highlight key questions that remain in the field, 
and the potential benefit of further research for central nervous system tumors.
Conclusion  More information on the extent, character and duration of glucocorticoids on patients treated with PD-(L)1 
will better inform both clinical management and novel therapeutic development of immunotherapy in patients with CNS 
malignancies.
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Introduction

Despite much effort over the past several decades, glioblas-
toma, the most common malignant brain tumor, remains a 
disease with dismal prognosis, debilitating comorbidities 
and limited therapeutic options. Immune checkpoint inhibi-
tors offer the potential for highly-tolerable therapy with 
durable responses across a variety of cancer types. Much 
interest has rightly arisen for employing these treatments in 
patients with glioblastoma. However, to date phase II and III 
studies have been disappointing. A leading concern for this 
apparent lack of efficacy is the high prevalence of glucocor-
ticoid use among glioblastoma populations, a necessary con-
sequence of cerebral edema and radiotherapy treatments. An 
improved understanding of the interplay between immune 

checkpoint inhibitors, CNS tumors and glucocorticoids may 
therefore offer the key to more effective trial design and 
improved clinical management going forward.

Immune checkpoint blockade

Immune checkpoint inhibitors have assumed a preeminent 
role in the treatment of many solid tumor and hematologi-
cal malignancies, including non-small cell lung cancer 
(NSCLC), renal cell cancer (RCC), melanoma, breast cancer 
and Hodgkin’s lymphoma [1–5]. By modulation of cellular 
elements within the tumor microenvironment (TME), an 
anti-tumoral, pro-inflammatory response can be achieved. 
In the TME, cytotoxic T cells expressing the co-receptor 
CD8 recognize tumor peptides on antigen presenting cells 
(APC). This recognition is accomplished through the inter-
action of the CD3 T Cell Receptor (TCR) with the Major 
Histocompatibility Complex (MHC) but modulated by mul-
tiple costimulatory (also known as second signal) and inhibi-
tory mechanisms. Programmed Death Ligand (PD-L1), an 
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inhibitory immunoglobulin expressed on tumors, deactivates 
T cells via binding its cognate ligand PD-1 [6, 7]. Similarly, 
the inhibitory receptor Cytotoxic T Lymphocyte protein 4 
(CTLA-4) is expressed by T cells and competes with the 
costimulatory molecule CD28 to bind CD80/86 [8, 9]. When 
CTLA-4 is engaged with CD80/86, CD28 is unable to bind 
and transmit an activation signal [10]. By blocking these 
PD-L1 or CTLA4 interactions, immune checkpoint inhibi-
tors incite T lymphocytes towards proliferation, differentia-
tion and ultimately targeting of the malignancy.

Immune checkpoint inhibitors in CNS 
tumors

Initial results from immune checkpoint inhibition in glio-
blastoma have been disappointing. Recently published 
results from phase I exploratory cohort of CheckMate 143 
describe 40 patients with recurrent glioblastoma, treated 
with nivolumab, a PD-1 inhibitor, alone or in combination 
with the CTLA-4 inhibitor ipilimumab [11]. 68% of these 
patients expressed PD-L1 (≥ 1%). Overall survival (OS) 
was 10.4 months in those receiving nivolumab 3 mg/kg, 9.2 
months with nivolumab 1 mg/kg + ipilimumab 3 mg/kg, and 
7.3 months after nivolumab 3 mg/kg + ipilimumab 1 mg/kg. 
Combination therapy was poorly tolerated with 20–30% of 
patients experiencing adverse events which lead to discon-
tinuation. A phase III cohort of CheckMate 143 reported 
that nivolumab monotherapy does not improve survival as 
compared with bevacizumab, a VEGF inhibitor approved for 
second line use [12].

Similarly, phase III data is pending on the efficacy of 
checkpoint blockade in the newly-diagnosed population but 
early reports indicate that PD-1 inhibition does not drasti-
cally improve outcomes in an unselected population. Check-
Mate-548, a randomized, multicenter trial of patients with 
newly-diagnosed MGMT-methylated glioblastoma treated 
with temozolomide and radiation, showed that the addition 
of nivolumab did not show a statistically significant improve-
ment of progression-free survival (PFS). The study remains 
open to allow for OS data to mature [13]. Similarly, Check-
Mate-498 examined newly-diagnosed MGMT-unmethylated 
patients treated with radiation (without temozolomide), and 
randomized to either concurrent and maintenance nivolumab 
or no additional therapy [14]. The study did not meet its pri-
mary endpoint of OS with publication of the full evaluation 
and subsequent results forthcoming soon.

With these findings in mind, a recent study from the Ivy 
Foundation Consortium has cast renewed focus on immune 
checkpoint modulation in glioblastoma, specifically in the 
perioperative setting. This randomized, open-label pilot 
study compared neoadjuvant to adjuvant pembrolizumab, 
a PD-1 inhibitor, in 35 patients with recurrent, surgically 

resectable glioblastoma. Patients receiving pembrolizumab 
prior to surgical resection had significantly improved OS 
(13.7 months vs 7.5 with adjuvant pembrolizumab) [15]. 
Although PFS was also improved (3.3 months vs 2.4 respec-
tively) the difference between arms was much less than that 
observed in OS indicating that the potential mechanism for 
improved survival is not directly mediated by reduced tumor 
volume. Transcriptomic analysis identified increased inter-
feron- and T cell-pathway signaling in the neoadjuvant as 
compared with the adjuvant arm. Immunofluorescent exami-
nation showed that neoadjuvant specimens were more likely 
to have focal PD-L1 expression with a high CD8 infiltra-
tion. TCR sequencing of peripheral blood mononuclear cells 
showed that the patients receiving neoadjuvant pembroli-
zumab had expanded clonality rearrangements. Similarly, a 
phase II trial of 40 patients with glioblastoma (27 recurrent, 
3 newly diagnosed) treated with neoadjuvant nivolumab, 
followed by surgery and adjuvant nivolumab had upregula-
tion of chemokine transcripts, increased immune cell infil-
tration and TCR clonal diversity among tumor-infiltrating 
lymphocytes (TILs) [16]. Finally, a molecular analysis of 
66 patients with glioblastoma treated with PD-1 inhibitors 
highlighted the role of MAPK pathway alterations, such as 
BRAF in patients who respond to immunotherapy [17]. In 
this study patients were classified as responders if tissue 
samples showed immune infiltration with few to no tumor 
cells or if tumor volumes were radiographically stable or 
shrinking over at least 6 months. MAPK inhibitors have 
shown synergism with PD-1 blockade in murine models 
[18]. Additionally, the study found that PTEN mutations 
were enriched among non-responders. In melanoma pre-
clinical models, PTEN loss has previously been shown to 
increase immunosuppressive cytokines and in turn inhibit 
TIL quantity and function.

Glucocorticoid use in CNS tumors

Glucocorticoids are naturally produced in the adrenal cortex 
where they play various roles in the homeostatic regulation 
of inflammation, metabolism, sodium regulation and the 
immune response. Upon binding glucocorticoid receptor 
in the intracellular space, the receptor dissociates from its 
inhibitory proteins, dimerizes and then translocates into the 
nucleus where it regulates gene transcription. [19]. Gluco-
corticoids have also been shown to regulate transcription 
via a more direct mechanism [20]. In addition to the treat-
ment of cerebral edema and numerous other autoimmune 
conditions, steroids remain a cornerstone for the treatment 
of radiation necrosis. Glucocorticoids are also the primary 
therapy for immune-related adverse events (irAE) secondary 
to immune checkpoint inhibitors. In general corticosteroids 
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are employed for grade II irAE although this varies accord-
ing to the specific toxicity involved [21].

Dexamethasone, a synthetic glucocorticoid, is the most 
commonly used glucocorticoid in patients with CNS malig-
nancies. Dexamethasone is indicated for, and universally 
employed in, the treatment of cerebral edema, a common 
occurrence in patients with CNS tumors [22, 23]. As dexa-
methasone possesses high glucocorticoid and low mineralo-
corticoid activity it has less impact on the renin-angioten-
sin-aldosterone system, and in turn sodium retention, then 
naturally occurring glucocorticoids such as hydrocortisone. 
Complications of long-term dexamethasone use include 
the suppression of the hypothalamic-pituitary adrenal axis, 
infection, cataracts, peptic ulcers, osteoporosis, myopathy 
and psychosis. It has linear pharmacokinetics with a plasma 
half-life of 4 hours [24, 25] and reaches a maximal plasma 
level between 1.6 and 2.0 hours after administration. The 
relative bioavailability of oral dexamethasone is 70–81% 
compared to intramuscular administration [26] with an 
AUC of approximately 774ug. Twice daily dosing provides 
an appropriate clinical response [27].

There is increasing evidence that glucocorticoid expo-
sure is an independent predictor of survival in glioma, and 
that this effect is mediated by immunosuppression at the 
level of the tumor micro-environment. Randomized trials in 
murine glioblastoma models have clearly demonstrated that 
corticosteroid pretreatment prior to irradiation decreases-
survival [28]. The impact of corticosteroids on human sub-
jects however, is less clear. Arguments for this detrimental 
effect include a study of 832 patients with glioblastoma 
which found that corticosteroid-administration at the time 
of radiotherapy initiation was an independent predicator of 
decreased survival even after adjusting for resection extent, 
initial treatment, age and Karnofsky Performance Score 
(KPS). Likewise, a post-hoc analysis of patients receiving 
tumor-treating fields found that dexamethasone doses greater 
than 4.1 mg daily had decreased OS (4.8 months vs 11.0 
in those receiving ≤ 4.1 mg daily) [29]. This segregation of 
OS among groups persisted even after accounting for KPS, 
age and tumor size. Absolute CD3 T-lymphocyte count was 
found to be the strongest predictor of survival (2.0 months 
with ≤ 382cells per mm3 vs 7.6 months with > 382 cells per 
mm3) but CD4 and CD8 subsets also correlated with sur-
vival. However, these results are in contrast to a prior study 
of 76 patients with high grade glioma treated with corticos-
teroids which found that CD4 counts < 200 mm3 (occurring 
in 24% of patients) did not impact survival [30]. Further 
evidence that glucocorticoid exposure may not directly 
alter tumor-infiltrating lymphocytes (TIL) density comes 
from a retrospective immunohistochemical analysis which 
found no correlation between tumor-infiltrating lympho-
cytes and preoperative GC in 135 glioblastoma specimens 
[31]. Likewise, immunohistochemical analysis in 116 brain 

metastasis specimens also showed no correlation [32]. TIL 
density had been the primary objective for the IVY Founda-
tion trial comparing neoadjuvant to adjuvant PD-1 blockade. 
Although variability in the neoadjuvant cohort was appreci-
ated there was not statistical difference in CD8 TILs between 
neoadjuvant and adjuvant groups. Importantly, work in our 
laboratory demonstrated that exposure of isolated T lympho-
cytes to dexamethasone did not cause a significant drop in 
cell number but prevented the proliferation of naïve T cells 
when exposed to immune stimulation [33]. These results are 
in concert with the tumor data where corticosteroids do not 
decrease the TIL population.

Glucocorticoid inhibition of T lymphocytes

Early work in the 1970s showed that limited glucocorticoid 
administration could induce lymphopenia within 4–6 h and 
that this lymphopenia recovered within 24 h [34]. Sequestra-
tion of peripheral lymphocytes into the bone marrow was 
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Fig. 1   Effect of Glucocorticoids on T cell Signaling. Activator pro-
tein 1 pathway (AP-1), antigen-presenting cell (APC), cluster of 
differentiation (CD), cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4), proto-oncogene tyrosine-protein kinase (FYN), interleukin 
(IL), linker for activation of T cells (LAT), lymphocyte-specific pro-
tein tyrosine kinase (LCK), mitogen-activated protein kinase pathway 
(MAPK), nuclear factor kappa B pathway (NF-кB), peptide major 
histocompatibility complex (pMHC), programmed cell death protein 
1 (PD-1), protein kinase B pathway (PKB), protein kinase C path-
way (PKB), T cell receptor (TCR), TNF-related apoptosis-inducing 
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implicated as a potential mechanism for this rapid shift and 
later studies using fluoresceinated peripheral blood lympho-
cytes demonstrated that diminished efflux from lymphoid 
organs also played a role, albeit a diminished one if gluco-
corticoid exposure is prolonged [35, 36].

Several molecular pathways have been described 
regarding the immunosuppressive effects of glucocorti-
coids on T lymphocytes (Fig. 1). Dexamethasone inhibits 
TCR signaling via interruption of membrane-proximal 
phosphorylation events as evidenced by decreased phos-
phorylation of zeta chain, ZAP70 kinase and the adaptor 
molecule linker of activation of T cells (LAT) [37]. Fur-
thermore, glucocorticoids similarly decrease phosphoryla-
tion of Lck and Fyn, mediators of the TCR-CD4 and CD3 
interactions respectively. This results in downregulation 
of protein kinase B (PKB), protein kinase C (PKC) and 
mitogen-activated protein kinase (MAPK) pathways [38]. 
Importantly, this TCR inhibition appears to be through 
a glucocorticoid receptor dependent mechanism. This 
inhibition of TCR signaling in turn leads to apoptosis via 
steroid receptor coactivator (SRC) kinase signaling and 

caspase activation [39]. Glucocorticoids have been shown 
to negatively regulate interleukin 2 (IL-2) transcription. 
Additionally, glucocorticoids were shown to downregulate 
IL-2 production by acting upon the IL-2 promoter and 
its transcription factor AP-1, although it should be noted 
that this effect may also be concentration dependent [40, 
41]. There have been contradictory reports on the ability 
for exogenous IL-2 to rescue T cells from glucocorticoid-
induced inhibition [42, 43].

Much is known about the modulation of hematopoietic 
cells by glucocorticoids (Fig. 2). Among CD4 + T cells, 
naïve cells were noted to have increased sensitivity to dexa-
methasone inhibition compared to memory T cells, and 
CD28 and PKC mechanisms were implicated as potentially 
responsible for this difference. Comprehensive phenotyping 
of 20 healthy volunteers treated with a single dose of hydro-
cortisone confirms that naïve T cells account of the predomi-
nance of CD4 + T cell subpopulation loss [44]. In contrast, 
effector memory, helper memory and Th17 cell frequencies 
were increased after glucocorticoid exposure. Similarly, 
among CD8 + T cells, naïve T cells were decreased while 
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effector memory T cells were increased (at lower steroid 
doses). Transcriptomic analysis using whole transcriptome 
gene expression microarray profiling demonstrated that 
Nuclear Factor kappa B (NF-kb) signaling, inflammation 
and cell death-related mRNA were all suppressed while 
apoptosis and cell cycle transcripts were upregulated. Gene 
set enrichment showed upregulation of CD163, ADRB2 and 
IL1R2 transcripts as well as decreased NF-KB and AP-1 
transcripts. Circulating cytokines were also examined with 
diminished secretion of inflammatory cytokines noted, 
including IL-1b, IL8 and TNF-related apoptosis-inducing 
ligand (TRAIL).

Glucocorticoids have previously been shown to upregu-
late both PD-1 and CTLA expression [45, 46]. Our labo-
ratory has identified that glucocorticoids suppress the 
proliferation and differentiation of naïve T cells via CD28 
costimulatory pathways. Interestingly, CTLA-4 inhibitors 
appear capable of partially rescuing T cells exposed to glu-
cocorticoids. As CTLA-4 is the shared ligand for CD28 and 
CD80/86, CTLA-4 blockade would potentially allow for 
increased interaction of CD80/86 with CD28, thereby lead-
ing to increased T cell activation.

The effect of glucocorticoids on immune 
checkpoint inhibitor therapy

A chief concern in the aforementioned clinical trials exam-
ining immune checkpoint inhibitors in glioblastoma has 
been the relatively high incidence of steroid use in these 
patients. In CheckMate 143 for example, 30% of patients 
were receiving steroids (all ≤ 4 mg dexamethasone equiva-
lents) at the time of immune checkpoint initiation. There 
were five long term survivors, none of whom had received 
steroids at baseline. The absence of any long-term survivors 
among the patients receiving steroids suggests a detrimental 
role. If glucocorticoids were inhibitory towards T lympho-
cyte activation, this effect may have predominated over that 
of the immune checkpoint blockade, thereby suppressing the 
immune system. In contrast to this are the findings from the 
Ivy Foundation study. In that study, steroid dose at registra-
tion did not correlate with the OS, nor did this correlate with 
interferon, T cell or cell cycle-associated gene expression 
scores. Therefore, there remains conflicting evidence as to 
the impact of glucocorticoids on OS in patients with glioma 
treated with checkpoint inhibitors.

Data in other solid tumor malignancies on the impact 
of glucocorticoids has likewise been mixed. Several case 
reports, clinical trials and systematic reviews have sug-
gested that glucocorticoids do not reduce the efficacy of 
PD-1, PD-L1 or CTLA-4 directed therapy [47–51]. How-
ever, other studies have conversely suggested that gluco-
corticoids do indeed decrease efficacy in patients receiving 

immunotherapy [52, 53]. Margolin et al conducted an open 
label phase II study of 72 patients with melanoma metastatic 
to the brain and subsequently treated with ipilimumab [54]. 
Disease control at 12 weeks and survival among sympto-
matic patients on corticosteroids was 5% and 3.7 months 
respectively. This is in comparison to neurologically asymp-
tomatic patients who had a disease control of 18% and OS 
of 7 months. Intracranial disease control among was 10% 
in patients on corticosteroids, compared to 24% among 
asymptomatic patients. Arbour et al recently reported on 
640 patients with advanced NSCLC treated with PD-(L)1 
blockade [55]. 14% of these patients were on ≥ 10 mg of 
prednisone equivalent per day within 30 days of initiating 
PD-(L)1 blockade. After multivariate analysis, baseline cor-
ticosteroid exposure remained significantly associated with 
decreased OS (HR 1.7, p < 0.001). Another retrospective 
study of 151 patients with metastatic NSCLC also suggests 
that corticosteroid use within 28 days of starting an immune 
checkpoint inhibitor is associated with poorer disease con-
trol, PFS and OS (HR 2.60, p < 0.001) [34]. Early use of 
corticosteroids in this study was noted to correlate with an 
increased neutrophil to lymphocyte ration (NLR), higher 
neutrophils and lower eosinophil counts. Interestingly, 
NLR ≥ 5 was independently associated with both early ster-
oid usage and decreased survival indicating that this cellular 
ratio may in fact serve as the intermediary of immune resist-
ance [56]. To this effect clinical tools using this biomarker 
to screen patients who are most likely to derive benefit from 
immune checkpoint inhibitors are currently under develop-
ment [57].

Conclusion

The success of immunotherapy in other solid tumor malig-
nancies, including those with intracranial metastasis, has 
driven renewed hope in achieving a meaningful improve-
ment of survival for patients suffering from primary CNS 
tumors. However, initial clinical trials investigating immune 
checkpoint inhibitors in glioblastoma have been disappoint-
ing. Phase III results indicate that PD-1 blockade does not 
significantly benefit unselected patients with glioblastoma 
in the newly-diagnosed or recurrent setting. As with the 
initial studies of immune checkpoint inhibitors in NSCLC, 
identification of appropriate biomarkers remains the ‘holy 
grail’. Such biomarkers would allow both for better patient 
selection, to enrich for patients most likely to respond and 
avoiding treatment and exposure to adverse events in those 
who will not. As such, there remains concern that the wide-
spread use of glucocorticoids in patients with glioblastoma 
may account, in part, for a failure of immune checkpoint 
inhibitors to activate the immune system sufficiently as to 
achieve an anti-tumoral response.
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There are several unanswered questions in this regard. 
Although there have been conflicting observations, the 
mounting evidence supports the position that glucocorticoids 
exposure during PD-(L)1 inhibition initiation decreases sur-
vival. Second, there needs to be better understanding of the 
appropriate “washout” and “exposure” periods whereby a 
patient could be tapered off of, and initiated on, glucocor-
ticoids while still deriving clinical benefit from immuno-
therapy. The benefit of glucocorticoids in the treatment of 
certain sequela of CNS tumors, particularly cerebral edema, 
is undeniable, and in some patients these conditions would 
undoubtedly necessitate glucocorticoid treatment. However, 
there are other situations wherein alternative treatments 
such as diuretics, surgical decompression, VEGF inhibition 
and hyperbaric oxygen could substitute for glucocorticoid 
treatment and thus allow patients to receive maximal ben-
efit from immunotherapy. Third, the exact mechanism by 
which glucocorticoids impair T lymphocyte activation in 
the setting of checkpoint blockade has not been fully eluci-
dated. It is not clear whether this impairment is by the direct 
downregulation of TCR signaling by secondary modulator 
molecules on CD8 T cells predominantly, or other altera-
tions of the immune milieu, such those involving T regula-
tory cells, tumor-associated macrophages or the tumor itself. 
In conclusion, key questions remain to be elicited as to the 
impact of glucocorticoid exposure on patient’s receiving 
immune checkpoint therapy. The answers to these questions 
may provide insight for how to translate the success of these 
novel agents into efficacy for patients with central nervous 
systems tumors.
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