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A B S T R A C T

Background: The aim of this study was to investigate changes in structural magnetic resonance imaging (MRI) according to the RANO criteria and perfusion- and
permeability related metrics derived from dynamic contrast-enhanced MRI (DCE) and dynamic susceptibility contrast MRI (DSC) during radiochemotherapy for
prediction of progression and survival in glioblastoma.
Methods: Twenty-three glioblastoma patients underwent biweekly structural and perfusion MRI before, during, and two weeks after a six weeks course of radio-
chemotherapy. Temporal trends of tumor volume and the perfusion-derived parameters cerebral blood volume (CBV) and blood flow (CBF) from DSC and DCE, in
addition to contrast agent capillary transfer constant (Ktrans) from DCE, were assessed. The patients were separated in two groups by median survival and differences
between the two groups explored. Clinical- and MRI metrics were investigated using univariate and multivariate survival analysis and a predictive survival index was
generated.
Results: Median survival was 19.2 months. A significant decrease in contrast-enhancing tumor size and CBV and CBF in both DCE- and DSC-derived parameters was
seen during and two weeks past radiochemotherapy (p < 0.05). A 10%/30% increase in Ktrans/CBF two weeks after finishing radiochemotherapy resulted in
significant shorter survival (13.9/16.8 vs. 31.5/33.1 months; p < 0.05). Multivariate analysis revealed an index using change in Ktrans and relative CBV from DSC
significantly corresponding with survival time in months (r2 = 0.843; p < 0.001).
Conclusions: Significant temporal changes are evident during radiochemotherapy in tumor size (after two weeks) and perfusion-weighted MRI-derived parameters
(after four weeks) in glioblastoma patients. While DCE-based metrics showed most promise for early survival prediction, a multiparametric combination of both DCE-
and DSC-derived metrics gave additional information.

1. Introduction

Glioblastoma (GBM) is the most common primary brain cancer in
adults. Prognosis is dire, with an average overall survival (OS) of
12–15 months [1]. The OS range is, however, wide and some patients
respond beneficial to therapy and have a two-year OS of 20–25%,
making early and correct prognosis challenging [1,2]. Accurate prog-
nosis is preferred by cancer patients [3], in addition, early prognostic
biomarkers are warranted for timely change of therapy in cases
showing tumor recurrence and treatment failure.

The Response Assessment in Neuro-Oncology (RANO) criteria,
considered to be the gold standard in GBM assessment, are based on the

visual radiological evaluation of structural image series [4]. These
criteria include estimating changes in MRI-based measures of tumor
size, measured on two-dimensional structural T1-weighted (T1w) and
T2-weighted (T2w) or Fluid Attenuated Inversion Recovery (FLAIR)-
weighted images, in conjunction with corticosteroid use and clinical
deterioration [4]. Disease response is grouped into four categories:
complete response, partial response, stable disease, and progressive
disease. Concerns about the limited ability of structural measurements
to reflect pathologic heterogeneity and predict OS have led to an in-
terest in more sophisticated MRI tools [5,6]. Perfusion-weighted MRI
techniques are used increasingly in the assessment of GBMs and most
tumor protocols now include either dynamic contrast-enhanced MRI,
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(DCE) and/or dynamic susceptibility contrast MRI (DSC) [7]. Perfusion
imaging for prognostics is promising in several studies [8–10]. How-
ever, there is no consensus on how to best perform this assessment
during conventional therapy [11]. Studies vary with respect to imaging
time-point relative to treatment, statistical analysis, and the metrics
investigated. Furthermore, few have systematically investigated dif-
ferences and similarities between DSC and DCE in terms of their ability
to predict outcome [10].

To this end, we hypothesized that perfusion derived metrics will
help improve the prediction of OS in GBM patients, compared to con-
ventional volumetric or radiologic assessment by the RANO criteria
alone. Furthermore, our study aimed to assess the temporal trends of
estimated parameters derived from DCE and DSC imaging and differ-
ences in their predictive value.

2. Methods

2.1. Patient population

Patients with histologically confirmed high-grade glioma (grade III
and IV) operated at our institution between May 2010 and May 2012
were eligible for inclusion in this prospective study at start of radio-
chemotherapy treatment. Approval from the regional ethics committee
and written informed consent was obtained from all patients before
imaging start. Exclusion criteria were impaired renal function (esti-
mated glomerular filtration rate (eGFR)<60 ml/min), claustrophobia
and artifacts from surgical clips near the area of interest. A series of 23
patients were included and available for the final analysis; for key de-
mographics see Table 1. Treatment included surgery when possible,
followed by stereotactic radiotherapy approximately four weeks after
surgery with concomitant and adjuvant chemotherapy with temozolo-
mide according to the standard treatment protocol proposed by Stupp
et al. [2]. Imaging was performed immediately before the start of
radiochemotherapy, every second week during this treatment, as well
as two weeks after treatment. At each imaging time-point, clinical as-
sessment was done using the Karnofsky performance status (KPS) [12].

2.2. MRI

Imaging was performed using a 3 Tesla Philips Achieva (Philips
Medical Systems, Best, The Netherlands), using an eight-channel head
coil. Structural imaging included a 3D FLAIR, (echo time (TE)/repeti-
tion time (TR)/inversion time (TI) (ms) = 424/8000/2400, voxel size
1.07 × 1.07 × 0.6 mm3, matrix 224 × 224, 300 slices); a 3D T1w
gradient echo (GRE) before and after contrast agent injection (TE/
TR = 2.3/5.1 ms, voxel size 1 × 1 × 1 mm3, matrix 256 × 232, 190
slices).

Perfusion-weighted imaging: DCE were acquired using a 3D sa-
turation recovery (SR) GRE sequence (TE/TR/flip angle (FA) = 2.5/
8.2 ms/26°, voxel size 2 × 2 × 4 mm3 (interpolated to

1.8 × 1.8 × 4 mm3), matrix 120 × 120, 11 slices), a SENSE factor of 2
was used [13]. Each slice was acquired after application of a non-
selective saturation prepulse with a saturation time delay (TD). Centric
phase ordering was used so that centre of k-space was recorded at time
TD. TD/sampling interval was 80 ms/3.4 s (first seven subjects) in a
double-echo sequence and 50 ms/2.1 s in the remaining subjects, giving
a total of 100 or 150 dynamic images respectively [14]. For the DSC a
2D spin echo (SE) echo planar imaging (EPI) (TE/TR = 70/1349 ms,
voxel size 1.88 × 1.88 × 4.0 mm3, matrix 120 × 120, 13 slices,
sampling interval of 1.33 s) sequence was used. DCE was performed
before DSC, and 0.1 mmol/kg body weight gadobutrol (Gadovist®,
Bayer Schering Pharma AG, Berlin, Germany) was injected after base-
line imaging for both DCE and DSC using a power injector, at a rate of
3 mL/s and 5 mL/s respectively, immediately followed by a 20 mL
saline flush.

2.3. Image preprocessing and data analysis

2.3.1. Co-registration and region-of-interest creation
Co-registration was performed using SPM8 in a hierarchic manner.

Pre-treatment non-contrast T1w image sets served as reference, and
non-contrast T1w images from each time-point were co-registered to
the reference image. Contrast enhanced T1w- and FLAIR images were
registered to already registered non-contrast T1w images. DCE-data was
registered to contrast-enhanced T1w images and DSC-data to FLAIR
images for optimal results. The framework is shown in Supplementary
Fig. 1. Two regions-of-interest (ROIs) were generated using a semi-au-
tomatic method previously described [15]. In short, a contrast-enhan-
cing tumor (CET) ROI was defined from hyper-intense regions in the
contrast enhanced T1w images. Thick linear enhancement in the con-
trast enhanced T1w images (> 2 pixels thick) was included in the ROIs
as this has shown the same prognostic significance as nodular en-
hancement early post operatively [16]. A non-enhancing tumor (NET)
ROI was defined from regions of high signal intensity in the FLAIR
images. The CET was subtracted from the NET to avoid overlapping
ROIs. All auto-generated ROIs were edited and approved by a radi-
ologist (4 years of experience). ROIs smaller than 0.5 mL were excluded
from the analysis.

2.3.2. Visual assessments
Radiographic progression-free survival (PFS) was defined as time to

progressive disease according to the RANO criteria [4]. Three radi-
ologists (4–22 years of experience) made a consensus agreement for
each patient case. In addition to the four RANO categories, a fifth ca-
tegory – pseudoprogression - was included. Pseudoprogression was
defined by new or growing contrast enhancing lesions where the
radiographic findings were stable for more than six months and later
decreased in size or was confirmed by surgery (one patient). Volumes of
CET and NET, in addition to volumetric change from baseline, were
estimated from the structural images.

Table 1
Key demographics of all patients and for the two survival groups based on median split. Median values and estimated 95% confidence intervals shown in parenthesis.
KPS = Karnofsky Performance Score, CET = Contrast enhanced tumor, NET = non-enhanced tumor, GTR = gross total resection, STR = sub-total resection.

Characteristics All patients (n = 23) Overall survival > 19.1 months (n = 11) Overall survival < 19.1 months (n = 12)

Age 56.2 (49.5–62.6) 54.5 (32.7–64.3) 59.5 (49.5–64.8)
Sex (female/male) 6/17 2/9 4/8
KPS score at baseline 100 100 100
Progression free survival 7.1 (4.0–20.8) 29.8 (9.8–45.3) 2.45 (0–5.3)
Overall survival (months) 19.2 (13.6–33.6) 38.4 (29.0–55.1) 13.4 (9.9–15.8)
CET at baseline (ml) 5.8 (4.4–11.1) 5.8 (1.3–18.0) 6.63 (3.2–29.0)
NET at baseline (ml) 15.3 (3.9–37.5) 9.3 (1.6–85.6) 33.0 (3.2–57.5)
Surgery (Biopsy/STR/GTR) 1/8/14 1/3/7 0/5/7

Key demographics of all patients and for the two survival groups based on median split. Median values and estimated 95% confidence intervals shown in parenthesis.
KPS = Karnofsky Performance Score, CET = Contrast enhanced tumor, NET = non-enhanced tumor, GTR = gross total resection, STR = sub-total resection.
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2.3.3. Perfusion processing
The extended two-compartment Tofts model was used for the DCE

analysis, yielding statistical parametric maps of the unidirectional
contrast agent capillary transfer constant (Ktrans) and plasma volume
(vp) [17]. A fixed baseline T1 of 1490 ms across all patients was used for
further analysis [18,19]. Patient-specific carry-on arterial input func-
tions (AIFs) obtained from the baseline scan was used for both DCE and
DSC analysis at every time-point as previously described [20]. In ad-
dition to parametric maps of Ktrans and vp, CBF from all time-points
(CBFT1) was also estimated from the DCE data. An example of the
model fit and the residual function from the DCE is shown in
Supplementary Fig. 2The DSC series was corrected for geometric EPI
distortions [21], and parametric maps representing CBF (CBFT2) and
CBV (CBVT2) were generated [22]. Absolute measures of CBFT2 and
CBVT2 using a patient-specific carry-on AIF from the first scan [20], as
well as values relative to normal appearing grey- and white matter
(rCBFT2 and rCBVT2) were estimated from the DSC data [23]. CBF was
estimated based on the same method in the DCE and DSC series [24].
All image analysis was performed using the nordicICE analysis package
(NordicNeuroLab AS, Bergen, Norway).

2.3.4. Statistical analysis
Median OS and PFS, from the date of radiochemotherapy start, were

calculated from Kaplan-Meier plots and the subjects were divided ac-
cording to a median split in two groups. Median and 90-percentile
values of all perfusion parameters were investigated for absolute values
and the percentage change from the baseline scan (δ), for both ROIs.
Temporal change from the baseline examination in all patients was
assessed using Wilcoxon signed-rank test, with Holm-Bonferroni cor-
rections for multiple comparisons. Differences in the two survival
groups were assessed by Mann-Whitney U test. Receiver operating
characteristics (ROC) curves were investigated for significant para-
meters from the Mann-Whitney U test and dichotomized based upon
Youdens index [25]. Parameter correlation was assessed using Spear-
man's correlation. Log-rank test and Kaplan-Meier plots for OS were
then generated based on the cut-off values from the ROC curve analysis.
In an effort to accurately predict OS, in compliance with earlier pub-
lished work, a survival index was produced by combining parameters
from DCE and DSC [26]. Cox proportional hazards analysis using age as
a time dependent covariate and changes in log-transformed Ktrans and
rCBVT2 from baseline to week eight was performed. Using the sum of
the estimated regression coefficients β for each parameter an index for
each patient was calculated using the following formula and correlated
to OS [26].

= + +Survival Index x Ktrans x rCBV x age1 2 3

The predictive value of the index was assessed using a concordance
index [27]. Findings were considered significant if p < 0.05. All sta-
tistical analyses were performed in Statistical Package of the Social
Sciences (SPSS) v.22 (IBM Corporation, New York, USA).

3. Results

Median OS and PFS for all patients were 19.2 (2.0–36.3) and 8.9
(3.8–14.0) months, respectively. Evolution of RANO grade, PFS and OS
for each patient is shown in Fig. 1. A strong correlation between PFS
and OS was found (r2 = 0.843; p < 0.001). Patients with radiographic
progression during the first 12 months had a significantly shorter OS
(13.5 months; 12.8–14.3) than those without progression (40 months;
34.0–47.0; p < 0.001).

Temporal changes in tumor sub-volumes (CET and NET), DCE and
DSC parameters for all patients during- and two weeks past radio-
chemotherapy, are shown in Fig. 2a and Supplementary Fig. 3. CET
decreased at all time-points (p < 0.05). NET volume showed a sig-
nificant increase in absolute and relative volume at the second and third
time-point respectively (p < 0.05). 90 percentile values of CBFT1 and

vp decreased two weeks past the end of radiochemotherapy in both CET
and NET (p < 0.05). Significant decreases in rCBFT2 and rCBVT2 were
evident at four weeks in both median and 90-percentile values in CET
(p < 0.05). Representative images of the evolution of structural vo-
lume and perfusion metrics in two sample patients are shown in Fig. 3.

The temporal evolution of δ-values in the two survival groups is
shown in Fig. 2b and Supplementary Fig. 4. Both δ CBFT1 and Ktrans in
CET showed increasing differences during treatment. Patients with
stable or decreasing CBFT1/Ktrans at two weeks after radiochemotherapy
had prolonged survival of 33.1/31.5 months compared to patients with
increasing values (16.8/13.9 months; p = 0.036/0.016). ROC curve
analysis revealed a cut-off value for δ CBFT1 and δ Ktrans of 10% and
30% from the Youden index (p = 0.016 and p = 0.021). The Kaplan
Meier plots of both parameters are shown in Fig. 4a along with two
sample patients (Fig. 4b) and parameter histograms (Fig. 4c). δ Ktrans

and CBFT1 in CET correlated significantly at all time-points
(r2 > 0.847; p < 0.001).

Univariate Cox regression revealed age as a significant predictor for
OS (p = 0.013). Other known clinical predictors including tumor vo-
lume, KPS, and surgical resection were not found to be significant. No
continuous parameter was found significant in the univariate analysis.
Multiparametric Cox regression of log-transformed δ Ktrans and δ
rCBVT2 were significant (p = 0.028 and p = 0.025) for OS. The index
was significantly negatively correlated with OS (r2 = 0.843;
p < 0.001). A strong concordance with a Harrels C score of 0.881 was
found for the index. All beta coefficients were positive, signifying that
higher age, increasing Ktrans and increase in rCBVT2 from baseline were
associated with shorter OS.

4. Discussion

This study demonstrates a decrease in CET volume and a decrease in
DSC derived CBFT2, and CBVT2 in GBM patients during- and two weeks
after radiochemotherapy. In addition, the prognostic value of Ktrans and
CBFT1 from DCE in CET was superior to the DSC-derived parameters. An
index of age and log-transformed Ktrans and rCBVT2 showed strong
correlation with survival.

In agreement with previous studies, PFS and OS varied much within
the patient population (Fig. 1). However, PFS is not a good marker for
survival prediction [26]. According to the RANO criteria, progression
can only be evaluated three months after the end of radiochemotherapy
at the earliest due to pseudoprogression [4]. Pseudoprogression occurs
in 20–30% of patients during radiochemotherapy, effectively making
PFS unreliable as a predictive biomarker until pseudoprogression can
be separated from true progression [28]. Studies distinguishing pseu-
doprogression from true progression using imaging biomarkers are
emerging, but prospective evaluation is warranted before clinical use
[29,30].

Volumetric anatomical assessment is not part of the RANO criteria
due to lack of standardization and measurement tool availability [4].
Despite a decrease in CET and an increase in NET volume in all patients
during radiochemotherapy, univariate analysis of volumetric change
did not separate the two survival groups or predict survival. In a recent
study of 125 patients with treatment naïve GBM comparing clinical
parameters with MRI parameters, no association (p = 0.855) between
OS and pre-treatment tumor volume was found [31]. Conversely, Li
et al., in a study similar to ours, found a correlation between OS and
volume before radiochemotherapy of non-enhancing lesions in 64 pa-
tients [32]. While post-surgical tumor volume is a known predictor for
OS, extent of resection other than gross-total or sub-total resection is
poorly understood [33].

Studies have shown that high rCBVT2 may predict shorter OS in
GBM patients [34,35]. The DSC-derived parameters rCBVT2 and rCBFT2
decreased significantly during the radiochemotherapy period, but
showed no differences between the two survival groups. One reason for
this could be the use of a SE rather than the more commonly used GRE
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DSC method. The choice of SE over GRE was based on pilot data
showing more artifacts from surgical clips when GRE was used, ex-
pected to reduce the number of valid DSC-MRI datasets for analysis. SE
generally has a poorer signal-noise-ratio than GRE DSC, due to lower
contrast-agent sensitivity, but is at the same time more sensitive to
microvascular perfusion [36]. The observed decline in rCBVT2 and
rCBFT2 compared to CBFT1 and vp might therefore reflect a difference in
radio-resistance between different-sized blood vessels and auto-reg-
ulation of blood flow following damage to capillary endothelial cells
[37,38]. Tumoral CBFT1 was twice as high as that of apparently un-
affected tissue and CBFT2 equal to unaffected tissue at therapy start
without any group differences. Interestingly, no DSC-based perfusion
measures were significantly different between the patient groups, while
DCE-derived CBFT1 was higher in the subpopulation with the worst
prognosis after finishing radiochemotherapy. Simulations looking at
shunting in tumor vessels have shown that absence of anti-shunting
mechanisms can lead to functional shunting, a condition with high
average flow and substantial hypoxia [39]. A lack of anti-shunting
mechanisms possibly explains why an increase in CBFT1 is associated
with a lower-than-average OS. The blood-brain-barrier depends upon

the integrity of gap junctions, a signaling pathway propagating the anti-
shunting mechanism. The correlation between high Ktrans and CBFT1
might be explained by a higher degree of disruption of these gap-
junctions in patients with a poorer prognosis. The decrease in Ktrans and
CBFT1 in patients with greater OS could implicate a lesser degree of
shunting and normalization of the endothelial integrity in the tumor
vessels, a condition thought to promote better effect of anti-cancer
therapy [40].

The early overall trend of CBFT1 and Ktrans is in line with previous
investigations of perfusion-changes in GBM patients [41]. Møller et al.
found, in a study of 11 patients, an increase in CBFT1 after one week of
radiochemotherapy and a decline in vp after 5 weeks, similar to our
findings. No difference in PFS was found, while other studies have
shown that increasing values of Ktrans is a potential biomarker in early
prognostics [8]. Earlier work by Li et al. showed a statistical decrease in
rCBVT2 and normalized peak height (a biomarker similar to rCBFT2)
after radiochemotherapy [32]. These results are in good agreement
with the results presented here.

The study has limitations. In this study, the extended Tofts model
was chosen as the kinetic model for the DCE analysis as this is the

Fig. 1. Event chart for 23 patients sorted by time of
radiographic progression. Color represents RANO ca-
tegory, the inner dashed line represents progression-
free survival, and the outer dashed line represents
overall survival. Subjects still alive at time of analysis
are marked with *. The median split was between
patient eleven and twelve.

Fig. 2. Temporal trends (top row) and change from baseline (bottom row) in all patients for key parameters from DCE (Ktrans and CBFT1) and DSC (rCBFT2 and
rCBVT2) in contrast enhancing tumor. In the top row median values are shown in blue and 90 percentile values are shown in red. In the bottom row the blue lines
represent subjects with a worse overall survival (OS) and the red lines shows subjects with a better OS based upon the median split groups.
95% confidence intervals are shown at each time point. Significant change from baseline in the upper row or significant difference between the two groups are shown
by a plus (p < 0.05) or an asterisk (p < 0.01). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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method most often used in GBM imaging. The chosen method is de-
pendent on the quality of the data and can be assessed by an incre-
mental modeling method [42,43]. This showed that 70% of all tumor
voxels were best described using the extended Tofts model in this ma-
terial. A ‘carry-on’ AIF approach was implemented, where the patient
specific AIF obtained at the baseline scan was used for all subsequent
scans. The use of carry-on AIF is based on the assumption that mea-
surement errors in individual AIF measured at each time-point would
be larger than the actual patient specific variation in bulk flow to the
brain over the eight-week study duration. The improved reproducibility
of carry-on AIF over individual AIFs is supported in studies using
double baseline data for both DSC and DCE [20,44]. Although the pa-
tients received different surgical treatment, no difference in OS or in
estimated parameters were found between the different groups. There
was, not surprisingly, a difference in CET volume between the groups
(p < 0.003). However, to remove bias from tumor location and extent
of surgery we compared each parameter to the baseline exam and ex-
cluded all CET and NET smaller than 0.5 ml. Thus, only temporal
evolution of each tumor regardless of these factors was included in the
survival index and δ values.

5. Conclusion

Comparing structural and perfusion MRI in GBM patients during
radiochemotherapy treatment, temporal changes are more apparent in
CET and DSC-derived parameters compared to parameters from DCE.
The DCE-derived metrics Ktrans and CBFT1 in CET were found to be the
most promising parameters for early OS prediction. A multiparametric
approach of change in Ktrans and rCBVT2 shows promise as an early
predictor biomarker in this patient group.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.mri.2020.01.012.
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