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Abstract
Purpose of Review Glioblastoma (GBM) is the most commonmalignant primary brain tumor, and the available treatment options
are limited. This article reviews the recent preclinical and clinical investigations that seek to expand the repertoire of effective
medical and radiotherapy options for GBM.
Recent Findings Recent phase III trials evaluating checkpoint inhibition did not result in significant survival benefit. Select
vaccine strategies have yielded promising results in early phase clinical studies and warrant further validation. Various targeted
therapies are being explored but have yet to see breakthrough results. In addition, novel radiotherapy approaches are in devel-
opment to maximize safe dose delivery.
Summary Amultitude of preclinical and clinical studies in GBM explore promising immunotherapies, targeted agents, and novel
radiation modalities. Recent phase III trial failures have once more highlighted the profound tumor heterogeneity and diverse
resistance mechanisms of glioblastoma. This calls for the development of biomarker-driven and personalized treatment
approaches.
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Introduction

Glioblastoma (GBM) is the most common primary malignant
brain tumor, but survival remains poor despite aggressive mul-
timodal treatments. The current standard of care, consisting of
maximal surgical resection followed by combined radiation
(RT) and temozolomide (TMZ), has remained unchanged since
2005 [1]. Since then, only two therapies have been FDA

approved: bevacizumab, initially approved through the acceler-
ated approval program, and tumor-treating fields [2, 3].
Nevertheless, there are continuous efforts to improve survival
outcomes that explore multimodal approaches. Here we provide
an overview of the emerging therapeutic concepts for GBM
spanning immunotherapy, targeted therapy, radiosensitizers,
and radiotherapy.

Immunotherapy

Immunotherapy harnesses the immune system to recognize,
target, and kill tumor cells. Efforts in immunotherapy have
been most successful in tumors with high tumor mutational
burden (TMB) but have yet to yield breakthroughs in GBM.
GBM has low TMB despite its profound heterogeneity, ren-
dering it an intrinsically immunologically quiet disease.
GBMs are frequently within an immunosuppressive environ-
ment that downregulates antigen presentation and disengages
infiltrating immune cells [4, 5]. Furthermore, immunother-
apies can lead to inflammation within the intracranial space
which may result in severe treatment-limiting neurological
complications due to increased vasogenic edema, autoim-
mune encephalitis, and cytokine release syndrome [6, 7].
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Nevertheless, various immunotherapies are explored with the
goal to stimulate the immune response against GBM. Table 1
provides an overview of currently ongoing key phase II and III
immunotherapy trials within the USA.

Checkpoint Inhibitors

Binding of cytotoxic T lymphocyte antigen 4 (CTLA-4) or
programmed cell death 1 (PD-1), which are expressed on im-
mune cells, to their corresponding ligands CD80 or PD-L1/2
on tumor cells, results in reduced T cell activation and prolif-
eration. This allows tumor cells to evade detection and elim-
ination by cytotoxic T cells. Thus, blocking these checkpoint
interactions by PD-1/PD-L1- and CTLA-4-targeting

antibodies may promote a more effective T cell response
against the tumor. While tumor PD-L1 expression has
emerged as a potential biomarker for sensitivity to PD-1
blockade in other cancers, expression levels are only detect-
able in a subset of GBM tumors, vary greatly in different
studies, and depend on the PD-L1 assays used [8, 9]. Early
attempts to study the combination of PD-1 and CTLA-4 inhi-
bition were complicated by high toxicity but found favorable
survival compared with historical controls [10•]. Based on
these results, the phase III CheckMate 143 trial evaluated the
efficacy of nivolumab compared with bevacizumab in patients
with recurrent GBM (rGBM). While the study failed to dem-
onstrate a survival benefit in the nivolumab treatment arm
over bevacizumab, there was a small subset of patients that

Table 1 Immunotherapy—ongoing (not yet recruiting, recruiting, or active) multicenter phase II and phase III trials with US locations

Category Target Agent Disease Trials (phase)

Checkpoint inhibitor PD-1 Cemiplimab Newly diagnosed NCT03491683 (I/II),

Recurrent NCT04006119 (II)

Nivolumab Newly diagnosed NCT04195139 (II),
NCT02617589 (III),
NCT02667587 (III)

Recurrent NCT02017717 (III),
NCT03452579 (II),
NCT03743662 (II)

Recurrent NCT02327078 (I/II)

Pembrolizumab Newly diagnosed NCT03018288 (II)

Recurrent NCT03661723 (II),
NCT03797326 (II),
NCT02798406 (II)

PD-L1 Avelumab Newly diagnosed NCT02968940 (II),

Durvalumab Newly diagnosed NCT02336165 (II)

Recurrent NCT02336165 (II)

CTLA-4 Ipilimumab + nivolumab Newly diagnosed NCT03367715 (II)

Ipilimumab + nivolumab Recurrent NCT02017717 (III)

IDO Indoximod Newly diagnosed NCT04047706 (I)

Epacadostat Recurrent NCT02327078 (I/II)

Peptide vaccine Autologous gp96-associated peptides HSPPC-96 ± pembrolizumab Newly diagnosed NCT03018288 (II)

HSPPC-96 ± bevacizumab Recurrent NCT01814813 (II)

Onco-mimics of TAAs and TSNs EO2401 + nivolumab Recurrent NCT04116658 (I/II)

gpB and pp65 VBI-1901 Recurrent NCT03382977 (I/II)

WT1 DSP-7888 + bevacizumab Recurrent NCT03149003 (II)

Survivin SurVaxM Newly diagnosed NCT02455557 (II)

DC vaccine Autologous TAAs AV-GBM-1 Newly diagnosed NCT03400917 (II)

pp65 pp65-DC Newly diagnosed NCT02465268 (II)

Viral therapy IL-12 Ad-RTS-hIL-12 + cemiplimab Recurrent NCT04006119 (II)

Direct oncolytic virus Defective Rb/p16 pathway Ad5-DNX-2401 + pembrolizumab Recurrent NCT02798406 (II)

CD155 PVSRIPO Recurrent NCT02986178 (II)

PD-1 programmed cell death protein 1,PD-L1 programmed death-ligand 1,CTLA-4 cytotoxic T lymphocyte-associated protein 4, IDO indoleamine 2,3-
dioxygenase, gp glycoprotein, HSPPC-96 heat shock protein peptide complex-96, TAAs tumor associated antigens, TSNs tumor-specific neoantigens,
WT1 Wilms tumor gene 1 protein, DC dendritic cell, IL-12 interleukin 12, Rb retinoblastoma, CD155 poliovirus receptor
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experienced durable treatment response to nivolumab [11•]. A
separate phase III trial, CheckMate-498, also failed to meet its
primary overall survival (OS) endpoint when evaluating radi-
ation and nivolumab versus radiation and temozolomide for
patients with MGMT-unmethylated newly diagnosed GBM
(nGBM) (NCT02617589) [12]. The CheckMate-548 trial
evaluates the addition of nivolumab vs placebo to standard-
of-care radiation and temozolomide in MGMT-methylated
GBM patients. Preliminary results did not show a statistical
difference in progression-free survival (PFS) between treat-
ment arms, but observation of study subjects is ongoing to
evaluate for differences in OS (NCT02667587) [13]. The ac-
companying correlative studies in these national clinical trials
are investigating biomarkers that may identify patients who
are likely to respond to checkpoint blockade. One emerging
predictor of treatment response may be the mutational load of
the individual tumor, as responses to checkpoint inhibition
have been reported in patients with germline mutations in
DNA mismatch repair (MMR) enzymes [14, 15]. There is
emerging data suggesting that neoadjuvant administration of
PD-1 antibodies prior to resection of rGBM may induce an
antitumor immune response and possibly improve outcomes
[16].

Chimeric T Cell Receptors

Tumor-specific T cells can be generated by genetically mod-
ifying autologous T cells to express chimeric antigen receptor
(CAR) constructs. Upon binding to their respective surface-
exposed tumor antigen, CAR-T cells proliferate and activate
an immunostimulatory cascade, resulting in cytotoxic attack
on the antigen-bearing tumor cell. Early studies targeting a
variety of tumor antigens have demonstrated the overall fea-
sibility and safety of CAR-T therapy [17–20]. In a phase I trial
evaluating epidermal growth factor receptor variant III
(EGFRvIII)–directed CAR-T, tissue analyses from post-
CAR-T surgical intervention found that most subjects had
specific loss or decreased expression of EGFRvIII [20•].
Such antigen escape mechanisms may limit the durability of
responses to CAR-T therapy but also provide evidence of the
successful targeting of EGFRvIII. Recently, bispecific T cell
engagers (BiTEs) have been proposed as a solution against
antigen escape. These bicistronic constructs target EGFRvIII
but then recruit untransduced bystander T cells against wild-
type EGFR [21••]. CAR-T BiTEs demonstrated minimal tox-
icities and antitumor activity against heterogeneous tumors,
highlighting a promising avenue for future developments in
CAR-T therapy.

Vaccines

Vaccine strategies facilitate immune recognition by stimulat-
ing an antigen-specific effector T cell response against tumor-

specific antigens (TSAs) or tumor-associated antigens (TAA).
The inaugural EGFRvIII peptide vaccine, rindopepimut,
showed impressive responses in early-phase studies, but failed
to demonstrate survival benefit in a phase III evaluation of
nGBM, possibly due to antigen escape in the tumor [22]. Of
note, a phase II study of bevacizumab with rindopepimut in
rGBM demonstrated encouraging results over the placebo
arm. However, validation in larger clinical trials is warranted
before more definite conclusions can be drawn [23].

SurVaxM is a peptide vaccine targeting survivin, a member
of the inhibitor of apoptosis protein family [24]. A single-arm
phase II study found benefits in both PFS and OS and, conse-
quently, a prospective randomized trial is planned [25••].
Other vaccine strategies rely on personalized target antigen
selection and/or inclusion of multiple peptides and have dem-
onstrated favorable safety profiles with evidence of T cell
response against tumor antigens [26, 27••, 28].

In addition to the peptide vaccines described above, den-
dritic cell (DC) vaccines rely on autologous DCs that are ac-
tivated, e.g., by exposure to tumor lysate ex vivo. Data from a
phase III trial investigating DCVax, an autologous tumor
lysate-pulsed DC vaccine, suggest that survival may be im-
proved compared historical controls. However, data from the
treatment vs placebo arm of this study have not yet been
unblinded and there was a high crossover rate into the treat-
ment arm, thereby complicating interpretation of the study
result [29•]. Other DC vaccines targeting multiple antigens
or proteins derived from cytomegalovirus (CMV), which have
been found to selectively re-activate in immunosuppressed
conditions such as in GBM, are also actively explored [30,
31, 32••, 33].

Viral Therapy

Viral-mediated gene therapy involves the selective delivery of
a gene of interest using viral vectors. Toca-511 encodes for a
deaminase that locally transforms externally administered
Toca FC to 5-fluorouracil that locally depletes tumor and im-
munosuppressive myeloid cells [34]. While Toca-511/-FC led
to encouraging results in early clinical trials, it failed to dem-
onstrate survival benefit in a phase III trial of rGBM [35]. In
contrast, VB-111 delivers a pro-apoptotic chimeric protein
into angiogenic endothelial cells [36]. A phase II trial exam-
ining a primed regimen of VB-111 demonstrated survival ben-
efit in rGBM, but results were not supported in the unprimed
phase III study [37]. Currently, a phase II trial involving Ad-
RTS-hIL-12 is underway after encouraging preliminary re-
sults (NCT04006119) [38]. Ad-RTS-hIL-12 is an adenoviral
gene vector that delivers recombinant human interleukin-12
(hIL-12). Transcription of the hIL-12 transgene only occurs in
the presence of the activator ligand, veledimex, which is ad-
ministered orally.
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In contrast to gene therapies that are being delivered via
viral vector, other approaches use direct administration of
oncolytic viruses that selectively replicate in tumor cells to
elicit cytotoxic effects and stimulate the immune response.
PVSRIPO, an attenuated polio-rhinovirus chimera, recognizes
the poliovirus receptor CD155 which is widely expressed in
neoplastic cells. Early studies demonstrated safe intratumoral
infusion of PVSRIPO and encouraging survival [39]. DNX-
2401, a replication-competent adenovirus that uses tumor-
specific integrins as an entry point to exert oncolytic effects,
demonstrated dramatic responses in a phase I dose escalation
trial [40]. Both therapies are now undergoing phase II evalu-
ation alone or in combination with checkpoint blockade
(NCT02798406, NCT02986178).

Targeted Therapies

Despite the vast heterogeneity of genetic and epigenetic alter-
ations seen in GBM, there are three hallmark pathways that
are commonly dysregulated and represent possible targets for
the rap ies : r ecep tor ty ros ine kinase (RTK)/Ras /
phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma
(Rb) [41]. Alterations within these pathways may be targeted
using small molecule inhibitors or monoclonal antibodies with
the goal of inhibiting these driver pathways. Currently, numer-
ous clinical studies are ongoing (Table 2).

Small Molecule Inhibitors

Small molecule inhibitors targeting RTKs, notably EGFR,
have been extensively studied in GBM. EGFR amplifications
are detected in 50% of cases, with approximately half of these
expressing the EGFRvIII mutation [42]. Despite successes of
EGFR inhibitors in other cancers, including in intracranial
disease, studies have failed to show a survival benefit in
GBM [43], possibly because of relatively low intratumoral
drug levels. In addition, the molecular heterogeneity of
GBM and activation of multiple RTK pathways simultaneous-
ly may limit the efficacy of single target regimens as down-
stream signaling gets activated through parallel pathways
[44]. Nonetheless, there are small subsets of GBMs with driv-
er mutations such as BRAF V600E that show response to
RAF or RAF/MEK inhibitors, or oncogenic fusions such as
NTRK, that also have high response rates [45–47].

Small molecule inhibitors with multitarget inhibitory ef-
fects may circumvent these issues of heterogeneity and path-
way redundancy but may also lead to increased toxicity.
Regorafenib, an oral multikinase inhibitor, inhibits multiple
targets involved in tumor angiogenic, stromal and oncogenic
pathways [48]. A randomized phase II trial comparing rego-
rafenib to lomustine found increased OS in recurrent disease,
warranting further clinical evaluation [49•]. Currently,

regorafenib is being evaluated in both nGBM and rGBM as
part of GBMAGILE, a phase II/III international platform trial
with Bayesian adaptive randomization designed to evaluate
multiple treatment combinations (NCT03970447) [50••].

ONC201 is a small molecular antagonist of dopamine re-
ceptor D2/3 (DRD2/3) and mitochondrial caseinolytic prote-
ase P activator that induces p53-independent cell apoptosis
[51, 52]. In a phase II trial in molecularly unselected rGBM,
single agent ONC201 was well-tolerated and led to a near
complete objective response in a patient possessing a H3-
K27M mutation [53]. Since then, several clinical studies are
evaluatingON201 for patients with progressive H3K27Mmu-
t a n t g l i oma s (NCT03295396 , NCT02525692 ,
NCT02525692).

Another target of interest is the cyclin dependent kinase
(CDK) family. Efforts to target cyclin CDK 4/6 were driven
by the observation that many brain cancers overexpress cyclin
D1, which binds CDK 4/6 to cause dysregulated G1/S pro-
gression. Several small molecule inhibitors of CDK4/6 have
been investigated in GBM, including palbociclib, ribociclib,
and abemaciclib. Trials of single agent palbociclib and
ribociclib failed to demonstrate any survival difference in
rGBM despite adequate tissue pharmacokinetics [54, 55••].
Preclinical models using abemaciclib demonstrated antitumor
activity that was potentiated with TMZ and improved blood-
brain barrier (BBB) penetrance compared with palbociclib
[56]. Abemaciclib recently demonstrated intracranial benefit
in metastatic breast cancer and is currently undergoing clinical
evaluation in multiple trials for GBM (NCT02981940) [57].
Abemaciclib is also being investigated as part of INSiGhT,
another ongoing platform trial evaluating precision medicine
approaches to GBM treatments (NCT02977780) [58••]. CDK
4/6 targeting therapy may synergize with checkpoint inhibi-
tion in glioblastoma, as was demonstrated in a recent preclin-
ical model [59].

Monoclonal Antibodies

Monoclonal antibodies (mAbs) represent another class of
molecules than can be used to inhibit tumor driver pathways.
Included in this class is bevacizumab, which targets vascular
endothelial growth factor (VEGF) and blocks angiogenesis.
Bevacizumab received accelerated FDA approval after en-
couraging phase I/II results [2], but two phase III studies only
found extended PFS and no OS benefit [60, 61]. Nevertheless,
bevacizumab is often used to manage symptomatic disease
given its antiedema effect and has received full FDA approval
to treat rGBM. Monoclonal Abs directed against EGFR have
also been developed, notably cetuximab, which failed to show
survival benefits in a phase II trial [62]. One limiting factor in
the therapeutic efficacy of mAbs may be incomplete BBB
penetration, which is exacerbated by their large size.
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Antibody Drug Conjugates

Antibody drug conjugates (ADCs) are composed of an anti-
body linked to a cytotoxic compound, enabling targeted deliv-
ery of biologically active payloads. ADCs can be classified into
cytotoxins, immunotoxins, or radioimmunotherapies depend-
ing on whether the accompanying compound is an anti-

mitotic agent, bacterial toxin, or radioisotope, respectively.
Depatuxizumab mafodotin (Depatux-M, ABT-414) was de-
signed to bind cells with EGFR amplifications and release
monomethyl auristatin F, an anti-microtubule toxin that halts
cell proliferation and causes cell death. A phase II trial
(INTELLANCE 2) studying Depatux-M in EGFR amplified
rGBM suggested improved survival when combined with

Table 2 Targeted therapy—ongoing (not yet recruiting, recruiting, or active) multicenter phase II and phase III trials with US locations

Target Agent Disease Trials (phase)

2-gp1 Bavituximab Newly diagnosed NCT03139916 (II)
ANG/TIE2 Trebananib Recurrent NCT01609790 (II)
BRAFV600E/MEK Dabrafenib + trametinib Newly diagnosed NCT03919071 (II)

Recurrent NCT02684058 (II)
Encorafenib + binimetinib Recurrent NCT03973918 (II)

BTK Acalabrutinib Recurrent NCT02586857 (II)
CDK 4/6 Abemaciclib Newly diagnosed NCT02977780 (II)

Recurrent NCT02981940 (II)
cMET/VEGFR Cabozantinib Recurrent NCT02885324 (II)
CSF1 Pexidartinib Newly diagnosed NCT01790503 (I/II)
CXCR4 USL-311 Recurrent NCT02765165 (I/II)
DRD2/ClpP ONC201 Recurrent NCT03295396 (II),

NCT02525692 (II)
EGFR/HER Neratinib Newly diagnosed NCT02977780 (II)
EGFR/HER2/SRC Tesevatinib Recurrent NCT02844439 (II)
GSK-3b 9-ING-41 Recurrent NCT03678883 (I/II)

Belinostat Newly diagnosed NCT02137759 (II)
HIF-2a PT2385 Recurrent NCT03216499 (II)
mIDH1 Olutasidenib Recurrent NCT03684811 (I/II)
mTOR nab-Sirolimus Newly diagnosed NCT03463265 (II)

Recurrent NCT03463265 (II)
Everolimus Newly diagnosed NCT01062399 (I/II)

mTOR/DNA-PK CC-115 Newly diagnosed NCT02977780 (II)
MnSOD mimetic BMX-001 Newly diagnosed NCT02655601 (II)
PARP Olaparib Recurrent NCT03212274 (II),

NCT02974621 (II)
Pamiparib Newly diagnosed NCT03150862 (I/II)

Recurrent NCT03150862 (I/II),
NCT03914742 (I/II)

Veliparib Newly diagnosed NCT02152982 (II/III)
PI3K Buparlisib Recurrent NCT01349660 (I/II)
PI3K/mTOR Paxalisib Newly diagnosed NCT03522298 (II)
Proteasome Marizomib Newly diagnosed NCT03463265 (II)

Recurrent NCT03463265 (II),
NCT02330562 (I/II)

ROS1/TRK/ALK Repotrectinib Unspecified NCT04094610 (I/II)
VEGFR Lenvatinib + pembrolizumab Recurrent NCT03797326 (II)

Cediranib Newly diagnosed NCT01062425 (II)
Recurrent NCT02974621 (II)

Tanibirumab Recurrent NCT03856099 (II)
VEGFR/TIE2/MANY OTHERS Regorafenib Newly diagnosed NCT03970447 (II/III)

Recurrent NCT03970447 (II/III)
XPO1 Selinexor Recurrent NCT01986348 (II)
TROP-2 IMMU-132 Recurrent NCT01631552 (I/II)

2-gp1 beta-2 glycoprotein 1, BTK Bruton’s tyrosine kinase, ANG angiopoetin, TIE2 angiopoetin-1 receptor, CDK cyclin-dependent kinase, cMET
tyrosine-protein kinase MET, VEGFR vascular endothelial growth factor receptor, CSF1 colony-stimulating factor 1, CXCR4 CXC chemokine receptor
type 4, DRD2 dopamine receptor D2, ClpP caseinolytic protease P, EGFR endothelial growth factor receptor, HER human epidermal growth factor
receptor, EphB4 ephrin type B receptor 4, GSK-3b glycogen synthase 3 beta, HDAC histone deacetylase, HIF-2a hypoxia inducible factor 2 alpha,
mIDH1 mutant isocitrate dehydrodrenase 1, mTOR mammalian target of rapamycin, DNA-PK DNA-dependent protein kinase, MnSOD mitochondrial
manganese superoxide dismutase, PARP poly(ADP-ribose) polymerase, PI3K phosphoinositide 3-kinase inhibitor, ROS1 proto-oncogene tyrosine-
protein kinase ROS, TRK tropomyosin receptor kinase, ALK anaplastic lymphoma kinase, TROP-2 tumor-associated calcium signal transducer 2,
XPO1 exportin 1, ADC antibody-dependent conjugate
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TMZ.However, the phase III trial in nGBM (INTELLANCE 1)
was halted after an interim analysis showed no survival benefit
(NCT02573324) and is no longer being developed [63]. A
second EGFR-targeting ADC, ABBV-221, was evaluated in a
phase I trial in advanced solid tumors, including GBM, that was
terminated due to safety concerns (NCT02365662) [64].
ABBV- 32 1 , a t h i r d - g e n e r a t i o n ADC , u s e s a
pyrrolobenzodiazepine payload and is being evaluated in a
phase I trial that includes patients with GBM (NCT03234712).

Radiosensitizers

Radiosensitizers refer to a group of targeted therapeutics that
enhance the efficacy of radiation. DNA repair pathways pro-
mote resistance to ionizing radiation, which depends on the
induction of DNA damage for cytotoxic effects, and thus have
emerged as targets for radiosensitization. TMZ is a well-
recognized radiosensitizer that is administered concurrently
with radiation and can stabilize radiation-induced DNA dam-
age. Through activation of the MMR and ataxia
telangiectasia-mutated (ATM) pathways, TMZ causes cells
to arrest in the more susceptible G2/M cell phase and en-
hances the DNA-damaging effects of radiation [65]. While
the survival benefit of adding TMZ to radiation is well
established and remains the current standard of care for glio-
blastoma, recurrence rates remain high and therefore continue
to fuel interest in the development of other radiosensitizers.

Poly-(ADP-Ribose)-DNA Polymerase (PARP) Inhibitors

PARP inhibitors target poly-(ADP-ribose)-DNA polymerase
(PARP), a family of proteins implicated in the base excision
repair (BER) pathway and have primarily been used in the
treatment of homologous repair (HR) deficient cancers.
While GBMs do not generally exhibit HR deficiency, the ob-
servation that PARP-inhibitory effects are limited to replicat-
ing cells only has fueled interest in PARP inhibitors to poten-
tiate tumor control from radiation while sparing normal tissues
[66]. Clinical evaluation of several PARP inhibitors in glio-
blastoma were limited by poor BBB penetration and hemato-
logical toxicities, but recent work has demonstrated that
olaparib, veliparib, and pamiparib can reach therapeutic levels
in situ [67–69]. Two phase I/II trials studying olaparib are
underway: the PARADIGM trial, in which nGBM patients
receive olapar ib with hypofract ionated RT, and
PARADIGM-2, in which nGBM patients receive olaparib
and standard fractionated RT with or without TMZ
(CRUKD/13/034, CRUKD/16/010). Early results from both
studies demonstrated that radiation with olaparib alone is
well-tolerated and, if dosed intermittently, when combined
with TMZ [67]. Preliminary results from the VERTU trial, a
randomized phase II evaluation in MGMT-unmethylated

nGBM, found chemoradiation with TMZ and veliparib to be
well tolerated but did not improve outcomes [69]. Veliparib is
also being evaluated in a phase III trial in MGMT-methylated
nGBM with adjuvant temozolomide and the results will be
available soon (NCT02152982).

DNA-PK Inhibitors

DNA-dependent protein kinase (DNA-PK) mediates DNA
repair through both non-homologous end-joining (NHEJ)
and HR pathways, and its deregulation is associated with
radioresistance in multiple cancers [70]. Inhibition of DNA-
PK has been shown to downregulate elements of double
strand break (DSB) repair and sensitize GBM cell lines to
ionizing radiation [71, 72]. CC-115, a dual of inhibitor of
mammalian target of rapamycin (mTOR) kinase and DNA-
PK, was recently shown to infiltrate GBM tissue to near plas-
ma levels after oral administration [73]. As such, a phase II
study examining the use of CC-115 with concurrent RT is
underway (NCT02977780).

ATM/ATR Inhibitors

DSBs result in cell cycle arrest and subsequent DNA repair
through activation of the ATM and ataxia telangiectasia and
Rad3-related (ATR) pathway. Consequently, upregulation of
either ATM or ATR signaling has been associated with
radioresistance in GBM stem cells [74, 75]. Preclinical
GBM models have suggested that the efficacy of ATM inhi-
bition is dependent on the presence of p53 mutations but have
been unable to decouple whether this dependency is due to
p53 or G1/S checkpoint deficiency [76]. A phase I dose-
escalation trial assessing concurrent AZD1390, a novel
ATM inhibitor, and intensity-modulated radiation (IMRT) is
currently recruiting patients and has treatment arms for nGBM
and rGBM (NCT03423628).

Radiotherapy

Conventional RT for GBM relies on a standard dose fraction
size of 180–200 cGy delivered using photon beams. Current
standard-of-care treatment involves the concurrent use of
TMZ and RT to doses of 60 Gy to the post-operative bed
[1]. In elderly and poor performance status patients, a modi-
fied hypofractionated RT (> 2 Gy fractions) approach is used
and has yielded fewer adverse events and less treatment bur-
den. Dose-escalation attempts to improve control with photon
radiation have resulted in increased tissue injury with no ad-
ditional survival benefit [77]. As a result, there is a growing
interest to explore non-conventional RTsources and regimens.
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Particle Therapy

Proton beam therapy (PBT) and carbon ion RT (CIRT) exhibit
a signature Bragg peak pattern that results in lower dose distal
to the target of interest and sharp lateral penumbra [78]. As a
result, nearby organs at risk are spared to a greater extent and
target volumes can be reduced, decreasing the risk for
treatment-related neurocognitive decline. While the benefit
of reducing treatment toxicities is limited by the poor survival
in GBM, the ability to avoid radiosensitive normal tissues may
alleviate immunosuppression typically seen in radiation and
bolster responses to immunotherapy [79].

Dose-escalation studies of PBT in both nGBM and rGBM
disease have been evaluated. PBT boosts after photon radia-
tion have yielded cumulative doses of up to 96.6 Gy with
some grade 3 toxicities [80, 81]. The authors note that the
majority of recurrences were outside the 90-Gy equivalent
(GyE) area, suggesting that higher doses are required to con-
trol disease. PBT has also been shown to be safe and yield
favorable survival when patients with difficult-to-treat recur-
rent GBM, as defined by large tumor sizes or proximity to
dose-limiting organs, were re-irradiated with and without
TMZ [82•]. Currently, a randomized phase II trial is compar-
ing the efficacy of frontline PBT to dose-escalated photon
IMRT in nGBM with overall survival as a primary endpoint
(NCT02179086). A separate phase II study is underway, eval-
uating cognitive failure and local control after IMRT or PBT
(NCT01854554). The results from these studies will be crucial
in informing whether PBT may play a role in frontline disease
management.

Carbon ions are speculated to be reduce hypoxia-induced
tumor resistance and were found to be effective against cell-
lines radioresistant to conventional RT [83, 84]. CIRT is fur-
ther associated withmore double-strand breaks and, compared
with photon radiation, is less dependent on the timing of treat-
ment. However, this also raises concerns for higher rates of
cell kill in normal tissue given the slow speed of treatment,
during which movement may introduce uncertainty [85]. It is
important to note that there are currently only a few centers
worldwide capable of delivering CIRT which may preclude
widespread evaluation and provision of CIRT for GBM [86].

Early studies have suggested a favorable toxicity profile for
intracranial CIRT. When delivered concurrently with TMZ,
toxicity was infrequent, and simulated survival curves dem-
onstrated a potential survival benefit [87]. As such, the phase
II CLEOPATRA trial was designed to compare CIRT or PRT
boost to macroscopic tumor following concurrent photon ther-
apy and TMZ for nGBM. The results of the study have yet to
be published, even though the trial has not actively accrued
patients since 2013 (NCT01165671). The CINDERELLA tri-
al, a randomized phase I/II study, was designed to compare
CIRT against fractionated stereotactic RT in recurrent gliomas
[87]. Recent results from the dose-escalation phase I portion

of the trial demonstrated safe re-irradiation with 10–16 frac-
tions of 3 Gy [88•].

Zap-X Gyroscopic Radiosurgery

Zap-X is a self-contained linear accelerator (LINAC) radiation
device dedicated to intracranial and cervical spine stereotactic
radiosurgery (SRS) [89]. The creators of Zap-X Radiosurgery
Systems claim that treatment verification can be performed
using a closed-loop system, as opposed to open-loop algo-
rithms used in conventional SRS, that examines the beam after
it has exited the patient in real time, thus providing an inde-
pendent quality assurance step throughout treatment [90]. As a
self-shielded system that eliminates the need for traditional
radiation vaults, the installation of Zap-X can be simplified,
which can reduce the cost of SRS [91]. A 3-MV LINAC,
lower than the 6–15-MV range used in conventional SRS, is
used as the source of radiation [92]. The Zap-X Gyroscopic
Radiosurgery platform was FDA-cleared in 2017 and began
its first clinical treatments of brain tumors in 2019. However,
no clinical results have yet to published.

GammaTile

GammaTile was recently FDA-cleared for the treatment of
newly diagnosed and recurrent brain tumors. GammaTile in-
volves the permanent placement of encapsulated radioactive
Cesium-131 seeds in the surgical cavity. Results of patients
with recurrent tumors treated to 60 Gy demonstrated the fea-
sibility and safety of this approach (NCT03088579) [93, 94].

FLASH Radiotherapy

FLASH RT uses ultra-high dose rates (> 30–100 Gy/s vs.
conventional 0.1 Gy/s) and has been hypothesized to reduce
radiation-induced toxicities while maintaining tumor re-
sponses [95]. Preclinical models showed that ultra-high dose
rates reduced reactive oxygen species, neuroinflammation,
and rates of cognitive deficits compared with conventional
dose rates [96, 97]. In studies using GBM cell lines, FLASH
and conventional RT yielded similar tumor control [98]. The
ability to reduce normal tissue injury may allow for higher
maximum tolerated doses and improve therapeutic and cogni-
tive outcomes. To date, only a single reported patient has
undergone FLASH RT for the treatment of subcutaneous T
cell lymphoma which resulted in a durable response with min-
imal toxicities [99•]. Despite promising preclinical models
demonstrating the neuroprotective effects of the FLASH RT
effect, reports exhibit considerable heterogeneity as some
studies were unable to induce the FLASH effect and found
increased toxicity levels [100, 101].
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Laser Interstitial Thermal Therapy

Though not considered a form of radiation, laser interstitial
thermal therapy (LITT) has emerged as potential
cytoreductive technique for patients who are not candidates
for open craniotomies. In LITT, a laser-tip probe is inserted
into the centroid of the tumor to deliver low-powered thermal
energy. The probe is then controlled by the surgeon and guid-
ed by real-time MRI thermography [102]. The first in-human
trial evaluating LITT used the NeuroBlate System in rGBM
[103]. Median survival was encouraging at 316 days. Of ten
patients treated, two suffered neurological deterioration
due to the treatment, possibly due to unexpected pat-
terns of thermal energy deposition during the procedure.
LITT is currently undergoing investigation in conjunc-
tion with other pharmacotherapies for recurrent GBM
(NCT03341806, NCT03022578, NCT03277638). In the
newly diagnosed setting, a phase I feasibility study on
frontline LITT using the NeuroBlate System was termi-
nated due to failure to enroll (NCT02880410).

Conclusion

Glioblastoma is the most commonmalignant brain tumor and,
despite significant efforts and a multitude of preclinical inves-
tigations and clinical studies, has no effective therapies and
poor prognosis. Ongoing efforts focus on various immuno-
therapeutic strategies, targeted agents, and novel radiotherapy
approaches. Despite the successes in early-phase clinical stud-
ies, a number of immunotherapies and targeted therapies have
failed to be of significant benefit. In the face of tremendous
tumor heterogeneity and multifaceted resistance mechanisms
in glioblastoma, this calls for an improved patient stratification
in future clinical trials based on molecular tumor subtypes and
refinement of possible biomarkers as predictors of response to
the respective therapy. Especially in patients with recurrent
GBM, optimal patient stratification based on molecular tumor
markers may be challenging because current tumor specimens
are rarely available and the molecular tumor characteristics
may have changed since the last surgical tissue specimen
was obtained due to treatment and as part of the natural evo-
lution of glioblastoma pathology [104, 105]. Therefore, non-
invasive or minimal-invasive ways to assess biomarker status
are required to form a dynamic personalized approach tailored
to changing tumor characteristics. Lastly, it is difficult to de-
couple whether negative results of many studies are due to
pharmacodynamic (low efficacy despite target inhibition) or
pharmacokinetic (low therapeutic levels due to BBB) failure.
In addition, the synergistic effects of combining immunother-
apy, targeted therapy, and radiation may prove crucial to
targeting GBM, which is well-known to develop resistance
to and progresses on any of the currently available therapies.
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