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A B S T R A C T

Immunotherapy applications to glioblastoma represent a new treatment frontier. Antigen-targeted im-
munotherapy approaches hold enormous potential to elicit antigen-specific anti-tumor effects in central nervous
system tumors. Still, the paucity of effective antigen targets remains a significant obstacle in safely and effec-
tively treating glioblastoma and other malignant gliomas with relatively low mutation loads. In this review, we
highlight the current understanding of and development of immunotherapy to target 1) shared non-mutant
antigens 2) shared mutant antigens (neoantigens) derived from cancer-specific mutations 3) personalized
neoantigens derived from tumor-specific genetic alterations containing de novo peptide sequences and 4) virus-
derived antigens. We also discuss strategies to enhance tumor immunogenicity and neoantigen prediction.
Spatial heterogeneity remains a formidable challenge for immunotherapy of glioma; recent advances in targeting
multiple antigens and refining the antigen selection pipeline hold great promise to turn the tide against glioma.

1. Introduction

Diffuse gliomas are the most common primary malignant central
nervous system (CNS) tumors, accounting for 80 % of all malignancies
in the CNS [1]. They are classified according to their histology and
molecular characteristics as grade II–IV by the World Health Organi-
zation (WHO) [2,3]. Grade IV glioblastomas (GBMs) are the most ag-
gressive, with a median overall survival (OS) of fewer than two years,
even with the current standard of care (radiation therapy [RT] with
temozolomide [TMZ] chemotherapy and an antimitotic treatment de-
vice, Tumor Treating Fields [TTF] therapy) [4–6]. Grade II–III gliomas
(i.e., astrocytomas and oligodendrogliomas) also exhibit malignant be-
havior: they grow invasively, progress to higher grades, and most pa-
tients eventually succumb to the disease [7].

Brain tumors can arise in all age groups and they are especially
devastating in children, for whom they are the leading cause of cancer-
related mortality and morbidity [8]. The prognosis for children with
diffuse midline gliomas (DMG), including diffuse intrinsic pontine
gliomas (DIPG), is especially poor – the median OS for DIPG is less than
one year [9,10]. Although much effort has been expended in optimizing
treatment regimens, no real progress has been made and the clinical
prognosis remains extremely poor in glioma patients [11].

Development of novel and effective treatment modalities is urgently
warranted.

Immunotherapy holds promise as a treatment for gliomas. Although
the CNS has been recognized as an “immune privileged” site, recent
findings suggest that the “privileged” status is not absolute [12–14]. It
has been demonstrated that effector immune cells, such as T-cells, can
penetrate the blood-brain-barrier (BBB) and mediate antigen-specific
immune responses [15]. Furthermore, cumulative findings from pre-
clinical and early-phase clinical studies of antigen-targeted im-
munotherapies have indicated that these approaches can elicit antigen-
specific anti-tumor effects in CNS tumors [16–23].

Thus far however, no randomized prospective clinical trials have
succeeded in demonstrating a robust clinical benefit. Recently, two
phase III trials of glioma immunotherapy (ACT-IV trial of rindopepimut,
an EGFRvIII vaccine [24] and CHECKMATE-143 trial of nivolumab, an
anti-PD-1 monoclonal antibody therapy for recurrent GBM [25]) failed
to show objective benefits. The failures of these studies further under-
lined the challenges faced by those developing immunotherapy for this
disease. These challenges include, but are not limited to, the following
three major categories. The first is the paucity of tumor-specific anti-
gens. This problem is further complicated by the marked spatial, tem-
poral, and inter-tumor heterogeneity of malignant gliomas [26–30],
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which necessitates multiple antigen-targeting approaches. The second
is glioma-induced immunosuppression. This includes the expression of
inhibitory checkpoint molecules [31–36] and the secretion of im-
munosuppressive cytokines in the tumor microenvironment [37–40] as
well as the enrichment of immunosuppressive myeloid cells and reg-
ulatory T-cells at the tumor site [41,42]. The third is the unique im-
munological environment of the CNS and the homing of therapeutic
immune effector cells to the tumor. This encompasses complexed
functions of the blood-brain barrier [12–14] and the absence of lym-
phatic organs and effective antigen-presentation systems for T-cell re-
sponses in the CNS [15,43–45]. While all of these issues must be ad-
dressed in order to develop effective immunotherapy for gliomas, in
this article, we focus on the unique features of glioma antigens, re-
viewing the latest advances and revisiting the importance of the fol-
lowing components: shared non-mutant glioma antigens, neoantigens,
which are derived from cancer-specific somatic mutations, and viral
antigens. We also outline a few of our own propositions on how to
refine targeted immunotherapeutic strategies for the treatment of
gliomas.

2. Current understanding of and therapeutic development
targeting tumor antigens in glioma

One of the most critical issues for developing safe and effective
cancer immunotherapy is ensuring tumor-specific cytotoxicity. In some
clinical trials of T-cell therapy targeting non-mutant cancer-associated
antigens, on-target off-tumor cross-reactivity of T-cells administered as
part of the treatment caused life-threatening events [46,47], including
two cases of lethal brain edema [47]. These incidents underlined the
importance of carefully establishing and expanding the list of glioma-
specific antigens.

Cancer antigens can be divided into three classes: non-mutant pro-
teins (to which T-cell tolerance is incomplete owing to their absence or
suppressed expression in normal tissues), neoantigens (mutant proteins
that are entirely absent from normal human tissues) and virus-derived
antigens. In this section, we primarily discuss our current under-
standing of and progress on 1) non-mutant, shared glioma-associated
antigens; 2) shared neoantigens such as IDH1 R132H, H3.3 K27 M, and
EGFRvIII; 3) non-shared, patient-specific neoantigens; and 4) cytome-
galovirus (CMV)-derived antigens (Table 1). Some of these are cell
surface antigens that can be targeted by CAR-T-cell therapies, and
others are derived from intracellular proteins that can be targeted by
vaccines and/or T-cell receptor-transduced T-cell (TCR-T) therapy. As
an introduction, we will begin with the results and implications of a
recent clinical trial that incorporated many of the topics we hope to
cover in this section.

2.1. GAPVAC-101 trial

In 2019, Hilf, Wick, and Okada et al. reported the results of the
GAPVAC-101 phase I clinical trial, in which 15 newly diagnosed GBM
patients with HLA-A*02:01 or 24:02 were treated with “personalized”
vaccine cocktails consisting of mutant and non-mutant peptides [48].
This study is of particular interest and importance to this review be-
cause of its two separate steps of antigen selection, one for actively
personalized vaccine 1 (APVAC1) and another for APVAC2. For
APVAC1, Immatics, Inc. established a warehouse of premanufactured,
synthetic peptides composed of non-mutant antigens. The antigens had
been confirmed to fulfill the following criteria: 1) their epitopes were
presented in the HLA class I peptidome in GBM; 2) they had high ex-
pression in GBM; 3) they had very low or absent expression in healthy
tissues; 4) they were thought to play critical biological roles in glio-
magenesis; and 5) they had high immunogenicity (they could efficiently
induce and stimulate antigen-specific T-cell responses in in vitro assays)
[49]. As part of APVAC1, each patient received 6–7 individually se-
lected best-ranking HLA class I peptides from the warehouse. Granu-
locyte–macrophage colony-stimulating factor (GM-CSF) and poly-ICLC
were co-administered to enhance immune responses synergistically
[50]. As part of APVAC2, each patient received two additional mutant
or non-mutant peptides. The mutant-antigens were preferentially se-
lected based on 1) individual HLA peptidome analysis by mass spec-
trometry (MS) or 2) predicted HLA class I binding and immunogenicity.
If no suitable neoepitopes were found, non-mutant antigens identified
in the individual immunopeptidome (but not chosen for APVAC1) were
employed.

Unfortunately, the study team was unable to detect any neoantigen
presentation on patient HLA class I or II. In most of the patients,
however, an increased number of CD8 + T-cells reactive to at least one
APVAC1 non-mutant peptide was observed, accompanied by a shift to a
memory phenotype. APVAC2 mutant peptide vaccines, meanwhile,
were found to preferentially induce CD4+ T-cell responses.

The results of the GAPVAC-101 trial suggest that it may be possible
to combine both non-mutant antigen and neoantigen targets to elicit
potent immune responses against heterogeneous glioma antigens. The
“off-the-shelf” non-mutant peptide warehouse system was particularly
useful as it allowed multiple personalized selections of antigen peptides
that had been validated for their immunogenicity and HLA presentation
[48,51]. Continuing advances in bioinformatics offer much hope that
the identification and validation of somatic mutation-derived neoanti-
gens will only improve in the coming years. As such, we argue that it is
crucial to understand components of non-mutant as well as mutant
antigens in gliomas, and to incorporate both in the development of
future treatments.

Table 1
Classification of tumor antigens in glioma.

non-mutant mutant, shared mutant, non-shared (private) virus-derived

antigens IL13Rα2, HER2, EphA2, survivin,
TRP2, WT1, gp100, SOX2, SOX11,
MAGE-A1, AIM2, etc.

IDH1 R132H private neoantigens viral antigen pp65, IE1, or
glycoprotein B, from CMVH3.3 K27M

EGFRvIII
ones derived from SNVs in EGFR and TP53
genes [61,62]

frequency highly shared (see Table 2) IDH1 R132H – 70 % of WHO grade II–III
glioma

private/unique to individual
patients

varied among studies (>
90 % of GBM)

H3.3 K27 M – 70–90 % of DIPG
EGFRvIII – 20 % of IDH-wildtype GBM

specificity quantitatively overexpressed in
tumors but lower levels of expression
may be seen in normal cells

absolute (unless TCR has cross-reactivity) absolute (unless TCR has
cross-reactivity)

not detected in normal
brain tissue

availability of “off-the-shelf”
approach

available available not available available

Abbreviations: SNVs, single nucleotide variants; CMV, cytomegalovirus; WHO, world health organization; DIPG, diffuse intrinsic pontine glioma; GBM, glioblastoma;
TCR, T-cell receptor.
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2.2. Shared non-mutant antigens

In addition to the antigens listed in the GAPVAC warehouse [48],
there are a number of non-mutant antigens that have been evaluated as
targets for vaccine or adoptive T-cell therapy approaches (Table 2).
EphA2, for instance, has been observed to be generally negative in
normal glial cells and overexpressed in approximately 90 % of GBM
samples [52], making it a potentially attractive target for im-
munotherapy. Many non-mutant antigens found in GBM are also
overexpressed in other cancers. For instance, HER2 is overexpressed in
approximately 30 % of breast cancer patients as well as in several other
malignancies [53]. However, it is also expressed at low levels in several
normal tissues including the gastro-intestinal and respiratory tracts
[54], raising the risk of on-target off-tumor toxicity. Indeed, in a clinical
study, a patient with colorectal cancer died due to cardiopulmonary
complications after the administration of third-generation HER2-CAR
T-cells with a trastuzumab-based antigen recognition exodomain and a
CD28.41BB.ζ signaling endodomain. The fatal complications pre-
sumably arose because the CAR T-cells recognized low levels of HER2
on the patient’s lung epithelial cells and ended up triggering cytokine
release syndrome (CRS) [46]. Following this incident, the HER2-spe-
cific CAR was optimized to avoid such serious adverse events, em-
ploying a second-generation HER2-CAR with an FRP5-based exodomain
and a CD28.ζ endodomain. This second-generation HER2-CAR de-
monstrated anti-tumor activity in sarcoma while crucially avoiding any
toxic side effects [55]. Treatments like the HER2-CAR, which target
GBM-associated antigens and have been evaluated in other types of
cancers, lay the foundation for future cross-cancer antigen studies.

Immunotherapy targeting just one antigen in solid cancer is in-
sufficient due to the marked antigenic heterogeneity of tumors. Hegde
et al. reported that CAR T-cells targeting HER2 and IL-13Rα2 si-
multaneously (also known as tandem CAR) exhibited offset tumor an-
tigen escape and enhanced functionality in a preclinical orthotopic
GBM xenograft mouse model [56]. The same group also analyzed the
surface expression of HER2, IL13-Rα2, and EphA2 in 15 primary GBM
samples and showed that their novel treatment strategy co-targeting
these three antigens was capable of capturing and eradicating nearly
100 % of tumor cells [57].

Vaccine approaches may have a unique advantage over genetically
engineered T-cell approaches in terms of their ability to target more
extensive numbers of antigens simultaneously. The IMA-950 multi-
peptide vaccine, for example, includes 11 peptide targets [49], in-
cluding 9 MHC class I and 2 MHC class II peptides identified on primary
GBM tissue. In a phase I clinical study of IMA950 combined with GM-
CSF in HLA-A*02-positive patients with newly diagnosed GBM who
received chemoradiotherapy, 90 % of the patients showed antigen-
specific CD8 + T-cell responses against at least one antigen, and over
50 % of the patients showed specific CD8 + T-cell responses against

more than one antigen [23]. In a follow-up phase I/II clinical trial using
IMA950 with poly-ICLC, single- and multiple-antigen-specific CD8 + T-
cell responses were observed in 63.2 % and 38.2 % of patients re-
spectively. Single- and multiple-antigen-specific CD4+ T-cell responses
were observed in 57.9 % and 36.8 % respectively [58].

Shared non-mutant antigens can thus be attractive targets for im-
munotherapy. Antigen selection in both the GAPVAC-101 and IMA-950
trials was based on careful screening and validation, including HLA
peptidome analyses and antigen-specific T-cell response assays [59].

2.3. Shared mutant antigens (neoantigens)

Antigens derived from cancer-specific somatic mutations are in
many ways ideal targets for immunotherapy. Their expression is almost
entirely limited to tumor cells, greatly decreasing the risk of on-target
off-tumor toxicity. Being spontaneous mutations, however, they are
often minimally shared among the patient population, rendering most
unsuitable as targets for immunotherapy. To date, IDH1 R132H, H3F3A
(H3.3) K27 M, and EGFRvIII are the only mutations that have been
found to be frequently shared among specific patient subgroups.
Although several other mutations, including TP53 R273C and EGFR
A289 V, are also recognized as recurrent and may be targeted in the
future [60], these have been less thoroughly investigated as targets for
glioma immunotherapy [61,62]. In this section, therefore, we limit our
discussion to the first three mutations and their potential as “shared
neoantigen” targets in glioma.

2.3.1. IDH1 R132H
The gain-of-function monoallelic R132H point mutation in the iso-

citrate dehydrogenase 1 (IDH1) gene (as well as its correlation with a
relatively favorable prognosis) was first reported in GBM by Parsons
et al. in 2008 [63]. Along with a rare mutation in the isocitrate dehy-
drogenase 2 (IDH2) gene, it turned out to be a hallmark of grade II-III
gliomas (present in 70 % of cases) and, albeit to a lesser extent, of
secondary GBM (present in 10 % of cases) [64–66]. The IDH1 R132H
mutation was found to be the most common among glioma patients,
accounting for more than 90 % of all IDH1 mutations observed [64,67].
Mutant IDH1/2 enzymes convert α-ketoglutarate (αKG) into the on-
cometabolite D-2-hydroxyglutarate (2-HG). 2-HG competitively inhibits
the enzymatic activity of many αKG-dependent dioxygenases and leads
to histone dysregulation, genome-wide DNA hypermethylation, and
aberrant angiogenesis [65,68,69]. Subsequent studies have revealed
that IDH1/2-mutant and -wildtype gliomas have distinct biological
behavior [70]. Hence, IDH status was included in the recent revision of
WHO classification as an essential diagnostic marker along with several
other molecular markers such as chromosome 1p/19q status and his-
tone H3 status [2,71].

The immunosuppressive effects of the IDH1/2 mutation have also

Table 2
Expression and clinical application of representative non-mutant antigens in glioma.

antigen expression in GBM expression in other types of cancers clinical study status for GBM

IL13Rα2 50-80 % [161,162,163] colon, pancreas, ovary, melanoma [164] CAR-T phase I [16,165]
median OS after relapse ∼11 months

HER2 30-40 % [53] bladder, breast, cervical, colon, esophagus, gastric, renal, lung [166] CAR-T phase I/II [167]
median OS after relapse ∼11 months

EphA2 90 % [52] ovary, prostate, breast, pancreas, lung, bladder, melanoma, esophagus, colon, kidney, thyroid,
vulvar, cervix, oral [52]

CAR-T phase I/II (NCT0257526)

survivin 85 % [168] melanoma, breast, esophagus, pancreas, liver, lung [169] vaccination phase I/II/III [170]
median OS after relapse ∼21months

WT1 94% [171] leukemia, solid tumors (breast, ovarian, soft tissue sarcoma) [172] vaccination phase I/II [173]
median OS after relapse ∼7months

Abbreviations: CAR, chimeric antigen receptor; OS, overall survival.

T. Nejo, et al. Seminars in Immunology xxx (xxxx) xxxx

3



been recognized [34,72,73]. Our group has previously reported that 2-
HG produced by IDH-mutant glioma cells inhibits STAT1 and down-
stream leukocyte-recruiting chemokines, such as CXCL10 [34]. Inter-
estingly, administration of mutant IDH inhibitor not only restored T-cell
accumulation (typically reduced in IDH-mutant tumors compared with
wildtype ones) but also enhanced the efficacy of peptide vaccines in an
in vivo model. Bunse et al. subsequently reported that T-cells actively
ingest exogeneous 2-HG using sodium-dependent dicarboxylate trans-
porter 3 (SLC13A3), resulting in reduced proliferation and cytokine
secretion. They also showed that inhibition of 2-HG restored T cell
activity and enhanced anti-tumor immunity induced by mutant IDH1-
specific vaccine [57].

Despite such immunosuppressive features, the IDH1 R132H muta-
tion attracts much attention as a target for immunotherapy because of
its high incidence and high cellular clonality [64,74]. Of particular
importance is that the mutation is truncal, with all tumor cells ex-
pressing the mutant IDH1 peptide [67] (with the exception of rare cases
where IDH-mutations are lost [75]). Schumacher et al. reported that
vaccinations using a peptide encompassing the IDH1 R132H mutation
(p123-142) could induce both epitope-specific CD4+ T-helper-cell re-
sponses (TH1) as well as antibody responses, thereby eradicating the
mutation-positive tumors in vivo in an human leukocyte antigen (HLA)-
A2.DR1-transgenic mouse model [19]. Subsequently the first-in-human
phase-I trial NOA-16 was initiated to test the mutant-IDH1 R132H
peptide vaccine in patients with newly diagnosed, IDH1 R132H mutant
WHO grade III–IV astrocytomas (NCT02454634). It has thus far shown
optimal results as far as its safety and immunogenicity, including the
induction of antigen-specific TCRs [76].

Notably, hopes for T-cell therapies targeting this intracellular mu-
tant peptide remain unrealized. Schumacher et al. described that they
did not observe any epitope-specific CD8 + T-cell induction [19].
However, should the TCR that specifically recognizes the epitope pre-
sented by HLA class I or II be induced and isolated, it should be possible
to develop IDH1 R132H-TCR-T-cell therapy. This would bring great
advantages for many patients, considering the extremely high pene-
trance of the mutation in this disease. Though vaccination seems pro-
mising, further studies employing novel discovery approaches are
warranted to discover such beneficial TCRs for more proactive im-
munotherapy.

2.3.2. H3.3 K27M
Gliomas in children have different molecular drivers from those

arising in adults. DMGs, which affect primarily children and adoles-
cents, arise in the midline structure of the CNS, including the brain
stem, thalamus, and spinal cord [1,77]. They are characterized by a
highly recurrent point mutation in the H3F3A gene encoding histone
H3.3 (and less frequently, a mutation in the HIST1H3B or HIST1H3C
genes coding H3.1). An amino acid substitution from lysine to me-
thionine at position 27 (K27 M) leads to a decrease in H3 K27 tri-
methylation, resulting in distinct global demethylation and an aberrant
gene expression pattern due to inhibition of polycomb repressor com-
plex 2 (PRC2) activity [78–82]. The mutation is observed in 70–90 % of
diffuse intrinsic pontine gliomas (DIPGs), which are the most common
form of DMG and account for 10–20 % of all pediatric brain tumors
[78,80,81].

As TMZ and other chemotherapies have proven ineffective for H3
K27 M mutant DMG, the current standard therapy for this disease is
local irradiation alone [83,84]. Compared to H3.3 wildtype or H3.1
mutant DIPGs, H3.3 mutant tumors are less sensitive to radiotherapy
and exhibit more aggressive behavior [78,81]. As a consequence, the
prognosis of patients with H3.3 K27M-mutant DIPG is devastating: the
median OS is less than one year and the 2-year survival rate is less than
10 %, representing a terribly unmet clinical need.

Encouragingly, the mutation is also an attractive target for im-
munotherapy. Similarly to the IDH1 R132H mutation in adult gliomas,
the H3.3 K27 M mutation is homogeneously distributed throughout the
entire tumor [77,85]. Our group and several other researchers have
investigated the H3.3 K27 M epitope. Recently, Ochs et al. reported that
H3.3 10mer (H3.3 K27 M p26–35) and 27mer (H3.3 K27 M p14–40)
peptide vaccines are capable of binding to HLA-A*0201 and both HLA-
A*0201 and HLA-DR1, respectively, and eliciting mutation-specific
cytotoxic T-cell- and T-helper-1-cell-mediated immune responses in
preclinical models [86]. Our group concurrently identified the H3.3
K27 M p26–35 epitope, and isolated cDNA for α- and β-chains of a high
affinity TCR that recognizes the H3.3 K27 M mutation in the context of
HLA-A*02:01 [17]. In this study, we stimulated HLA-A*02:01+
CD8 + T-cells with the synthetic H3.3 K27 M mutant 10mer peptide
(H3.3 K27 M p26–35), isolated a CTL clone with a high H3.3 K27M-
tetramer-binding activity, and cloned the TCR cDNA into a retroviral
vector. TCR-transduced T-cells efficiently killed HLA-A*02:01+H3.3
K27M + glioma cells in an antigen- and HLA-specific manner both in
vitro and in vivo. These data provide a solid basis for the development of
vaccines as well as TCR-T-cell therapies targeting the H3.3 K27 M
mutation.

The Pacific Pediatric Neuro-Oncology Consortium (PNOC) has since
started a pilot clinical trial to assess the safety and the efficacy of an
H3.3 K27M-peptide vaccine in newly diagnosed HLA-A*0201+ pa-
tients with H3.3 K27M + DIPG (PNOC007 trial, NCT02960230) [87].
In this study, the enrolled patients receive the vaccine and concurrent
poly-ICLC following treatment with the standard of care (radiation
therapy). This trial also aims to characterize the vaccine-induced H3.3
K27M-specific T-cells in peripheral blood at a multitude of time points
utilizing a novel H3.3 K27M-specific dextramer. Further development
of this methodology will enhance investigation of immunotherapeutic
outcomes on molecular and cellular levels.

2.3.3. EGFRvIII
Epidermal growth factor variant III (EGFRvIII) is the most common

EGFR mutation, observed in approximately 20 % of newly diagnosed
IDH-wildtype GBMs [88,89]. The mutant protein arises from an in-
frame deletion of exons 2–7 of the EGFR gene and reside primarily on
abundant small circular extrachromosomal DNA fragments (double
minute chromosomes) [90,91]. This genomic rearrangement results in
overexpression of a truncated cell surface protein missing major parts of
its extracellular domain. The protein constitutively activates a tyrosine
kinase and signaling through the RTK/RAS/PI3K pathway, leading to
tumorigenesis [92–94]. Because this mutation is tumor-specific, never
present in normal cells [89,95], and because the EGFRvIII protein
harbors a de novo peptide sequence generated by genomic rearrange-
ment, it has been regarded as a good target for immunotherapy, in-
cluding vaccination, antibody-based, and T-cell-based therapies [96].

Rindopepimut is a 14 amino acid peptide vaccine derived from
EGFRvIII that encompasses the mutation site and is conjugated to
keyhole limpet hemocyanin (KLH) [97]. It has achieved a prolonged OS
in comparison with the historical control in a phase II study [98].
However, an international phase III trial (ACT IV) in 745 patients with
newly diagnosed GBM failed to demonstrate survival benefit over the
control group [24].

Several mouse monoclonal antibodies have been developed that
specifically recognize an extracellular epitope of EGFRvIII [99–101].
Using scFvs from the antibodies which demonstrated tumor specificity
and anti-tumor efficacy in both in vitro and in vivo xenograft models,
CAR constructs targeting the EGFRvIII mutation have been established
[96,102–104]. Our collaborative group between U. Penn and UCSF
reported a pilot trial in which 10 patients with recurrent GBM were
treated with EGFRvIII-targeting CAR-T-cell therapy (NCT02209376)
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[18]. After a single intravenous infusion of 1.75−5 × 108 CAR T-cells,
no patients experienced off-tumor toxicity or systemic CRS. Although
no obvious effect on the tumor growth was observed in follow-up MRI
scans, one patient maintained stable disease for 18 months after CAR-T-
cell administration without any additional treatment. Furthermore, in
five of seven patients who undertook surgery after the infusion, tumor-
infiltrating CAR-T-cells, as well as abundant non-transduced T-cells,
were observed in the resected tumor samples. In addition to the CAR-T-
cell infiltration, EGFRvIII expression was attenuated compared with the
corresponding pre-treatment tumor samples, suggesting that im-
munoediting was another consequence of the treatment. Phase I clinical
trials of EGFRvIII-targeted CAR-T-cell therapy are currently in progress
for newly-diagnosed (NCT02664363) and recurrent (NCT 01454596,
NCT02209376, NCT02331693, NCT02844062, NCT03283631) GBM.

2.4. Personalized neoantigens

Neoantigens are defined as antigens derived from tumor-specific
genetic alterations, and thus contain de novo peptide sequences that are
absent in the human normal cells [105]. They are regarded as ideal
targets for immunotherapy since the hosts’ immune system does not
show central T-cell tolerance to these antigens and can recognize them
as foreign. Indeed, it has been shown that the mutation load, which
should correlate with the number of neoantigens, is a predictive factor
for immune checkpoint inhibitors (ICI) in the majority of cancer types.
[106–108]. Unfortunately, GBMs are considered to harbor a low mu-
tational burden: they contain only 30–50 non-synonymous mutations
[109]. In addition, as already described, the number of recurrent/
shared mutations is very limited in gliomas with the exemption of IDH1
R132H, H3F3A K27 M, and EGFRvIII. Accordingly, non-shared “pri-
vate” mutation-derived neoantigens have been evaluated as therapeutic
targets in recent studies.

A major obstacle to the development of personalized neoantigen
immunotherapy is the unreliable prediction of “true” neoantigens by
currently available workflows. As discussed earlier, researchers strug-
gled with neoantigen validation while designing APVAC2 for the
GAPVAC-101 trial, failing to demonstrate the presence of predicted
neoantigen epitopes in the HLA peptidome [48]. In gastrointestinal
cancers, only 1–2 % of mutations have been proven to elicit im-
munological reactions in the corresponding tumor-infiltrating lym-
phocytes (TILs) [110].

Nevertheless, Keskin et al. recently reported encouraging results
from their neoantigen-based vaccine clinical trial in their article pub-
lished back-to-back with the GAPVAC-101 trial [111]. They assessed
the feasibility of personalized neoantigen-targeting vaccines in patients
with newly diagnosed GBM. In their analytic workflow, a median of
64.5 (range, 30–163) mutant epitopes were predicted to be HLA class I
high-binders (IC50 < 500 nM), although they did not perform MS-based
validation for HLA-bound peptides. Two patients who did not require
corticosteroids during the vaccine priming period exhibited robust de
novo T-cell responses against multiple predicted neoantigens, in which
both CD8+ and CD4+ T-cells were induced and enriched in an an-
tigen-experienced memory phenotype with polyfunctionality. In addi-
tion, post-vaccination tumor specimens from these two patients showed
significant increases in tumor-infiltrating T-cells, whereas no increase
was observed in patients who received corticosteroid administration.
TCR repertoire analyses suggested successful trafficking of vaccine-in-
duced neoantigen-reactive T-cells to the tumor site.

These studies suggest that GBMs, immunologically “cold” tumors,
can be successfully infiltrated by neoepitope-specific T-cells after per-
sonalized vaccine treatment. Development of more comprehensive
strategies, such as combination with ICI, is needed to control inhibitory
factors and maintain the reactivity of infiltrating T-cells.

2.5. Viral antigen epitopes

Viral antigens may represent particularly attractive targets for im-
munotherapy because they are foreign to the host immune system and
thus are inherently immunogenic [45]. Though gliomas have not been
recognized as being virally induced, a growing body of evidence sug-
gests that sensitive assays detect expression of CMV genomic and pro-
tein materials in >90 % of GBMs. Importantly, expression is not de-
tected in normal brain tissue [112–115]. A recent study of a DC vaccine
targeting CMV epitopes in GBMs demonstrated promising results,
especially in combination with vaccine-site conditioning using tetanus-
toxioid [116]. These findings are now being further investigated in
phase I and II clinical trials (NCT00639639, NCT02465268,
NCT02366728, and NCT03382977) [117,118].

3. Ongoing work and future directions of antigen-oriented
immunotherapy for glioma

3.1. Enhancement of tumor immunogenicity

Additional challenges to the success of cancer immunotherapy for
glioma patients include the immunosuppressive tumor microenviron-
ment, the relatively low mutation load of gliomas, and the poor im-
munogenicity of some neoantigens (relative to viral antigens) [119]. It
is therefore an important goal to develop and integrate strategies that
enhance tumor immunogenicity.

The relationship between irradiation and immunotherapy has long
been an interesting area of research. Irradiation induces damages in
DNA as well as the cell membrane, producing reactive oxygen species
(ROS) [120]. By activating multiple transcription factors and signal
pathways, it can change the immunogenicity of the tumor as well as the
immunophenotype of cell components in the tumor microenvironment.
Major immunological consequences of irradiation may include 1) en-
hancing antigen presentation due to upregulation of MHC class I mo-
lecules, 2) phagocytosis and immunity induction by calreticulin ex-
pression and high mobility group box 1 (HMGB1) protein release, and
3) induction of apoptosis caused by upregulated Fas ligand expression
[121]. In addition, the breakdown of tumor cells by irradiation can lead
to the release of tumor antigens and damage-related molecules
(DAMPs) such as HMGB1 [122]. It is expected that these molecules can
stimulate dendric cells and activate cellular immune responses via Toll-
like receptors, resulting in enhancement of tumor antigen presentation.

3.2. Treatment induced-hypermutator as an optimal subject for
immunotherapy

Compared with some other types of cancers with a high mutational
burden such as melanoma, smoking-related non-small cell lung cancer,
and microsatellite instability (MSI)-high colon cancer [123], GBMs
have fewer non-synonymous mutations (median mutational burden 2.7
mut/Mb) and thus have limited potential to generate neoantigens
[53,124]. Some exceptional GBM cases, however, harbor a significantly
higher number of mutations (≥ 10 mut/Mb) and are known as hy-
permutators [27,125–127]. Hypermutated GBMs can arise due to TMZ-
induced disruption of [27,128] or hereditary deficiencies in [127,129]
the DNA mismatch repair (MMR) pathway. TMZ is an alkylating agent
used for GBM patients as a major component of the current standard of
care [27,28,127,128], and its disruption of the MMR system is pre-
sumably the most common cause of hypermutation in GBM [130]. It is
challenging to accurately estimate the incidence of TMZ-induced hy-
permutated GBM, but it is thought to be responsible for 10–20 % of
GBMs that recur after TMZ treatment [15,28,131]. Hereditary MMR
deficiency is the less common of the two. More often seen in pediatric

T. Nejo, et al. Seminars in Immunology xxx (xxxx) xxxx

5



cases, these tumors tend to be ultra-hypermutated (≥ 100 mut/Mb)
[127].

Two case studies have suggested that such tumors may be good
targets for ICI therapy [132,133]. In 2016, Bouffet et al. reported two
siblings with hypermutated GBM arising from germline biallelic MMR
deficiency for which ICI therapy with nivolumab showed durable
clinical responses [132]. That same year, Johanns et al. described a
patient with hypermutated GBM from a germline POLE gene mutation
for whom treatment with pembrolizumab (an anti-PD-1 inhibitor) re-
sulted in a significant increase in tumor-infiltrating CD8+ cytolytic T-
cells as well as elevated expression of PD-1, PD-L1, and IFNγ in resected
tumor tissue [133]. In 2017, pembrolizumab was approved for the
treatment of adult and pediatric patients with unresectable or meta-
static, MSI-high or MMR-deficient solid tumors, regardless of tumor site
or histology [134,135]. As a result, hypermutated GBM with MMR
deficiency can currently be treated with ICI therapy as a first-line
treatment.

There are currently no data on whether TMZ-induced hypermutated
GBM can be a good target for ICI therapy. However, Wang et al. re-
ported that such cases were shown to be enriched in CD8 + T-cell in-
filtration (based on in silico deconvolution prediction) [136]. They
suggested that this subset of patients may be responsive to ICI because
of their more immunologically reactive microenvironment. At the same
time, it is also possible that these patients may suffer from TMZ-induced
lymphopenia, which would exacerbate local immunosuppression. Two
ICIs, pembrolizumab and avelumab (an anti-PD-L1 inhibitor), are cur-
rently being evaluated, either alone in patients with recurrent WHO
grade II–IV hypermutated glioma (NCT02658279), or in combination
with radiotherapy in patients with recurrent, secondary GBM
(NCT02968940) [137]. The results of these studies will prove highly
consequential for the future of hypermutator-inducing therapies, and
are eagerly awaited.

Cancer vaccine development in cases of hypermutated GBM may
also be a favorable option as there would be a significantly expanded
pool of candidate peptides for the vaccine. Additionally, the finding
that tumor-reactive T-cells are recruited to the hypermutated tumor
suggests that synergistic effects could be expected with ICI and vacci-
nation therapy.

3.3. “Next-generation” neoantigen prediction

Along with increased access to high-throughput next-generation
sequencing (NGS) techniques over the last decade, cancer im-
munogenomics has greatly contributed to the development of neoan-
tigen-directed immunotherapy [138–140]. Variant calling, quantifica-
tion of mRNA expression, HLA-typing, and the estimation of the HLA
binding affinity of de novo peptides can be usually carried out through
whole exome-sequencing (WES) of the tumor and of normal genomic
DNA (e.g., from PBMC) and RNA-sequencing (RNA-seq) of the tumor
[15,141,142]. For HLA class I binding, putative tumor-specific 8–11mer
neoepitopes derived from nonsynonymous mutations are prioritized
based on their expression levels as well as their predicted processing
and binding affinity to a patient’s individual HLA molecules [141].
There are several well-known epitope prediction algorithms, such as
NetMHC or NetMHCpan, available in the Immune Epitope Database
(IEDB) Analysis Resource (Available from: www.iedb.org) [143–145].
However, growing evidence suggests that predicted binding affinity is
not always correlated with ability to trigger T-cell responses. In fact, it
has been found that only 1–2 % of putative neoantigens can elicit sig-
nificant T-cell reactivity [110,146]. This suggests that the current forms
of computational neoantigen prediction remain limited in their ability
to propose putative neoantigens that are actually translated into pep-
tides, cleaved by the proteasome as predicted, bound to HLA molecules,

and presented on the cell surface.
MS-based HLA peptidome analysis could help address the afore-

mentioned problems with computational neoantigen prediction. This
modality is able to confirm the bona fide epitopes presented by HLA
molecules (a later phase of antigen presentation than the HLA-epitope
binding). Incorporation of MS analysis is also expected to help reduce
rates of false-positive predictions and to avoid the laborious burden of
unnecessary validation [15]. As reviewed in detail by Polyakova et al.,
there are two major distinct workflows of MS to identify neoantigens: a
shotgun approach and a targeted proteomics approach [147]. The
former is a data-dependent - a mixture of the proteins is digested, se-
parated by liquid chromatography, and analyzed by tandem MS. The
latter targets specific peptides, assessing for their presence and quan-
tifying their levels if possible. The former is regarded as more com-
prehensive and unbiased while the latter is more sensitive [147,148],
and various combinations of these approaches are expected to refine the
list of neoepitopes predicted by NGS. Indeed, there have been a number
of recent studies that support the usefulness of MS for neoantigen
identification [149–151].

It is also noteworthy that the results of HLA peptidome analysis
frequently contradict the list of epitopes predicted by binding affinity-
based analysis [152]. Further complicating the issue, rearrangement of
the peptide fragments as a result of proteasomal cis-/trans-splicing has
also been described [153]. These findings highlight the limitation of
NGS-based in silico prediction and underline the significance of MS HLA
peptidome analyses. The recently-released NetMHCpan 4.0 [154] and
MHCflurry [155] utilize MS-based HLA peptidome data in their training
set to refine their in silico analysis, offering powerful tools to augment
prediction methods.

This is not to say that MS analysis is itself without need for im-
provement. The sensitivity of MS particularly needs improvement
[147]. As mentioned earlier, MS-based HLA peptidome assessment
failed to capture a single predicted neoepitope in the APVAC2 workflow
of the GAPVAC-101 trial [48]. Of course, absence of evidence is not
necessarily evidence of absence; further studies are required to address
how to combine and interpret the data inconsistencies between NGS
and MS and how to integrate them for neoantigen-targeting therapy in
clinical settings.

In addition to MS analysis, a number of novel techniques have been
proposed in order to improve the accuracy and the efficiency of in silico
neoantigen prediction. Łuksza et al. introduced a “neoantigen fitness
model” which is based on the relative MHC binding affinity of each
neoantigen to its wildtype counterpart as well as a nonlinear depen-
dence on sequence similarity of neoantigens to known antigens [156].
Duan et al. developed another method depending on not only the
“differential agretopicity index (DAI)” (which is based on the difference
of binding affinity between mutant peptides and their wild-type coun-
terparts) but also the conformational stability of the MHC class I-pep-
tide interaction [157]. Abelin et al. analyzed proteasomal cleavage
signatures using HLA peptidome analysis on their HLA class-I mono-
allelic cell line model [149]. Finally, a novel technique which captures
patient-derived T-cells with the ability to recognize the HLA-peptide
complexes in the library appears to allow detection of immunogenic
epitopes with a low predicted binding affinity [158]. This last finding
suggests that epitope selection based simply on a predicted binding
affinity threshold should be reconsidered [159]. By addressing all of
these issues, more accurate and efficient neoantigen determination will
become possible.

4. Concluding remarks

As we have discussed, the paucity of tumor antigens must be
overcome to safely and effectively treat GBM and other malignant
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gliomas with low mutation loads. As such, it is crucial to properly un-
derstand non-mutant antigens excessively expressed in the tumor,
“shared” neoantigens such as IDH1 R132H, H3.3 K27 M, and EGFRvIII,
non-shared “private” neoantigens, and virus-derived antigens, and to
effectively integrate them as therapeutic targets.

Spatial heterogeneity represents one of the most formidable chal-
lenges for immunotherapy of solid cancer [26–30], and multi-layered
treatment strategies must be developed. The way forward will require
targeting multiple antigens, as well as integrating therapies targeting
different immunological hallmarks, such as ICI therapy, vaccines, cell
therapies including CAR-T and TCR-T, and other modulators of the
immunosuppressive tumor microenvironment [160]. Future studies
should also be directed towards refining the antigen selection pipeline,
assessing antigen immunogenicity, and developing efficient and reliable
manufacturing workflows for vaccines and immune cell therapies.
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