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Abstract
Glioblastomas (GBM) can be classified into three major transcriptional subgroups (proneural, mesenchymal, classical),
underlying different molecular alterations, prognosis, and response to therapy. However, transcriptional analysis is not
routinely feasible and assessment of a simplified method for glioblastoma subclassification is required. We propose an
integrated molecular and immunohistochemical approach aimed at identifying GBM subtypes in routine paraffin-embedded
material. RNA-sequencing analysis was performed on representative samples (n= 51) by means of a “glioblastoma
transcriptional subtypes (GliTS) redux” custom gene signature including a restricted number (n= 90) of upregulated genes
validated on the TCGA dataset. With this dataset, immunohistochemical profiles, based on expression of a restricted panel of
gene classifiers, were integrated by a machine-learning approach to generate a GliTS based on protein quantification that
allowed an efficient GliTS assignment when applied to an extended cohort (n= 197). GliTS redux maintained high levels of
correspondence with the original GliTS classification using the TCGA dataset. The machine-learning approach designed an
immunohistochemical (IHC)-based classification, whose concordance was 79.5% with the transcriptional- based
classification, and reached 90% for the mesenchymal subgroup. Distribution and survival of GliTS were in line with
reported data, with the mesenchymal subgroup given the worst prognosis. Notably, the algorithm allowed the identification
of cases with comparable probability to be assigned to different GliTS, thus falling within overlapping regions and reflecting
an extreme heterogeneous phenotype that mirrors the underlying genetic and biological tumor heterogeneity. Indeed, while
mesenchymal and classical subgroups were well segregated, the proneural types frequently showed a mixed proneural/
classical phenotype, predicted as proneural by the algorithm, but with comparable probability of being assigned to the
classical subtype. These cases, characterized by concomitant high expression of EGFR and proneural biomarkers, showed
lower survival. Collectively, these data indicate that a restricted panel of highly sensitive immunohistochemical markers can
efficiently predict GliTS with high accuracy and significant association with different clinical outcomes.

Introduction

Glioblastoma (GBM), the most frequent and aggressive
primary malignant brain tumor in adults, is comprised of a
large variety of morphological patterns and histological
variants, some of which are included in the recent WHO
classification [1]. However, GBM is still considered as a
unique entity with standard recognized treatment and tumor
heterogeneity reflecting an intrinsic genetic instability. This
concept has been recently challenged and it is currently
accepted that GBMs can be classified according to their
transcriptional profile in three major distinct molecular
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subgroups (proneural (PN); classical (CL); mesenchymal
(MES)), which are associated with specific gene signatures
and different prognostic and therapeutic implications [2–4].
Expression of genes related to neural (e.g., ASCL1, OLIG2)
and glioma-CpG island methylator phenotype [5] defines
the PN subtype, frequently associated to a TP53 mutation.
Interestingly, the PN subgroup is comprised of IDH1/2
mutated GBMs, and is associated with significantly better
prognosis and younger age [6]. In contrast, CL and MES
gene signatures are both associated with poor outcome and
older age. The CL subtype is characterized by a high fre-
quency of EGFR gene alterations (typically amplification
and/or EGFRvIII mutation). Homozygous deletion of
9p21.3 (CDKN2A locus), lack of TP53 mutations, and RB
pathways alteration are also frequent [3]. The MES subtype
is characterized by high expression of YKL40, MET, and
CD44, frequent deletion at 17q11.2 (containing the NF1
gene), chromosomal aberrations in CDK6, CDKN2A, and
RB1, and activation of the NF-kB pathway [2]. Interest-
ingly, recurrences are frequently associated with a pheno-
typic shift into the MES subtype, suggesting that glioma
progression may proceed from PN or CL into MES phe-
notype. Finally, a neural subtype was also described [3],
characterized by a gene signature suggestive of a differ-
entiated phenotype with high expression of neuronal mar-
kers. However, recent data suggest that this phenotype is
nontumor specific but related to contamination of normal
neuronal tissue that might also explain lack of distinctive
gene abnormalities [2, 7]. Disease stratification may be
clinically relevant for identifying potential targets for per-
sonalized therapies [8]. We previously reported that strati-
fication of GBM according to EGFR status unmasked a
subgroup of EGFR amplified and overexpressing GBM that
strongly benefit from metronomic temozolomide-based
therapies [9]. Most recently, it was reported that EGFR
gene amplification and CL subtypes are associated with
significantly shorter time to progression for recurrent GBM
treated with bevacizumab [10]. Moreover, we recently
showed that the MET receptor kinase, highly expressed in
MES subtypes, promotes radio-resistance and is over-
expressed in recurring GBMs after radiotherapy, providing
preclinical evidences that MET inhibitors can radiosensitize
these tumors [11]. Finally, a recent randomized clinical trial
showed that addition of bevacizumab to standard radio-
therapy plus temozolomide treatment conferred significant
OS advantage only in PN GBMs [12]. Overall, these find-
ings indicate that GBM subgrouping carries a significant
impact on clinical decision-making aimed to develop
subtype-specific therapeutic strategies. However, a feasible
standardized approach for subclassification of GBMs in
routine diagnostic practice is still lacking. There are few
published studies aimed to identify GBM subtypes based on
a simplified immunohistochemical (IHC)-based approach

[13, 14]. Nevertheless, reported data are neither sensitive
nor specific and mostly lack of clinical, molecular, and
histopathological correlations. We tried to overcome these
limits and, based on an integrated molecular and IHC
analysis of a large cohort of GBMs, we propose a simplified
IHC-based algorithm able to predict with high accuracy
different transcriptional profiles. Finally, yet importantly,
we correlated our findings with clinical data, including
outcome and response to treatments, identifying GBM
subtypes associated to different clinical outcome.

Materials and methods

Patient selection

Newly diagnosed pathologically confirmed GBMs (n=
197) were retrieved from Institutional database of Depart-
ment of Pathology, Spedali Civili of Brescia. The study was
conducted in compliance with the Declaration of Helsinki
and policies approved by the Ethical Board of Spedali Civili
of Brescia for retrospective and exclusively observational
study on archival material obtained for diagnostic purpose
for which patient consent was previously collected. Histo-
logical diagnosis was revised according to WHO criteria [1]
and formalin-fixed paraffin-embedded (FFPE) representa-
tive tissue sections for each lesion were selected based on
adequate tissue preservation, as assayed by haematoxylin
and eosin (H&E) staining. Cases with limited material, such
as small stereotactic biopsies, thus not representative of the
entire tumor, were excluded. For cases with morphological
features suggestive of oligodendroglioma we performed
FISH analysis for determination of 1p/19q status. 1p and
19q co-deletion was found only in one case previously
diagnosed as GBM, thus excluded from the study. Clinical
data were collected from medical records (Table 1). Since
patients did not receive uniform treatment we categorized
therapeutic schedules, as previously described by Verhaak
et al. [3], in “more intensive treatment,” defined as either
complete concurrent chemo- and radiotherapy (six cycles)
or greater than three subsequent cycles of chemotherapy,
and “less intensive treatment,” defined as incomplete con-
current chemo- and radiotherapy (less than six cycles) or
less than four cycles of subsequent chemotherapy. A total of
22 patients (15.2%) were not categorized since number of
chemotherapy cycles was not available.

Neuropathological and molecular studies

Immunohistochemistry was performed as described in
Supplementary Methods. Primary antibodies are listed
in Supplementary Table 1. Histopathological features
(pleomorphism; presence of gemistocytic, oligodendroglial,
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small or spindle cell component; epithelioid features;
inflammatory infiltrates; glomeruloid vascular proliferation)
were semiquantitatively scored as follows: 0, absence; 1,
low; 2, moderate; and 3, high. For statistical purposes,
values were dichotomized (absence/low, 0; moderate/high,
1). Expression of selected gene classifiers (p53, EGFR,
ASCL1, OLIG2, PDGFRα, pNDRG1, YKL40, MET) was
semiquantitatively scored on representative tumor regions
based on both percentage [score ranges: 0 (0–5%), 1
(6–29%), 2 (30–69%), 3 (≥70%)] and intensity (score ran-
ges: 0, no expression; 1, weak; 2, moderate; 3, high) of
immunoreactive (IR) neoplastic cells with a combined
cumulative score ranging from 0 to 6. For hierarchical
cluster analysis we tailored the cut-off for each marker
based on the specific pattern of expression. Indeed, some
markers have a baseline expression (e.g., EGFR) and rarely
show complete absence of IR cells, while other markers
are less widely expressed and rarely reach score 6 (e.g.,
YKL40). For these markers a score of 3 or 4 has to be
considered already related to moderate or strong expression.
Therefore, the previous scores (from 0 to 6) were differ-
entially combined using the following scheme: EGFR
[0 (0+ 1); 1 (2+ 3+ 4); 2;(5) 3 (6)]; ASCL1, PDGFRα,
OLIG2, and p53 [0 (0); 1 (1+ 2); 2 (3+ 4); 3 (5+ 6)]; and
YKL40, MET, and pNDRG1 [0 (0); 1 (1+ 2); 2;(3) 3 (4+
5+ 6)]. The scoring system has been incorporated within
the transcriptional status prediction algorithm (available at
http://fisher.med.unibs.it:3838/GBMscore) to make it easier
to be applied in daily pathology practice. Analysis of O6-
methylguanine DNA methyltransferase (MGMT) methyla-
tion status, IDH1/IDH2 gene mutations, and FISH analysis
for 1p/19q co-deletion and EFGR amplification were also
performed. Details in Supplementary Methods.

GBM transcriptional subtypes (GliTS) redux
sequencing and data analysis

Transcriptional analysis was performed on 51 representative
cases selected from study cohort (n= 197) based on ade-
quacy of material in term of preservation and amount of
neoplastic viable cells with exclusion of surrounding normal
tissue. RNA was extracted using “High Pure Paraffin kit”
(Roche) following the manufacturer’s instructions, quality
assessed using RNA-6000 Nano kit on Bioanalyzer-2100
(Agilent), and quantified by RNA-HS Assay kit on Qubit
(Life Technologies). Library preparation was performed
using a custom TruSeq Targeted RNA kit (Illumina)
including 681 probes specific for 280 selected genes: 240
“pre-GliTS redux” genes being the top 30 upregulated and
downregulated genes according to the Verhaak’s study
where a 840 gene signature defining four GliTS was

Table 1 Clinical feature of the studied cohort (No. 197 cases).

Characteristic (No. 197)

No. (%)

Gender

Female 70 (35.5)

Male 127 (64.5)

Age, years (median 60.8 years)

<65 120 (60.9)

≥65 77 (39.1)

KPS

<70 21 (10.7)

≥70 174 (88.3)

NA 2 (1.0)

RTOG-RPA classes

III 12 (6.1)

IV 78 (39.6)

V 84 (42.6)

VI 21 (10.7)

NA 2 (1.0)

Site

Frontal 73 (37.1)

Parietal 21 (10.7)

Temporal 90 (45.7)

Occipital 6 (3.0)

Others 7 (3.5)

Hemispheres

Right 97 (49.2)

Left 100 (50.8)

Extent of surgery

Complete resection 124 (62.9)

Partial resection 70 (35.5)

Biopsy 3 (1.5)

Therapy

Combined radio–chemotherapy 145 (73.6)

“More intensive” treatment 93 (47.2)

“Less intensive” treatment 30 (15.2)

No. of CHT cycles not available 22 (11.2)

Radiotherapy only 31 (15.7)

Chemotherapy only 6 (3.0)

None 10 (5.1)

NA 5 (2.5)

MGMT promoter status

Methylated 65 (33.0)

Unmethylated 92 (46.7)

ND 40 (20.3)

RTOG-RPA Radiation Therapy Oncology Group recursive parti-
tioning analysis, CHT chemotherapy, MGMT O6-methylguanine
DNA methyltransferase, NA not available, ND not determined.
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identified [3]; 25 additional cancer genes; and 15 house-
keepers (Supplementary Table 2). Based on percentage of
RNA fragments longer than 200 nucleotides (DV200) ≥
400 ng of total RNA were used for library preparation,
following the manufacturer’s indications (Illumina). Quality
and molarity of libraries were calculated using DNA-HS
assay kit on Bioanalyzer-2100 (Agilent) on Qubit. Libraries
were pooled and sequenced on a Miseq (Illumina).
Sequences were mapped on GRCh38 using splice aware
mapper MapSplice [15] and read counts were calculated
with HTseq [16], gene annotation performed on gencode 22
[17]. Globally we could successfully map 267 unique gene
symbols. After validating that ssGSEA robustly classifies
TCGA samples using the limited number of genes selected
as above (data not shown), classification of GBM samples
was performed with ssGSEA implementation provided
in Wang et al. [2] according to the restricted CL, PN, and
MES subtypes upregulated signature genes “GliTS redux”
included in our profile and validated on TCGA dataset. For
each patient we generated CL, PN, and MES specific
metagenes (i.e., aggregate patterns of gene expression) by
evaluating the average of L2R expression values of
subtype-specific GliTS redux genes.

Cluster analysis and transcriptional prediction
algorithm

Hierarchical cluster analysis was performed using Kendall
correlation coefficient as similarity metric and Ward cri-
terion [18]. Transcriptional status prediction was performed
using random forest algorithm [19] growing 500 trees with
two predictors sampled for splitting at each node. Subtype
assignment probability was computed on OOB (out-of-bag)
samples. A pairwise proximity matrix was computed from
random forest on OOB samples, based on the frequency that
pairs of data points end up in. Multidimensional scaling was
used to visualize sample similarities on a Cartesian plane.
Transcriptional status prediction analysis was performed
based on combination of IHC and transcriptional data
applying the algorithm previously described. In order to
obtain the best combination of biomarkers able to predict
the transcriptional profile itself and improve performance of
the transcriptional status prediction algorithm, we selected
only cases with either a strong assignment of GliTS redux
subtype or an unequivocal IHC profile. The final tran-
scriptional status prediction analysis was performed on 39
cases out of 51 previously submitted to transcriptional
analysis. We included 37 GBM strongly assigned to the
specific subgroup, as assessed by high significant p-value.
Four cases were excluded because not significantly asso-
ciated to any GliTS redux subtype. For samples not uni-
vocally associated to a specific GliTS redux subtype we
considered the value of the metagenes correlated to the

subtypes and we included in the analysis only cases with
a robust association to a single subgroup (differential
expression of at least >0.50). Cases with an extremely
heterogeneous IHC profile according to the expression of
gene classifiers were also excluded. We finally included
two additional cases from the studied cohort with the
R132H-IDH1 mutation, considered by default as PN. OOB
probability of subtype’s membership were computed from
random forest model for all samples and used to rank them
for display.

Statistical analysis

Clinical, pathological, and molecular variables were
dichotomized for statistical purposes using cut-off values.
Correlations among biomarkers were computed using
Spearman’s rank method. Descriptive statistics were used
for patient cohort and survival calculated by Kaplan–Meier
method and compared with log-rank test. Clinical, patho-
logical, and molecular variables were considered for inter-
action in the Cox proportional-hazards model. Both
univariate testing and multivariate analysis were used and
Bonferroni correction applied to correct for multiple testing.
REMARKS guidelines were followed. For Student’s t test
analysis p-value < 0.05 was considered statistically sig-
nificant. We used SPSS software version 20.0. Details in
Supplementary Methods.

Results

Patient cohort and clinical-pathological features

The study was conducted on 197 representative newly
diagnosed GBMs upon revision of histological diagnosis.
Clinical information with complete follow-up was available
for 192 cases (97.5%). Median age at diagnosis was 60.8
years (range: 25–83) and female/male ratio was 1:1.8
(female= 70, male= 127). Clinical features, including KPS
and recursive partitioning analysis (RPA) classification are
summarized in Table 1. All patients underwent partial or
subtotal tumor resection and only three patients were sub-
jected to open-surgery biopsy. In 62.9% of patients, surgery
resulted in complete removal with no residual enhancement
seen on postoperative CT or MRI scans. Partial removal
occurred in 70 patients (35.5%). Only ten patients (5.1%)
did not receive any therapy due to sudden worsening of
clinical conditions. A total of 37 patients (18.8%) received
radiotherapy or chemotherapy alone, whereas radiotherapy
and concomitant and sequential temozolomide was the most
frequently adopted chemotherapeutic schedule (73.6%).
Since patients did not receive uniform treatment we cate-
gorized therapeutic schedules in “more intensive treatment”
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and “less intensive treatment,” as previously described by
Verhaak et al. [3].

A simplified transcriptional gene signature allows
identification of GliTS

Transcriptome analysis to assign GliTS was carried out on
51 FFPE tissue samples from study cohort (25.9%) based
on representativeness of neoplastic areas and adequate tis-
sue preservation. Classification was performed according to
the original algorithm, published by Wang et al. [2],
adapted for GliTS redux (see Materials and methods and
Fig. 1a). Notably, when applied to the cohort of tumors
originally employed for clinical and molecular validation of
GliTS (TCGA, n= 497 primary tumors included irrespec-
tively of their IDH status, data retrieved from http://gliovis.
bioinfo.cnio.es/) [20], GliTS redux maintained a high level
of correspondence with the original GliTS [concordant
samples 89.34%, Cohen’s kappa= 0.84, (0.8, 0.88)]
(Fig. 1b; http://gliovis.bioinfo.cnio.es/). GliTS redux was
successfully applied to our cohort and identified 17 CL
(40.48%), 12 PN (28.57%), and 13 MES (30.96%) patients,
which were univocally assigned to their class with propor-
tions similar to the reference dataset (37.62% CL, 30.95%
PN, 30.18% MES) (Fig. 1c). Five samples showed enrich-
ment of multiple classes and four patients were not assigned
(Supplementary Table 3). This observation was consistent
with a previous report showing that a subset of TCGA
samples cannot be univocally associated with a single
GliTS subtype due to intrinsic GBM heterogeneity, as
determined by single-cell sequencing [2].

A restricted panel of selected biomarkers
discriminates between different GBMs

We then investigated if a simplified IHC-based approach
could be suitable to adequately identify different GliTS. To
this end, selection of appropriate gene classifiers was crucial.
Biomarkers were selected from the same gene set used for
identification of transcriptional profile. Gene classifiers were
differentially expressed and, most importantly, inversely
correlated among different GBMs, allowing for discrimina-
tion and clustering (Fig. 2a). We first chose to investigate
EGFR expression as a strong predictive biomarker of CL.
EGFR amplification and overexpression are strongly asso-
ciated with CL GBM gene signature and we have previously
reported that EGFR overexpression is strictly related to
EGFR gene amplification [9]. FISH analysis performed
on 106/197 (53.8%) cases confirmed that EGFR-
overexpressing GBMs (cumulative score= 6) were mostly
amplified (46/49; 93.9%). Interestingly, among nonamplified
cases (n= 36) we found an EGFR cumulative score= 6
only in three cases (3/36; 8.3%). In addition, as also reported

[3], EGFR overexpression resulted inversely correlated with
p53 (correlation index −0.17) and MES biomarkers
(YKL40, MET, pNDRG1; correlation index −0.29, −0.23,
−0.29, respectively) (Fig. 2a). Likewise, we recently
reported that NDRG1, whose expression is significantly
inhibited by ASCL1, a robust gene classifier for PN [3, 21],
can be considered a novel gene classifier of MES GliTS
[22]. Data confirmed that expression of pNDRG1 and
ASCL1 were inversely correlated (correlation index −0.26)
and the former was expressed together with other MES
specifiers, YKL40 and MET (correlation index +0.60 and
+0.35, respectively; Fig. 2a). Interestingly, we previously
reported that MET expression is associated with glioma
stem-like cells with a MES or PN gene signature, but vir-
tually absent and mutually exclusive in EGFR expressing
and amplified glioma stem-like cells with CL profile [23].
Accordingly, in our cohort MET expression was mostly
mutually exclusive with EGFR (correlation index −0.23).
We then selected PDGFRα, OLIG2, and ASCL1 as bio-
markers related to PN subgroup [3]. Of note, PN gene
classifiers were found to be mostly inversely correlated with
MES biomarkers (Fig. 2a) and highly expressed in IDH1-
mutated GBMs (n= 3), considered by default as PN [3, 5].
Overall, these data confirm that selected biomarkers are
sensitive and specific and their combined expression profiles
allow discriminating between different GBMs.

A machine-learning transcriptional status prediction
algorithm efficiently assigns GliTSs

We first performed a hierarchical cluster analysis based on
combination of the expression of the selected gene classifiers.
Analysis identified different branches within the dendrogram
that could be potentially assigned to a specific transcriptional
profile according to high or low level of expression of the
different gene classifiers (Fig. 2b). Interestingly, the clustering
dendrogram showed well segregated branches identifying: (i)
a group of tumors enriched in PDGFRα, OLIG2, and ASCL1
expression, associated to PN GliTS; (ii) a group of tumors
highly expressing EGFR, associated to CL GliTS; and (iii) a
group of tumors highly enriched in YKL40, MET, pNDRG1,
and p53, associated to MES GliTS. Indeed, attribution of the
specific subgroup remains arbitrary. To overcome this pro-
blem, we performed a transcriptional status prediction ana-
lysis based on combination of IHC and transcriptional data
applying a specific algorithm in order to obtain the best
combination of biomarkers able to predict the transcriptional
profile itself. GBMs (n= 39), selected based on either a
strong assignment of GliTS redux subtype and an unequi-
vocal IHC profile as previously described, were subjected to
transcriptional status prediction analysis by comparing their
IHC and transcriptional profiles. The algorithm (available at
http://fisher.med.unibs.it:3838/GBMscore) assigned a specific
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Fig. 1 Transcriptional classification based on “GliTS redux” gene
signature. a Flow-chart of methodology used for RNAseq profiling
and classification performed according to the original algorithm, pub-
lished by Wang et al. [2] and adapted for GliTS redux. b Caleydo view
(top) of correspondences between the GliTS and GliTS redux class
assignments, representing the numbers of samples classified by the two

signatures as reported in the table (bottom). Our proposed “GliTS
redux” maintained a high level of correspondence with the original
“GliTS” generated on the TGCA reference cohort [Cohen's kappa=
0.84, (0.8, 0.88)]. c Heatmap of “GliTS redux” genes sorted by gene
expression subtype in study cohort. When applied to our study cohort
“GliTS redux” allowed to successfully identify GBM subgroups.
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Fig. 2 GliTS transcriptional status prediction based on immuno-
histochemical profile. a Immunostaining of gene classifiers on repre-
sentative cases (left panel) and correlation index between their
expression (right panel). As shown, selected biomarkers were found to
be mostly inversely correlated and differentially expressed between
different GBMs, allowing for discrimination and clustering. Images are
from ×20 original magnification. b Dendrogram from cluster analysis
based on combination of biomarkers expression shows distribution of
GBMs in three major branches and their relative expression profiles
within single group (plots). The expression profile allows to identify
different tumor expression profiles highly expressing PDGFRα-OLIG2-
ASCL1, EGFR, and YKL40-MET-pNDRG1, respectively. The lower

string shows GliTS assigned by the machine-learning algorithm
(available at http://fisher.med.unibs.it:3838/GBMscore) to all 197
GBMs and based on combination of IHC and transcriptional data. Pie
charts show distribution of predicted GliTS within the three branches
previously identified within the dendrogram. Comparison between
cluster analysis and transcriptional status prediction allowed to identify
an additional GBM subgroup (PN2) with concomitant high expression
of EGFR and PN metagenes. c Clustering based on prediction proximity
(upper panel) and probability of prediction (lower panel) indicate that
MES and CL subgroups are well segregated, while PN GBMs fre-
quently share overlapping features between other subgroups, with large
majority of nonconcordant cases related to a mixed PN/CL profile.

A simplified integrated molecular and immunohistochemistry-based algorithm allows high accuracy. . .
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subgroup to all 197 GBMs, independently from presence or
absence of transcriptional data and based only on IHC scores
(Fig. 2b). Predicted GliTS showed the following distribution:
PN 84/197 (42.6%); MES 62/197 (31.5%); and CL 51/197
(25.9%). When analyzed separately, concordance between
profiles predicted by the machine-learning algorithm and
corresponding transcriptional signatures (available for 39
cases) was 79.5% (31/39). Interestingly, concordance for CL
and MES subgroups was 81.3% (13/16) and 90% (9/10),
respectively, dropping down to 69.2% (9/13) for the PN
subgroup. Considering clustering based on prediction proxi-
mity it can be noted that 19% (3/16) among CL samples are
clustered to other subtypes (two MES, one PN) and 31% (4/
13) PN are more similar to other subtypes, mostly CL (three
CL, one MES). Conversely, all MES are clustered together
(Fig. 2c). Thus, these data indicate that MES and CL sub-
groups were well segregated, while PN GBMmore frequently
shared overlapping features between the groups. Of note, the
large majority of nonconcordant cases (7/8) were related to a
mixed PN/CL (5/8) or PN/MES (2/8) profiles. Actually, the
machine-learning algorithm assigned the GliTS to all cases,
but it has to be noted that some cases had comparable prob-
ability to be assigned to at least two GliTS, thus falling within
overlapping regions, as shown in Fig. 2c. Data reflect the
huge heterogeneous phenotype of some GBMs, particularly
with PN phenotype. Indeed, the algorithm imputes a prob-
ability for each GBM to be assigned to a specific subgroup,
thus highlighting cases with high tumor heterogeneity. Inter-
estingly, combination between cluster analysis and transcrip-
tional status prediction identified a GBM with a peculiar
profile, assigned to PN by the prediction algorithm, but that
fell within the CL branch of the dendrogram. These samples,
characterized by concomitant high expression of EGFR and
PN gene classifiers, will be from now identified as PN2 (n=
30), while remaining PN cases, with robust PN profile and
lower EGFR expression, will be identified as PN1 (n= 26)
(Fig. 2b and Supplementary Fig. 1).

Different morphological features are associated to
different GliTS

Morphological features of all GBMs were correlated to
predicted GliTS, also considering distinction between PN1
and PN2. Of note, 40.1% of patients showed GBMs with
small cell morphology, a feature significantly associated to
CL subgroup (Fig. 3a) [24]. Dense vascular network and
glomeruloid features, reflecting intense tumor neo-angio-
genesis, were also associated to CL (Fig. 3b). Interestingly,
both features were significantly present in PN2 GliTS,
which closely recapitulates morphological features of CL.
As expected, albeit only present in 12.2% of cases, oligo-
dendroglial features were found predominantly within
PN1 GliTS (Fig. 3c). Conversely, gemistocytes, spindle

cells, pleomorphism, and epithelioid features (Fig. 3d–g)
were significantly associated to MES GliTS and barely
detectable within other subgroups, with the exception of
PN1, that exhibits a variable degree of pleomorphism and
gemistocytes. Of note, inflammatory component was sig-
nificantly associated to MES GliTS (Fig. 3h), as recently
described [2].

GliTS classification identifies clinically relevant GBM
subtypes

Survival information was obtained for all patients (100%),
while complete clinical data were available for 192 cases
(97.5%). Indeed, we did not include in survival analysis
IDH1-mutant GBMs (n= 3; median OS 35.3 months), all
predicted as PN1 by the algorithm and considered as a
separate entity with favorable outcome [5, 7]. When com-
paring outcomes among the predicted transcriptional sub-
groups on the remaining 189 patients (Fig. 4a), we observed
a better survival rate in CL GBMs as compared with PN and
MES (CL vs PN vs MES: median OS 19.4 vs 12.0 vs
11.2 months; p= 0.003 by log-rank test) (Fig. 4b). Uni-
variate Cox-regression analysis on the same cohort of
patients indicated that younger age, higher KPS, III or IV
Radiation Therapy Oncology Group RPA (RTOG-RPA)
classes, MGMT promoter methylation and concomitant
radio–chemotherapy, and/or sequential temozolomide
treatment were all associated with significant better survival
(Table 2). Interestingly, among the different gene classifiers
analyzed, only YKL40 and MET overexpression were sig-
nificantly correlated to worse prognosis (Supplementary
Table 4), as also reported [11]. As expected, YKL40 and
MET overexpressing cases were predicted as MES. At
multivariate Cox-regression analysis RTOG-RPA classes,
MGMT promoter methylation and radio–chemotherapy
treatment remained statistically significant (Table 2). After
Bonferroni correction for OS only MGMT promoter
methylation and radio–chemotherapy treatment remained
statistically significant (p= 0.01). In our cohort, therapy
persisted as favorable prognostic factor across different
predicted subgroups with better survival for patients
receiving combined radio–chemotherapy treatment as
compared with palliative radiotherapy or chemotherapy
only (median OS: CL 20.5 vs 9.5 months; PN 15.4 vs
7.1 months; MES 14.6 vs 5.4 months). Interestingly, within
MES subgroup, patients receiving radio–chemotherapy
represented only 60.3% (38/63), while CL and PN were
86% (43/50) and 81.2% (65/80), respectively, suggesting
that MES GBMs show compromised clinical conditions
already at first clinical presentation that impinge the gold
standard treatment. Since therapeutic schedules resulted the
variable that mostly affects survival, we examined the
efficacy of more (n= 93) or less (n= 30) intensive
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radio–chemotherapy treatment, defined as previously
described, excluding patients that did not received any
therapy (n= 10) or only palliative treatment (n= 37)
(Fig. 4a). Again, outcomes of predicted GliTS (n= 123)
showed better OS for CL as compared with PN and MES
(CL vs PN vs MES: median OS 21.0 vs 14.3 vs
15.0 months), albeit not reaching statistical significance
(overall comparison p= 0.166 by log-rank test) (data not
shown). At univariate Cox-regression analysis both MGMT
promoter methylation, more intensive treatment and
younger age resulted statistically significant, while at mul-
tivariate Cox-regression analysis only more intensive
treatment remained significant, also after Bonferroni cor-
rection for OS. None of the gene classifiers was sig-
nificantly associated with survival in this cohort
(Supplementary Table 4). We further stratified patients

according to their subtype and more or less intensive
radio–chemotherapy treatment. While aggressive treatment
strongly improved survival in CL (median OS for less vs
more intensive treatment, 8.4 vs 23.1 months; p < 0.0005 by
log-rank test), it did not significantly alter OS in both PN
and MES (median OS for less vs more intensive treatment:
12.9 vs 16.5 for PN and 14.8 vs 15.4 months for MES; p=
0.084 and p= 0.525 by log-rank test, respectively)
(Fig. 4c). Of note, PN showed an unexpectedly low OS
comparable with MES GBMs. Since cluster analysis
allowed to highlight two different PN profiles, PN1 and
PN2, we performed OS analysis including these categories
in patients receiving more intensive treatment (n= 93).
Interestingly, PN2 showed the poorest prognosis, even
worse than MES GBMs (median OS for CL vs PN1 vs MES
vs PN2, 23.1 vs 20.1 vs 15.4 vs 12.0 months; overall

Fig. 3 GliTS and correlation with histopathological features. a–
h Plots show distribution of morphological features within GBM
subgroups. Scores are expressed as mean+ SD between all values

for each subgroup. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001. H&E staining of representative cases are from ×20 original
magnification.
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comparison p= 0.016 by log-rank test) (Fig. 4d). In addi-
tion, MGMT methylation status (available for 103/123;
83.7%) resulted predictive to temozolomide responsiveness

only in CL (median OS for NM vs M, 19.7 vs 25.9 months;
p= 0.025 by log-rank test), but not in PN and MES sub-
types. Interestingly, PN2 is comprised of a small percentage
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of methylated cases as compared with PN1 (PN1= 42.5%,
PN2= 20.0%). PN1/PN2 clinical features are summarized
in Supplementary Table 5.

Discussion

Classification based on transcriptional gene signature has
emerged as a valuable tool to investigate GBM biology and
enable uniform reliability in reporting scientific data.
Transcriptional signatures were associated with different
molecular alterations [3], key signaling pathways [25], and
DNA methylation [5]. Thus, a specific transcriptional pro-
file potentially relates to different gene classifiers expres-
sion. However, there are few studies aimed to correlate
biomarkers expression to transcriptional signatures [13, 14]
and no public datasets are available directly correlating
transcriptional and immunophenotypical profiles within the
same patient cohort. In a previous report, the attempt to
provide an IHC-based approach was validated at the tran-
scriptional level only in a separate cohort of patients [14].
Moreover, GliTS classification has not yet become part of
widespread clinical practice mainly due to lack of reliable
clinical laboratory assays to measure RNA expression from
FFPE samples. We tried to overcome these limits by a
simplified method to assign GliTS to GBM on routine FFPE
samples. We first developed a novel “GliTS redux”
approach according to the original algorithm published by
Wang et al. [2], adapted for a restricted gene signature that
was found to be highly robust, as indicated by high corre-
spondence upon validation on the TCGA dataset. GliTS
redux was successfully applied, univocally assigning spe-
cific subgroups with similar proportion to the reference
dataset. Interestingly, a subset of samples (17.6%) was not
significantly or not univocally associated to a specific
GliTS, in line with previous reports and ascribed to intrinsic
tumor heterogeneity, as determined by single-cell sequen-
cing [2, 26]. It was recently reported that a single GBM

comprises tumor cells at different developmental cellular
states associated to different phenotypes [27]. Of note,
authors suggest that the relative frequency of each cellular
state is influenced by underlined genetic and epigenetic
alterations and varies between different GBM samples.
Thus, association between molecular alterations and cellular
states could explain tumor heterogeneity with the more
frequent cellular state having the higher impact on the
expression profile of tumor bulk and attribution to a specific
transcriptional subtype. Indeed, there are obvious limita-
tions to molecular methods commonly used for expression
profiling. Analysis based on homogenized tissue samples
may be not completely representative of the original tumor
due to contamination of microenvironment that may
represent up to 70% of tumor bulk [28] and could obscure
the real transcriptional signature of neoplastic cells, as we
previously reported [29]. Of note, a rich inflammatory
component is strongly associated to poor prognosis and
contributes to the MES gene signature [2]. Accordingly, we
show that inflammatory component and worst prognosis are
significantly associated to predictive MES GliTS. Thus,
distinctive GliTS and clinical features can be ascribed, at
least in some cases, to abundant tumor-associated micro-
environment. In addition, as described, a single tumor may
activate more than one transcriptional profile contributing to
increased transcriptional heterogeneity [2, 27], as also
suggested by surgical multisampling from the same patient
showing that some lesions display different GBM subtypes
within the same tumor [30]. We also recently showed that a
phylogenetically related glioma stem-like cell hierarchy can
be found in matched primary and recurrent GBMs reflecting
genetic evolution under therapeutic pressure and tumor
heterogeneity [31]. This temporal and spatial heterogeneity
would render transcriptional classification relatively chal-
lenging and not necessarily representative of the tumor as a
whole. Histopathological and immunophenotypical analysis
allows to recognize different morphological aspects within
the entire resected sample that may reflect this hetero-
geneity. Indeed, the machine-learning algorithm allowed
assigning a probability score for each GBM to belong to a
specific GliTS, with some cases having comparable prob-
abilities to be assigned to different GliTS, reflecting their
heterogeneous phenotype. These observations suggest that
established GBM gene classifiers may be variably expressed
across individual cells within the same tumor and an IHC-
based approach may help to unmask the real tumor
expression profile since biomarkers are scored only in
neoplastic cells, highlighting their distinct distribution
within different tumor components. Moreover, transcrip-
tional analysis, albeit simplified, is still an expensive and
complex procedure not fully available to all neuropathology
services. The proposed IHC-based approach, using a
restricted panel of well-recognized subgroup-specific gene

Fig. 4 GliTS and clinical correlations. a Flow-chart showing
exclusion criteria for survival analysis. b Kaplan–Meier estimates of
survival between different GliTS (n= 189). Data show a better sur-
vival rate in CL GBMs as compared with PN and MES (p= 0.003 by
log-rank test). c Since therapy was found both at uni- and multivariate
Cox-regression analysis as a favorable prognostic factor across dif-
ferent GliTS we selected only patients receiving combined
radio–chemotherapy treatment (n= 123), further stratified according
to more (n= 93) or less (n= 30) intensive radio–chemotherapy
treatment. More intensive treatment significantly improved survival
only in CL (p < 0.0005 by log-rank test). d Since PN showed an
unexpectedly low OS we further stratified PN GliTS in PN1 and PN2.
Survival analysis for patients receiving more intensive treatment (n=
93) for CL, PN1, PN2, and MES subgroups showed that PN2 had the
poorest prognosis (p= 0.016 by log-rank test). CI confidence interval;
HR hazard ratio.
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classifiers, is simple and reproducible. Biomarkers were
essentially mutually exclusive or inversely correlated, fea-
tures extremely useful to perform a cluster analysis suffi-
ciently sensitive and specific for discerning different GliTS.
Reported data show high concordance between profiles
obtained either by molecular or IHC-based approach, being
81.3% for CL and up to 90% for MES. Interestingly, con-
cordance dropped down to 69.2% for PN. Clustering based
on prediction proximity confirmed that CL and, particularly,
MES subtypes were consistently clustered separately, while
PN frequently shared overlapping features with other
GliTS, reflecting a heterogeneous phenotype. Of note, when
analyzed together IHC-based hierarchical cluster analysis

and transcriptional status prediction identified cases with a
hybrid mixed PN/CL phenotype (PN2), assigned to PN
subgroup by prediction algorithm, but falling within CL
branch of the IHC-based cluster dendrogram. Indeed, PN2
cases have been predicted by the algorithm as PN, but with
comparable probability to be assigned to the CL subgroup,
mainly due to the high expression of EGFR. Of note, sur-
vival analysis showed that PN GliTS has an unexpectedly
low OS, but when analyzed separately only PN2 showed
poor prognosis. As shown, PN2 has concomitant high
expression of EGFR and PN biomarkers. Indeed, we pre-
viously reported that EGFR expression identifies function-
ally and molecularly distinct population of tumor-initiating

Table 2 Clinical features and outcome in our cohort of patients.

Overall survival

Univariate Multivariateb

Clinical features Median (months) Hazard ratio 95% CI p-value Hazard Ratio 95% CI p-value

Uni- and multivariate Cox-regression analysis of clinical features in the cohort of 189 Patients

Age (years)

<65 vs ≥65 15.5 vs 9.6 1.788 1.316–2.430 <0.0005 1.142 0.779–1.675 0.497

KPS

<70 vs ≥70 8.6 vs 14.4 2.396 1.488–3.858 <0.0005 0.998 0.514–1.939 0.995

RTOG-RPA classes

V, VI vs III, IV 9.8 vs 15.5 1.486 1.101–2.005 0.010 1.574 1.084–2.286 0.017

Extent of Surgery

Not radical vs radicala 11.4 vs 14.8 1.179 0.868–1.601 0.292 – – –

Therapy

No ter/pall vs RT+ CT 6.5 vs 15.8 3.711 2.598–5.301 <0.0005 4.628 2.541–8.429 <0.0005c

MGMT

UM vs M 13.6 vs 17 1.522 1.078–2.149 0.017 1.878 1.292–2.729 0.001c

Uni- and multivariate Cox-regression analysis of clinical features in the cohort of 123 Patients

Age (years)

<65 vs ≥65 19.7 vs 12.7 1.764 1.175–2.650 0.006 1.043 0.632–1.722 0.869

KPS

<70 vs ≥70 14.6 vs 16.7 1.804 0.730–4.460 0.201 – – –

OG-RPA classes

V, VI vs III, IV 14.8–20.3 1.262 0.867–1.838 0.224 – – –

Extent of surgery

Not radical vs radicala 14.6 vs 18.5 1.035 0.702–1.527 0.862 – – –

Therapy

Less intense vs more intense 10.8 vs 19.8 2.195 1.420–3.394 <0.0005 1.982 1.210–3.246 0.007c

MGMT

UM vs M 14.8 vs 21.3 1.521 1.000–2.311 0.050 1.510 0.965–2.363 0.071

UM unmethylated, M methylated.
aRadical: complete resection; not radical: partial resection and biopsy. Bold numbers refer to significant values (p < 0.05).
bMultivariate analysis has not been conducted for variables resulted not significant at univariate analysis.
cSignificant after Bonferroni correction (p= 0.01 for the cohort of 189 patients and p= 0.016 for the cohort of 123 patients).
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stem-like cells and is required for gliomagenesis [32]. We
can speculate that sustained EGFR expression in PN2 may
be related to an immature phenotype and combination of PN
phenotype with EGFR expression confers to neoplastic cells
an aggressive behavior. Interestingly, the original report
from Verhaak et al. [3] showed that PN GliTS did not have
any benefit from more intensive therapeutic schedules, as
opposed to other subtypes. Accordingly, our data show that
aggressive treatment strongly improved survival only in CL
and not in PN. In addition, an EGFR-dependent NF-κB
activation has been reported in GBM [33], playing a key
role in MES differentiation [34] and promoting PN-to-MES
transition, either spontaneously or in response to therapy
[35, 36]. We can thus speculate that PN2 GliTS may acti-
vate alternative molecular pathways closely related to MES
phenotype leading to aggressive behavior and temozolo-
mide resistance. Contrariwise, EGFR upregulation in CL
GliTS is mediated by molecular pathways that allow better
response to intensive temozolomide treatment with improve
survival, as we previously suggested [9] and also reported
hereby. In addition, PN2 GliTS is comprised of a small
percentage of MGMT methylated cases, feature that con-
versely characterize PN1 and correlated to temozolomide
responsiveness. To date, translational significance of GliTS
classification has been impinged by lack of effective spe-
cific subtype therapies. GliTS classification combined with
an IHC-based approach could help in identifying bio-
markers differentially expressed within specific GliTS that
may help identifying druggable molecules for personalized
therapies. Actually, a recent study suggests that IDH1 wild-
type PN GBMs benefit from first-line bevacizumab treat-
ment [12]. We also reported that MES differentiation pro-
motes radiation resistance and GBMs may be
radiosensitized by MET pharmacological inhibition,
robustly expressed in MES GliTS [11, 37]. Subgrouping
also provides insights into GBM biology and histogenesis.
Different transcriptional profiles may be associated with
distinct mechanisms of gliomagenesis. However, mechan-
isms of subgroup specification are currently unknown.
Indeed, we recently reported that enforced expression of
ASCL1, a robust PN biomarker, promotes acquisition of the
PN phenotype and concomitantly represses MES features
by direct downregulation of NDRG1 expression. Con-
versely, either inhibition of ASCL1 or enforced NDRG1
expression in PN glioma stem-like cells induce PN-to-MES
transition [22]. Finally, we also highlight histological fea-
tures significantly correlated to different GliTS, an obser-
vation completely absent in the literature and useful in
routine diagnostic procedures. In summary, we developed
a novel transcriptional status prediction algorithm (http://
fisher.med.unibs.it:3838/GBMscore) based on combination
of transcriptional and IHC data, easily applicable in daily
clinical practice, that assigned GliTS to all cases in an

objective manner. We are aware that reliability of the
approach could be further improved by future identification
of sensitive and specific gene classifiers and by increasing
the number of cases to be submitted to the predictive
algorithm. However, we think that our results improve
understanding of GBM subtype classification, elucidate the
critical correlation between tumor heterogeneity and
immunophenotype, and may provide a useful tool to stratify
patients in clinical trials for personalized therapies.
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