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Abstract 

 
Purpose: Precision medicine has been most successful in targeting single mutations, but 

personalized medicine using broader genomic tumor profiles for individual patients is less well-

developed. We evaluate a genomics-informed computational biology model (CBM) to predict 

outcomes from standard treatments and to suggest novel therapy recommendations in 

glioblastoma (GBM). 

Methods and Materials: In this retrospective study, 98 patients with newly diagnosed GBM 

undergoing surgery followed by radiation therapy and temozolomide at a single institution with 

available genomic data were identified. Incorporating mutational and copy number aberration 

data, a CBM was used to simulate the response of GBM tumor cells and generate efficacy 

predictions for radiation therapy (RTeff) and temozolomide (TMZeff). RTeff and TMZeff were 

evaluated for association with overall survival (OS) and progression-free survival in a Cox 

regression model. To demonstrate a CBM-based individualized therapy strategy, treatment 

recommendations were generated for each patient by testing a panel of 45 CNS-penetrant FDA-

approved agents.  

Results: High RTeff scores were associated with longer survival on univariable analysis (UVA) 

(P<0.001), which persisted after controlling for age, extent of resection, performance status, 

MGMT and IDH status (P=0.017).  High RTeff patients had a longer OS compared to low RTeff 

patients (median 27.7 vs. 14.6 months). High TMZeff was also associated with longer survival 

on UVA (P=0.007) but did not hold on multivariable analysis, suggesting an interplay with 

MGMT status. Among predictions of the three most efficacious combination therapies for each 



patient, only 2.4% (7 of 294) of two-drug recommendations produced by the CBM included 

TMZ.  

Conclusions: CBM-based predictions of RT and TMZ effectiveness were associated with 

survival in newly diagnosed GBM patients treated with those therapies, suggesting a possible 

predictive utility. Furthermore, the model was able to suggest novel individualized 

monotherapies and combinations. Prospective evaluation of such a personalized treatment 

strategy in clinical trials is needed.   

 

  



Introduction  

Glioblastoma (GBM) is the most common primary adult brain cancer, and it is associated with a 

poor prognosis (1). Despite aggressive multimodality therapy with surgery, radiation therapy 

(RT), and temozolomide (TMZ), GBM continues to be associated with poor survival and limited 

therapeutic progress (2). Molecular profiling and genome-wide analyses have provided a window 

into the intricate complexity underlying GBM tumor biology (3). 

As the number of targeted therapies expand, genetic tumor profiling has become more 

accurate, affordable, and available (4). The increasing amount of tumor genomic sequencing has 

raised the possibility of personalized medicine where treatments can be tailored to each patient’s 

tumor (5). Harnessing the wealth of genomic and molecular data from tumors to tailor 

appropriate therapy has been challenging but has the potential to revolutionize the management 

of oncology patients (5, 6). In this context, there is a need for novel approaches to streamline 

clinical decision-making to identify patients most likely to benefit from a particular therapy 

through the lens of tumor genetics (7–9). 

Predictive simulation modeling is an emerging technology that has garnered interest for 

GBM in recent years (10). In this evolving paradigm, a computational simulation avatar is 

created via genomic profiling information derived from tumor tissue, allowing a digital library of 

therapies with varying combinations and doses to be tested on an individual avatar disease 

network map (11). Using a computational biology model (CBM), simulations of complex 

biological mechanisms and key signaling pathways can be used to predict the expected tumor 

response to various therapies for each patient based on their tumor genomics. While there are 

currently no computational models that have successfully translated to the clinic, preliminary 

evidence suggests immense potential across various cancers, including GBM (9, 10). 



In this study, we hypothesized that a GBM CBM model-based prediction of RT and TMZ 

efficacy would be prognostic for progression-free survival (PFS) and overall survival (OS) in 

patients receiving these therapies as part of standard of care treatment. We then utilized the CBM 

platform to screen a panel of FDA-approved drugs to illustrate the potential to suggest an 

individualized treatment strategy based on tumor genomic profiles.  

 

Material and Methods 

Patients and Genomic Assays 

This retrospective study was approved by the institutional review board at XXXX. Somatic 

mutational profiling was performed with specific consent as clinical research testing and 

approved by the XXXX IRB. The XXXX cohort consisted of adult patients > 18 years old with a 

newly diagnosed GBM treated at our institution 2005-2014 with available clinical molecular 

profiling. Brain tumor tissue was acquired as a part of initial surgery for patients at time of initial 

presentation.  Samples were obtained from surgical procedures with selection of viable samples 

by a pathologist within 30 minutes to 1 hour of surgical removal. Samples were verified to 

contain viable tumor tissue at least 50% by volume and were stored frozen at -80 degrees Celsius 

or fixed in formalin using standard procedures.  Tests were performed within the Cytogenetics 

and Molecular Diagnostics Divisions of the XXXX, a CLIA-certified laboratory environment. 

Each patient had sequencing data and whole genome copy number data generated and available 

from the clinical medical record. Sequencing was generated by at least 1 of 2 clinical sequencing 

assays: OncoMap (12), a mass spectrometry–based mutation genotyping covering 471 mutations 

from 41 cancer genes (version 4); or OncoPanel (13), a targeted exome sequencing platform 

covering 275 cancer genes and 91 select introns across 30 genes to detect somatic mutations, 



copy number alterations, and structural rearrangements. Copy data was generated using Agilent 

array CGH (SurePrint 1M resolution array) to call amplification, losses, deletions, focal (<10 

Mb) and broad (>10Mb) variables for a subset of CNS cancer related genes and arm level 

aberrations (see Supplementary Text for complete list of genomic data). 

O6-DNA methylguanine-methyltransferase (MGMT)–promoter methylation status in this 

cohort was generally assessed using methylation-specific polymerase chain reaction (MS-PCR). 

Clinical, demographic, pathologic, and follow-up data were collected retrospectively from the 

medical record.  

 

Details of the CBM and in Silico Modeling Approach 

The modeling system used in this study is an updated version of  a previously detailed model 

(14–17). Briefly, the CBM, developed by XXXX contains information acquired from a variety of 

data sources, including studies on cell receptors, signaling pathways, pathway signaling 

intermediates, transcription factors, activation factors, and enzyme kinetics. Simulation 

experiments and analyses using the predictive tumor model, constituting a dynamic and 

comprehensive representation of signaling and metabolic pathways, is used for testing and 

validation. To ensure accuracy of computational simulation models, published data has been 

aggregated through manual scientific review to maintain quality of input information and resolve 

contradictory datasets.  

The simulation model includes representations of key signaling pathways underlying 

growth factor signaling, cell cycle regulation, tumor metabolism, oxidative stress, epigenetics, 

protein homeostasis, DNA damage repair, and apoptosis. The current version of the model 



includes more than 3,000 genes, 2,500 unique biomarkers and 85,000 functional interactions 

associated with signaling pathways associated with cancer. This comprises comprehensive and 

extensive coverage of the kinome, transcriptome, proteome and metabolome.  

Details on model derivation, experimental support, in vitro model validation, drug effect 

simulation, and creation of simulation avatars has been previously described (14, 17). Further 

information about the CBM, including how genomic data is interpreted and analyzed, is 

available in the Supplementary Material. Using trained disease models, ten anti-cancer drugs 

have been previously tested in silico on eight patient-derived GBM cell lines in a blinded 

prospective study, and 76% of CBM predictions agreed with in vitro experimental results (14). 

The CBM has been updated and expanded to include prediction of efficacy of radiation and 

temozolomide (see Supplementary Figure 1 for a schematic representation of drug effect 

modeling). Training and testing sets show high correlation between predictions of therapy 

efficacy of therapies (including radiation and temozolomide, respectively) in GBM with in vitro 

experimental findings and clinical outcomes in tested datasets (see Supplementary Table 1). 

The CBM was used to test RT and TMZ on a computational avatar for each included 

patient to obtain an efficacy score for each intervention (e.g. RTeff and TMZeff, respectively). A 

patient treated with RT and TMZ produced both a RTeff and TMZeff score, while a patient 

treated with TMZ alone produced a TMZeff score only. RTeff and TMZeff represented the 

simulated impact on tumor growth due to each respective therapy, and they were analyzed as a 

continuous variable. These parameters were not available at time of treatment, and patients 

received therapy at discretion of treating physicians.  

 



Drug Screening 

A pre-specified list of 45 FDA-approved drugs were used in simulations with the CBM to 

generate treatment recommendations based on the therapy most likely to be efficacious for each 

patient in the XXXX cohort. While 170 drugs have been modeled in the XXXX platform, 45 

drugs were chosen based on evidence of crossing the blood-brain barrier and preclinical or clinical 

evidence of activity in GBM (Supplementary Table 2). Single agent treatment and two-drug 

combination therapies were evaluated.  

 

Statistical analysis 

To ensure appropriate blinding, investigators generating treatment efficacy predictions 

had access to deidentified genomic data but did not have access to clinical outcomes data. All 

statistical analyses were done by investigators that were not affiliated with the development of 

the CBM. Progression was determined retrospectively for the XXXX cohort through clinical 

note assessments integrating imaging and clinical status. Univariable (UVA) and multivariable 

(MVA) Cox proportional hazards modeling was used to identify predictors of PFS and OS. 

Actuarial estimates of PFS and OS were calculated using the Kaplan–Meier method. Statistical 

significance was set at P<0.05, and all tests were two-sided. Analyses were performed using 

RStudio (version 1.1.383) running R (version 3.4.2) with the survival package (18). An overview 

of the study design of our retrospective study is presented in Supplementary Figure 2. 

 

 

Results  



Patient characteristics 

The XXXX cohort included a total of 98 patients, and patient characteristics are summarized in 

Table 1. The majority (93%) of patients were diagnosed 2011-2014. OncoPanel data was 

available for 68 patients, OncoMap data was available for 16 patients, and aCGH data was 

available for 79 patients (49 patients with OncoPanel had aCGH data and all 16 patients with 

OncoMap had aCGH data). The median age was 60 years with 46% females. The majority of 

patients had a KPS > 70 (82%) and were IDH1/2 wildtype (96%). With respect to MGMT 

promoter methylation status, MGMT promoter was methylated or partially methylated for 46% 

of patients, unmethylated in 41% of patients and unknown in 13% of patients. While 94% 

patients (91 of 98) were treated with RT and TMZ, there were 5 patients treated with radiation 

alone, and 2 patients treated with temozolomide alone.  

 

CBM efficacy predictions for radiation therapy and temozolomide 

CBM predictions were made using genomic data to generate efficacy scores, representative of a 

computational prediction of percentage change of tumor growth from therapy. The median value 

of RTeff was 11.4% (range 2.1%-66.3%), and the median value of TMZeff was 27.3% (range 

0.55%-86.1%). RTeff and TMZeff were correlated (r=0.763). RTeff was correlated with neither 

age (r= -0.018) nor KPS (r= 0.096). By t-test, there was no difference in RTeff based upon 

MGMT promoter methylation status (mean 15.7% in unmethylated MGMT patients vs. 18.8% in 

methylated MGMT patients, P=0.28), extent of resection (dichotomized, 18.5% vs. 15.5%, 

P=0.28) or p53 mutation status (16.5% vs. 18.6%, P=0.59). There was, however, a significant 

difference in TMZeff based upon MGMT promoter methylation status; mean TMZeff was 22.8% 



in unmethylated patients and mean TMZeff was 39.1% in methylated patients (P<0.001). There 

was no difference in TMZeff based upon neither extent of resection nor p53 mutation status.  

 

Overall survival analysis 

Median overall survival (OS) for all patients was 18.7 months. Table 2 summarizes regression 

results. Factors significant on UVA for association with OS included age (HR 1.05, 95%CI 1.02-

1.08, P=0.008) and MGMT methylation promoter status (HR 0.56, 95%CI 0.32-0.96, P=0.036). 

We dichotomized extent of resection (subtotal resection or biopsy vs. gross total resection, HR 

1.65, 95%CI 0.99-2.77, P=0.055), RT dose (RT dose < 5940cGy vs. > 5940cGy, HR 2.10,  

95%CI 0.90-4.86, P=0.08), and KPS (KPS > 70 vs. < 70, HR 0.50, 95%CI 0.20-1.27, P=0.15), 

but these were not significant on UVA.Both the RTeff score (HR 0.95, 95%CI 0.93-0.98, 

P<0.001) and TMZeff score (HR 0.98, 95%CI 0.97-0.99, P=0.007) were associated with OS. In 

dichotomizing RTeff by the median value (11.4%), there was a significant (P=0.002 by log-rank) 

difference in survival in patients with high RTeff (median 27.7 months) vs. low RTeff (median 

14.6 months; HR 0.42, 95%CI 0.24-0.72; Figure 1).  

On MVA, age (adjusted hazard ratio [AHR] 1.07, 95%CI 1.04-1.11, P<0.001), extent of 

resection (AHR 2.53, 95%CI 1.20-5.33, P=0.015), MGMT promoter methylation status (AHR 

0.46, 95%CI 0.22-0.98, P=0.04), and RTeff (AHR 0.95, 95%CI 0.90-0.99, P=0.017) were 

associated with OS. MVA included 84 patients with complete data available. There was no 

significant interaction between age and KPS (P=0.20; Supplementary Table 3).  

 

Progression-free survival analysis 



Median progression-free survival (PFS) for all patients was 9.7 months. The only clinical or 

molecular variable significant on UVA for association with PFS was MGMT promoter 

methylation status (HR 0.49, 95%CI 0.37-0.92, P=0.02). RTeff was associated with PFS (HR 

0.98, 95%CI 0.96-0.999, P=0.046), while TMZeff showed a trend towards an association but did 

not meet criteria for statistical significance (HR 0.99, 95%CI 0.98-1.00, P=0.052). KPS (HR 

1.09, 95%CI 0.40-3.0, P=0.88) and RT dose (HR 1.58, 95% CI 0.72-3.48, P=0.26) were not 

associated with PFS. On MVA, MGMT promoter methylation status (AHR 0.45, 95%CI 0.24-

0.83, P=0.01) was significantly associated with PFS (Supplementary Table 3). RTeff (AHR 1.00, 

95%CI 0.97-1.02, P=0.74) and TMZeff (AHR1.00, 95%CI 0.98-1.01, P=0.67) were not 

significant in MVA. 

 

 

MGMT subgroup analysis 

We performed an exploratory analysis evaluating TMZeff as a predictor of OS in MGMT 

methylated and unmethylated patients since there are no known predictors of TMZ efficacy in 

unmethylated patients (19). TMZeff did not have a statistically significant association with OS in 

unmethylated (n=38) MGMT patients (HR 0.98, 95%CI 0.96-1.00, P=0.10)  or methylated 

(n=46) MGMT patients (HR 0.99, 95%CI 0.97-1.01, P=0.518). 

 

Recommended therapies based upon CBM-derived predictions 



We examined the top three single agent and two-drug combination regimens that were predicted 

to be most efficacious for each patient by CBM (Supplementary Table 4). For illustrative 

purposes, Table 4 demonstrates the top predicted combinations based upon CBM-generated 

efficacy scores for three patients. Patients were not treated with these agents, and this was an 

exploratory analysis to illustrate the potential in applying this CBM to individualize treatments 

for patients. Further study would be necessary to correlate efficacy outcomes for these agents 

with clinically relevant outcomes. Among single agent therapies, nelfinavir was most frequently 

predicted to be most efficacious; it was the top prediction for 26% of patients. Lomustine (20%), 

everolimus (14%), cabozantinib (13%), and TMZ (10%) were the next most common top 

prediction for single agent therapy for patients.  

When considering two-drug combination therapies, the combination of cabozantinib and 

nelfinavir was most often predicted to be the most efficacious regimen; it was the top prediction 

for 20% of patients. Lomustine and nelfinavir (13%), cabozantinib and lomustine (11%), afatinib 

and everolimus (7%), nelfinavir and TMZ (7%), afatinib and nelfinavir (6%), and everolimus 

and lomustine (6%) were the next most common top prediction for two-drug combination 

therapy for patients.  

The most common therapy predictions of single agent and combination regimens that 

appeared in top three therapy recommendations for each patient are listed in Table 3. Only 6.5% 

(19 of 294) of single agent therapy predictions and 2.4% (7 of 294) of two-drug combination 

regimens included TMZ as part of recommended therapy. 

 

Discussion  



Precision medicine approaches frequently characterize patients using genomic profiling to find 

biomarkers predictive of therapeutic response. Despite the wealth of genomic information 

generated for GBM, however, targetable driver alterations have not been found in a manner 

similar to other cancers (20).  Furthermore, using genomic information in totality to individualize 

therapy is less well developed than the experience with single driver variants.  In our study, we 

showed that a CBM-based prediction for RT and TMZ efficacy was associated with longer 

survival in GBM patients treated with these therapies. These findings are particularly striking 

since there are only a few known genomic factors associated with OS in GBM (Table 2) and 

there is a paucity of genomic predictors of RT response across cancers. While a truly predictive 

claim would require evidence of a differential association with treated and untreated patients 

(few patients with newly diagnosed GBM do not receive RT), our findings are consistent with a 

possible predictive utility of a CBM-based approach. 

Despite evidence that the benefit of RT in patients is not uniform (21), there is limited 

data on how genomic differences can be associated with radiosensitivity (22). Prior in vitro 

studies have indicated significant variation in radiation sensitivity across and within cell line 

lineages with genomic features associated with variability (23). Supporting this notion, 

radiosensitivity index (RSI) (24) and the related genome-based model for adjusting radiotherapy 

dose (GARD) (25), using The Cancer Genome Atlas GBM patient cohort have previously 

described a genomics-derived parameter  associated with OS . Of note, high RSI was associated 

with MGMT methylation (26), which suggests some overlap in the prognostic value of RSI and 

MGMT methylation. In contrast, RTeff in our study did not differ between methylated or 

unmethylated MGMT patients and remained an independent predictor of OS on MVA. Since RSI 

and GARD only used expression data from ten specific genes, they did not incorporate the 



breadth of genomic data, biological mechanisms and signaling pathways captured by our CBM-

based approach. The incorporation of comprehensive genomic information and accounting of 

known clinical variables likely explain the higher magnitude of stratification of patient survival 

seen with RTeff in our study (HR 0.42, 95%CI 0.24-0.72) relative to these prior studies. 

The identification of patients more or less likely to benefit from RT is important in the 

management of GBM patients, particularly with continued interest in dose escalation (27, 28), 

such as the ongoing NRG-BN001 phase 3 trial (NCT02163135). Our CBM-driven approach has 

value as a prognostic factor, which could be useful in stratification of patients in such trials. 

Furthermore, if there is a predictive component to RTeff, clinical trials employing radiation dose 

escalation or de-escalation may help further characterize this relationship.  

TMZeff was also associated with OS on UVA.  In contrast to RT, there is already a 

molecular factor (MGMT promoter methylation) predictive for TMZ treatment efficacy.  Indeed, 

high TMZeff was associated with MGMT methylation (mean TMZeff 39.1% vs. 22.8% in 

methylated vs. unmethylated MGMT patients, respectively; P<0.001), suggesting that the CBM 

may identify genomic changes more likely to be associated with MGMT methylation. The 

interplay of genomic changes and MGMT methylation status warrants further study. While TMZ 

is more effective in MGMT methylated patients (29, 30), there is still a small absolute benefit in 

MGMT unmethylated patients (30).While limited by subgroup sample size, MGMT unmethylated 

tumors (n=38, 10 patients with high TMZeff) had more heterogeneous scores (HR 0.98, 95%CI 0.96-

1.00, P=0.10) that could potentially be leveraged to determine which patients with MGMT unmethylated 

tumors might still respond to TMZ.  . While the CBM-based approach yields largely redundant 

information as MGMT status, this exploratory subgroup analysis suggests that there may be 

some non-overlapping explanatory power which could help identify unmethylated MGMT 



patients most likely to benefit from TMZ added to RT. Further study is needed, as such findings 

would have important implications for the management of unmethylated MGMT patients, since 

these patients are increasingly enrolling onto trials in which TMZ is omitted. 

Molecular tumor boards have been proposed as a solution to bring precision medicine 

into clinical practice, but clinicians and associated experts need additional tools to effectively 

analyze and interpret multiplexed genomic data (6). With a CBM incorporating comprehensive 

genomic inputs beyond just driver genes, many different therapeutic interventions can be 

“tested” simultaneously in silico, a potentially useful tool for clinical decision support.  To 

explore the feasibility of using a CBM to individualize therapy, we screened a pre-specified list 

of FDA approved drugs on each patient’s computational avatar in the XXXX cohort. The result 

was a large degree of heterogeneity in treatment recommendations, and more variation than 

might be expected based on evaluation of single genes commonly altered in GBM (9). Nelfinavir 

and cabozantinib were the most frequent single agent therapies predicted to be most efficacious, 

and their combination was the most commonly recommended two-drug regimen. Both nelfinavir 

and cabozantinib have been evaluated in a limited capacity in unselected GBM patients (31–33), 

and our CBM suggests that there is a subset of patients that may preferentially benefit from these 

therapies, potentially in combination. While these results are provocative, patients in this study 

did not receive these screened therapies, and further study is necessary to associate our CBM 

predictions in patients receiving a predicted treatment with clinically meaningful outcomes. 

Future study would also allow for clarification of the relationship between the magnitude of the 

predicted efficacy score and clinical outcome, including the significance and validity of the 

CBM-mediated ranking procedure that provides recommendations of most likely effective 

therapies for a specific patient (Table 4). 



Our findings highlight the potential of developing tools to individualize therapy based 

upon genomic data. Moving forward, strategies for genomics-informed treatment must be tested 

in a rigorous manner, and there is limited experience of this in GBM (9). To evaluate CBM-

based treatment decision-making, newly diagnosed GBM patients could be randomized to 

standard therapy or an experimental arm where genomic data is incorporated into a CBM to 

predict the most efficacious adjuvant therapy. In this paradigm, instead of a single experimental 

agent, patients on the experimental arm would receive the CBM-predicted therapy or 

combination of therapies. This design creates challenges in trial conduct, including access for 

multiple non-FDA approved agents, but it can serve as a viable framework to test treatment 

decision-making strategies and actualize genomics-driven individualized cancer care.  

There are several limitations in our study. We have presented clinical validation of the 

previously generated model in one institutional cohort; while the model has been trained and 

tested in relatively small databases (Supplementary Table 1), additional analyses in other 

datasets would be valuable. The CBM predictions represent point predictions of efficacy that are 

not 100% accurate, and we provided 95% confidence intervals of RTeff and TMZeff in their 

association with OS and PFS. Furthermore, genomic profiling data in was heterogenous in our 

cohort with different sequencing platforms (i.e. OncoPanel and OncoMap) permitted. Given the 

paucity of newly diagnosed GBM patients receiving neither TMZ nor RT in our dataset, a truly 

predictive relationship could not be determined. More generally, the predictive utility of the 

CBM model would be better tested in randomized trials with varying treatment groups. A larger 

sample size would be helpful to better evaluate the use of TMZeff in MGMT-defined subgroups 

of patients.  

 



Conclusion 

We showed that CBM-based predictions of therapeutic response to standard therapies in newly 

diagnosed GBM were associated with survival and that the same model could generate 

individualized treatment recommendations.  The use of a CBM approach based on mathematical 

modeling represents a promising strategy towards genomics-driven personalized medicine that 

merits further investigation.  
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Figure Captions 

Figure 1: Kaplan Meier estimates of overall survival (OS) for patients with high RTeff compared 

to patients with low RTeff. High RTeff was associated with improved OS (P<0.001 by log-rank).  

Figure 2: Kaplan Meier estimates of overall survival (OS) for patients with high TMZeff 

compared to patients with low TMZeff, stratified by unmethylated (uMGMT) and methylated 

(mMGMT) MGMT promoter status. TMZeff did not have a statistically significant association 

with OS in unmethylated patients (n=39, P=0.10 by log-rank) nor methylated patients (n=47, 

P=0.52 by log-rank). 

 






