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Abstract

Purpose: Precision medicine has been most successful ietiaggsingle mutations, but
personalized medicine using broader genomic turmafil@s for individual patients is less well-
developed. We evaluate a genomics-informed computdtbiology model (CBM) to predict
outcomes from standard treatments and to suggest tieerapy recommendations in

glioblastoma (GBM).

Methods and Materials: In this retrospective study, 98 patients with nediagnosed GBM
undergoing surgery followed by radiation therapg s&mozolomide at a single institution with
available genomic data were identified. Incorpo@tinutational and copy number aberration
data, a CBM was used to simulate the response ™ Gighor cells and generate efficacy
predictions for radiation therapy (RTeff) and temlomide (TMZeff). RTeff and TMZeff were
evaluated for association with overall survival @8d progression-free survival in a Cox
regression model. To demonstrate a CBM-based mhaized therapy strategy, treatment
recommendations were generated for each patietgsting a panel of 45 CNS-penetrant FDA-

approved agents.

Results: High RTeff scores were associated with longer sahaon univariable analysis (UVA)
(P<0.001), which persisted after controlling for agetent of resection, performance status,
MGMT and IDH status®#=0.017). High RTeff patients had a longer OS camgpao low RTeff
patients (median 27.7 vs. 14.6 months). High TMXed6 also associated with longer survival
on UVA (P=0.007) but did not hold on multivariable analysisggesting an interplay with

MGMT status. Among predictions of the three mofita€ious combination therapies for each



patient, only 2.4% (7 of 294) of two-drug recommatiohs produced by the CBM included

TMZ.

Conclusions: CBM-based predictions of RT and TMZ effectivenessenassociated with
survival in newly diagnosed GBM patients treatethwiose therapies, suggesting a possible
predictive utility. Furthermore, the model was afolesuggest novel individualized
monotherapies and combinations. Prospective evafuaf such a personalized treatment

strategy in clinical trials is needed.



Introduction

Glioblastoma (GBM) is the most common primary aduétin cancer, and it is associated with a
poor prognosis (1). Despite aggressive multimogé#tierapy with surgery, radiation therapy
(RT), and temozolomide (TMZ), GBM continues to Iss@ciated with poor survival and limited
therapeutic progress (2). Molecular profiling amthgme-wide analyses have provided a window

into the intricate complexity underlying GBM tuminlogy (3).

As the number of targeted therapies expand, getugtior profiling has become more
accurate, affordable, and available (4). The isirgpamount of tumor genomic sequencing has
raised the possibility of personalized medicine mglteeatments can be tailored to each patient’s
tumor (5). Harnessing the wealth of genomic andecudhr data from tumors to tailor
appropriate therapy has been challenging but leapdtential to revolutionize the management
of oncology patients (5, 6). In this context, thisra need for novel approaches to streamline
clinical decision-making to identify patients mdékely to benefit from a particular therapy

through the lens of tumor genetics (7-9).

Predictive simulation modeling is an emerging tetbgy that has garnered interest for
GBM in recent years (10). In this evolving paradjgntomputational simulation avatar is
created via genomic profiling information derivedrh tumor tissue, allowing a digital library of
therapies with varying combinations and doses ttesid on an individual avatar disease
network map (11). Using a computational biology elq@€BM), simulations of complex
biological mechanisms and key signaling pathwaysbmaused to predict the expected tumor
response to various therapies for each patientdb@s¢heir tumor genomics. While there are
currently no computational models that have sudotgsranslated to the clinic, preliminary

evidence suggests immense potential across vasaneers, including GBM (9, 10).



In this study, we hypothesized that a GBM CBM meuketed prediction of RT and TMZ
efficacy would be prognostic for progression-fraevészal (PFS) and overall survival (OS) in
patients receiving these therapies as part of atdmaf care treatment. We then utilized the CBM
platform to screen a panel of FDA-approved drugfustrate the potential to suggest an

individualized treatment strategy based on tumaoggc profiles.

Material and Methods

Patients and Genomic Assays

This retrospective study was approved by the utsbdimal review board at XXXX. Somatic
mutational profiling was performed with specificnsent as clinical research testing and
approved by the XXXX IRB. The XXXX cohort consistetiadult patients > 18 years old with a
newly diagnosed GBM treated at our institution 2@08.4 with available clinical molecular
profiling. Brain tumor tissue was acquired as & pamitial surgery for patients at time of initia
presentation.Samples were obtained from surgical procedurds selection of viable samples
by a pathologist within 30 minutes to 1 hour ofggcal removal. Samples were verified to
contain viable tumor tissue at least 50% by volame were stored frozen at -80 degrees Celsius
or fixed in formalin using standard proceduresst¥avere performed within the Cytogenetics
and Molecular Diagnostics Divisions of the XXXXCd |IA-certified laboratory environment.
Each patient had sequencing data and whole genopyentimber data generated and available
from the clinical medical record. Sequencing wasegated by at least 1 of 2 clinical sequencing
assays: OncoMap (12), a mass spectrometry—basedionugenotyping covering 471 mutations
from 41 cancer genes (version 4); or OncoPane| @l@rgeted exome sequencing platform

covering 275 cancer genes and 91 select intromss80 genes to detect somatic mutations,



copy number alterations, and structural rearrangésn€opy data was generated using Agilent
array CGH (SurePrint 1M resolution array) to cafigification, losses, deletions, focal (<10
Mb) and broad (>10Mb) variables for a subset of @dBcer related genes and arm level

aberrations (see Supplementary Text for complstefigenomic data).

0O°-DNA methylguanine-methyltransferase (MGMT)—promateethylation status in this
cohort was generally assessed using methylatiocifgppolymerase chain reaction (MS-PCR).
Clinical, demographic, pathologic, and follow-ugalaere collected retrospectively from the

medical record.

Details of the CBM and in Slico Modeling Approach

The modeling system used in this study is an upldatesion of a previously detailed model
(14-17). Briefly, the CBM, developed by XXXX comaiinformation acquired from a variety of
data sources, including studies on cell recepsigsaling pathways, pathway signaling
intermediates, transcription factors, activatiottdas, and enzyme kinetics. Simulation
experiments and analyses using the predictive tumzatel, constituting a dynamic and
comprehensive representation of signaling and moétapathways, is used for testing and
validation. To ensure accuracy of computationalusation models, published data has been
aggregated through manual scientific review to ta@mnquality of input information and resolve

contradictory datasets.

The simulation model includes representations gfdignaling pathways underlying
growth factor signaling, cell cycle regulation, tammetabolism, oxidative stress, epigenetics,

protein homeostasis, DNA damage repair, and apisptbise current version of the model



includes more than 3,000 genes, 2,500 unique bkeraand 85,000 functional interactions
associated with signaling pathways associated eaititer. This comprises comprehensive and

extensive coverage of the kinome, transcriptomaepme and metabolome.

Details on model derivation, experimental supparjtro model validation, drug effect
simulation, and creation of simulation avatars lbwesn previously described (14, 17). Further
information about the CBM, including how genomic¢als interpreted and analyzed, is
available in the Supplementary Material. Usingrtegi disease models, ten anti-cancer drugs
have been previously testadsilico on eight patient-derived GBM cell lines in a blead
prospective study, and 76% of CBM predictions agjmeh in vitro experimental results (14).
The CBM has been updated and expanded to inclwtigbon of efficacy of radiation and
temozolomide (see Supplementary Figure 1 for arealie representation of drug effect
modeling). Training and testing sets show highealation between predictions of therapy
efficacy of therapies (including radiation and temlomide, respectively) in GBM witim vitro

experimental findings and clinical outcomes inedstiatasets (see Supplementary Table 1).

The CBM was used to test RT and TMZ ocoanputational avatar for each included
patient to obtain an efficacy score for each irgation (e.g. RTeff and TMZeff, respectively). A
patient treated with RT and TMZ produced both afRaed TMZeff score, while a patient
treated with TMZ alone produced a TMZeff score oRyeff and TMZeff represented the
simulated impact on tumor growth due to each rdspetherapy, and they were analyzed as a
continuous variable. These parameters were nolaé@iat time of treatment, and patients

received therapy at discretion of treating physisia



Drug Screening

A pre-specified list of 45 FDA-approved drugs wased in simulations with the CBM to
generate treatment recommendations based on tfapyheost likely to be efficacious for each
patient in the XXXX cohort. While 170 drugs haveshanodeled in the XXXX platform, 45
drugs were chosen based on evidence of crossingdbd-brain barrier anpreclinical or clinical
evidence of activity in GBMSupplementary Table 2). Single agent treatmentwanetirug

combination therapies were evaluated.

Satistical analysis

To ensure appropriate blinding, investigators gatireg treatment efficacy predictions
had access to deidentified genomic data but dichae¢ access to clinical outcomes data. All
statistical analyses were done by investigatorswieae not affiliated with the development of
the CBM. Progression was determined retrospectifeelthe XXXX cohort through clinical
note assessments integrating imaging and clintatls Univariable (UVA) and multivariable
(MVA) Cox proportional hazards modeling was usedlentify predictors of PFS and OS.
Actuarial estimates of PFS and OS were calculasathithe Kaplan—Meier method. Statistical
significance was set at P<0.05, and all tests weoesided. Analyses were performed using
RStudio (version 1.1.383) running R (version 3.4vith the survival package (18). An overview

of the study design of our retrospective studyeésented in Supplementary Figure 2.

Results



Patient characteristics

The XXXX cohort included a total of 98 patientsdgmatient characteristics are summarized in
Table 1. The majority (93%) of patients were diagpth2011-2014. OncoPanel data was
available for 68 patients, OncoMap data was aviglady 16 patients, and aCGH data was
available for 79 patients (49 patients with Onca?démad aCGH data and all 16 patients with
OncoMap had aCGH data). The median age was 60 yaard6% females. The majority of
patients had a KPS > 70 (82%) and were IDH1/2 yidt(96%). With respect to MGMT
promoter methylation status, MGMT promoter was ryletied or partially methylated for 46%
of patients, unmethylated in 41% of patients ankhown in 13% of patients. While 94%
patients (91 of 98) were treated with RT and TMi&re were 5 patients treated with radiation

alone, and 2 patients treated with temozolomidaealo

CBM efficacy predictions for radiation therapy and temozolomide

CBM predictions were made using genomic data tegea efficacy scores, representative of a
computational prediction of percentage change mbtugrowth from therapy. The median value
of RTeff was 11.4% (range 2.1%-66.3%), and the aredalue of TMZeff was 27.3% (range
0.55%-86.1%). RTeff and TMZeff were correlated (/A8B). RTeff was correlated with neither
age (r=-0.018) nor KPS (r= 0.096). By t-test, ¢hemas no difference in RTeff based upon
MGMT promoter methylation status (mean 15.7% in atilated MGMT patients vs. 18.8% in
methylated MGMT patient§=0.28), extent of resection (dichotomized, 18.5%1\%5%,
P=0.28) or p53 mutation status (16.5% vs. 18.8%4).59). There was, however, a significant

difference in TMZeff based upon MGMT promoter me#ipn status; mean TMZeff was 22.8%



in unmethylated patients and mean TMZeff was 39ri%ethylated patient$2£0.001). There

was no difference in TMZeff based upon neither eixté resection nor p53 mutation status.

Overall survival analysis

Median overall survival (OS) for all patients we&k . months. Table 2 summarizes regression
results. Factors significant on UVA for associatiaith OS included age (HR 1.05, 95%CI 1.02-
1.08,P=0.008) and MGMT methylation promoter status (HR6095%CI 0.32-0.962=0.036).
We dichotomized extent of resection (subtotal rege©r biopsy vs. gross total resection, HR
1.65, 95%CI 0.99-2.7R=0.055), RT dose (RT dose < 5940cGy vs. > 5940&{5y2.10,

95%Cl 0.90-4.86P=0.08), and KPS (KPS > 70 vs. < 70, HR 0.50, 95%€0-1.27P=0.15),

but these were not significant on UVA.Both the R'Bebore (HR 0.95, 95%CI 0.93-0.98,
P<0.001) and TMZeff score (HR 0.98, 95%CI 0.97-0290.007) were associated with OS. In
dichotomizing RTeff by the median value (11.4%g§rehwas a significanPE0.002 by log-rank)
difference in survival in patients with high RTéffiedian 27.7 months) vs. low RTeff (median

14.6 months; HR 0.42, 95%CIl 0.24-0.72; Figure 1).

On MVA, age (adjusted hazard ratio [AHR] 1.07, 959%4®4-1.11 P<0.001), extent of
resection (AHR 2.53, 95%CI 1.20-5.3370.015), MGMT promoter methylation status (AHR
0.46, 95%CI 0.22-0.98=0.04), and RTeff (AHR 0.95, 95%CI 0.90-0.9%;0.017) were
associated with OS. MVA included 84 patients widmplete data available. There was no

significant interaction between age and KPS (P=B2@plementary Table 3).

Progression-free survival analysis



Median progression-free survival (PFS) for all pats was 9.7 months. The only clinical or
molecular variable significant on UVA for assoaietiwith PFS was MGMT promoter
methylation status (HR 0.49, 95%CI 0.37-0.820.02). RTeff was associated with PFS (HR
0.98, 95%CI 0.96-0.99%®=0.046), while TMZeff showed a trend towards aroasgion but did
not meet criteria for statistical significance (l9®9, 95%CI 0.98-1.000=0.052). KPS (HR

1.09, 95%CI 0.40-3.(R=0.88) and RT dose (HR 1.58, 95% CI 0.72-38).26) were not
associated with PFS. On MVA, MGMT promoter methiglatstatus (AHR 0.45, 95%CI 0.24-
0.83,P=0.01) was significantly associated with PFS (Sepmntary Table 3). RTeff (AHR 1.00,
95%CI 0.97-1.02P=0.74) and TMZeff (AHR1.00, 95%CI 0.98-1.(A50.67) were not

significant in MVA.

MGMT subgroup analysis

We performed an exploratory analysis evaluating €ilZs a predictor of OS in MGMT
methylated and unmethylated patients since there@known predictors of TMZ efficacy in
unmethylated patients (19). TMZeff did not haveaistically significant association with OS in
unmethylated (n=38) MGMT patients (HR 0.98, 95%®631.00,,=0.10) or methylated

(n=46) MGMT patients (HR 0.99, 95%Cl 0.97-1.8£0.518).

Recommended therapies based upon CBM-derived predictions



We examined the top three single agent and two-dongpbination regimens that were predicted
to be most efficacious for each patient by CBM (@amentary Table 4). For illustrative
purposes, Table 4 demonstrates the top predictathications based upon CBM-generated
efficacy scores for three patients. Patients wetdreated with these agents, and this was an
exploratory analysis to illustrate the potentiadpplying this CBM to individualize treatments
for patients. Further study would be necessaryteetate efficacy outcomes for these agents
with clinically relevant outcomes. Among single agtherapies, nelfinavir was most frequently
predicted to be most efficacious; it was the tagdpstion for 26% of patients. Lomustine (20%),
everolimus (14%), cabozantinib (13%), and TMZ (1@&ye the next most common top

prediction for single agent therapy for patients.

When considering two-drug combination therapies,dbmbination of cabozantinib and
nelfinavir was most often predicted to be the neftacious regimen; it was the top prediction
for 20% of patients. Lomustine and nelfinavir (13%gbozantinib and lomustine (11%), afatinib
and everolimus (7%), nelfinavir and TMZ (7%), aféti and nelfinavir (6%), and everolimus
and lomustine (6%) were the next most common tediption for two-drug combination

therapy for patients.

The most common therapy predictions of single agadtcombination regimens that
appeared in top three therapy recommendationsafdr patient are listed in Table 3. Only 6.5%
(19 of 294) of single agent therapy predictions 2@d6 (7 of 294) of two-drug combination

regimens included TMZ as part of recommended therap

Discussion



Precision medicine approaches frequently charaet@atients using genomic profiling to find
biomarkers predictive of therapeutic response. Desipe wealth of genomic information
generated for GBM, however, targetable driver attens have not been found in a manner
similar to other cancers (20). Furthermore, ugjagomic information in totality to individualize
therapy is less well developed than the experi@nttesingle driver variants. In our study, we
showed that a CBM-based prediction for RT and TMic&cy was associated with longer
survival in GBM patients treated with these theeapiThese findings are particularly striking
since there are only a few known genomic factoss@ated with OS in GBM (Table 2) and
there is a paucity of genomic predictors of RT oesge across cancers. While a truly predictive
claim would require evidence of a differential asation with treated and untreated patients
(few patients with newly diagnosed GBM do not reeeRT), our findings are consistent with a

possible predictive utility of a CBM-based approach

Despite evidence that the benefit of RT in patiéntsot uniform (21), there is limited
data on how genomic differences can be associatedadiosensitivity (22). Priain vitro
studies have indicated significant variation iniaéidn sensitivity across and within cell line
lineages with genomic features associated withabdity (23). Supporting this notion,
radiosensitivity index (RSI) (24) and the relateshgme-based model for adjusting radiotherapy
dose (GARD) (25), using The Cancer Genome Atlas Gialiltent cohort have previously
described a genomics-derived parameter assoacidie®S . Of note, high RSI was associated
with MGMT methylation (26), which suggests somertay@in the prognostic value of RSI and
MGMT methylation. In contrast, RTeff in our studigahot differ between methylated or
unmethylated MGMT patients and remained an indegeingredictor of OS on MVA. Since RSI

and GARD only used expression data from ten spegénes, they did not incorporate the



breadth of genomic data, biological mechanismssagahling pathways captured by our CBM-
based approach. The incorporation of comprehemgaemic information and accounting of
known clinical variables likely explain the highmagnitude of stratification of patient survival

seen with RTeff in our study (HR 0.42, 95%CI 0.242) relative to these prior studies.

The identification of patients more or less likehybenefit from RT is important in the
management of GBM patients, particularly with conéd interest in dose escalation (27, 28),
such as the ongoing NRG-BNOO1 phase 3 trial (NC58235). Our CBM-driven approach has
value as a prognostic factor, which could be usefstratification of patients in such trials.
Furthermore, if there is a predictive componeriRTeff, clinical trials employing radiation dose

escalation or de-escalation may help further chiarae this relationship.

TMZeff was also associated with OS on UVA. In cast to RT, there is already a
molecular factor (MGMT promoter methylation) predie for TMZ treatment efficacy. Indeed,
high TMZeff was associated with MGMT methylationdam TMZeff 39.1% vs. 22.8% in
methylated vs. unmethylated MGMT patients, respebtj P<0.001), suggesting that the CBM
may identify genomic changes more likely to be aesded with MGMT methylation. The
interplay of genomic changes and MGMT methylatitatus warrants further study. While TMZ
is more effective in MGMT methylated patients (30), there is still a small absolute benefit in
MGMT unmethylated patients (3@Yhile limited by subgroup sample size, MGMT unmédisd
tumors (n=38, 10 patients with high TMZeff) had mbeterogeneous scores (HR 0.98, 95%CI 0.96-
1.00,P=0.10) that could potentially be leveraged to datee which patients with MGMT unmethylated
tumors might still respond to TMZ. While the CBM-based approach yields largely reftdunt
information as MGMT status, this exploratory suhgr@analysis suggests that there may be

some non-overlapping explanatory power which coligh identify unmethylated MGMT



patients most likely to benefit from TMZ added t®.RFurther study is needed, as such findings
would have important implications for the managenwéunmethylated MGMT patients, since

these patients are increasingly enrolling ontdgtiimwhich TMZ is omitted.

Molecular tumor boards have been proposed as #i@ohlo bring precision medicine
into clinical practice, but clinicians and assoethexperts need additional tools to effectively
analyze and interpret multiplexed genomic data\(@jh a CBM incorporating comprehensive
genomic inputs beyond just driver genes, many iffetherapeutic interventions can be
“tested” simultaneouslyn silico, a potentially useful tool for clinical decision qaget. To
explore the feasibility of using a CBM to individizz therapy, we screened a pre-specified list
of FDA approved drugs on each patient's computatiamatar in the XXXX cohort. The result
was a large degree of heterogeneity in treatmeotmenendations, and more variation than
might be expected based on evaluation of singleggeammonly altered in GBM (9). Nelfinavir
and cabozantinib were the most frequent singletagenapies predicted to be most efficacious,
and their combination was the most commonly reconted two-drug regimen. Both nelfinavir
and cabozantinib have been evaluated in a limiggacity in unselected GBM patients (31-33),
and our CBM suggests that there is a subset afgatthat may preferentially benefit from these
therapies, potentially in combination. While thessults are provocative, patients in this study
did not receive these screened therapies, ancefusthidy is necessary to associate our CBM
predictions in patients receiving a predicted treatt with clinically meaningful outcomes.
Future study would also allow for clarification thie relationship between the magnitude of the
predicted efficacy score and clinical outcome,udahg the significance and validity of the
CBM-mediated ranking procedure that provides recenuations of most likely effective

therapies for a specific patient (Table 4).



Our findings highlight the potential of developitapls to individualize therapy based
upon genomic data. Moving forward, strategies fmanics-informed treatment must be tested
in a rigorous manner, and there is limited expegeof this in GBM (9). To evaluate CBM-
based treatment decision-making, newly diagnosell @&tients could be randomized to
standard therapy or an experimental arm where gentata is incorporated into a CBM to
predict the most efficacious adjuvant therapyhis paradigm, instead of a single experimental
agent, patients on the experimental arm would vecttie CBM-predicted therapy or
combination of therapies. This design creates ehg#s in trial conduct, including access for
multiple non-FDA approved agents, but it can s&wva viable framework to test treatment

decision-making strategies and actualize genonmiegid individualized cancer care.

There are several limitations in our study. We hanesented clinical validation of the
previously generated model in one institutionalartshwhile the model has been trained and
tested in relatively small databases (Supplemeritabje 1), additional analyses in other
datasets would be valuable. The CBM predictionsasgnt point predictions of efficacy that are
not 100% accurate, and we provided 95% confidemesvals of RTeff and TMZeff in their
association with OS and PFS. Furthermore, genomiilipg data in was heterogenous in our
cohort with different sequencing platforms (i.e.d@Ranel and OncoMap) permitted. Given the
paucity of newly diagnosed GBM patients receivieghmer TMZ nor RT in our dataset, a truly
predictive relationship could not be determinedrd&igenerally, the predictive utility of the
CBM model would be better tested in randomizedgndth varying treatment groups. A larger
sample size would be helpful to better evaluataueeof TMZeff in MGMT-defined subgroups

of patients.



Conclusion

We showed that CBM-based predictions of therapeatiponse to standard therapies in newly
diagnosed GBM were associated with survival andttfeassame model could generate
individualized treatment recommendations. TheaiseCBM approach based on mathematical
modeling represents a promising strategy towardsmes-driven personalized medicine that

merits further investigation.
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Figure Captions

Figure 1: Kaplan Meier estimates of overall surl/(@S) for patients with high RTeff compared

to patients with low RTeff. High RTeff was assoetvith improved OSR<0.001 by log-rank).

Figure 2: Kaplan Meier estimates of overall surl/(@S) for patients with high TMZeff

compared to patients with low TMZeff, stratified bymethylated (UMGMT) and methylated
(mMGMT) MGMT promoter status. TMZeff did not havestatistically significant association
with OS in unmethylated patients (n=%%;0.10 by log-rank) nor methylated patients (n=47,

P=0.52 by log-rank).
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