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Abstract

Background and purpose: 

Radiotherapy is a standard treatment option for high-grade gliomas. Brain atrophy has previously 

been associated with radiotherapy. The goal of this study was to investigate dose dependent 

5 cerebellar atrophy using prospective, longitudinal MR data from adult glioma patients who received 

radiotherapy. 

Materials and methods:

Cerebellar volumes were measured using T1-weighted MR images from 91 glioma patients before 

radiotherapy (N = 91) and from longitudinal follow-ups acquired in three monthly intervals (N = 349). 

10 Relative cerebellar volumes were calculated as ratios to the corresponding baseline values. 

Univariate mixed effects models were used to determine factors that were significantly associated 

with relative cerebellar volumes. These factors were subsequently included as fixed effects in a final 

multivariate linear mixed effects model.  

Results:

15 In multivariate analysis, cerebellar volume decreased significantly as a function of time (p < 0.001), 

time × dose (p < 0.001) and patient age (p=0.007). Considering a 55 year patient receiving a mean 

cerebellar dose of 0 Gy  (10 Gy), the linear mixed effects model predicts a relative cerebellar volume 

loss of 0.4 % (2.0 %) after 1 year and 0.7 % (3.6 %) after 2 years. Compared to patients treated with 

photons, the cerebellar dose was significantly lower in patients treated with proton therapy (p < 

20 0.001, r = 0.62).

Conclusion:

Cerebellar volume decreased significantly and irreversibly after radiotherapy as function of time and 

mean cerebellar dose. Further work is now needed to correlate these results with cognitive function 

and motor performance.  

25
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Abbreviations

CT - computed tomography 

CET1w - post-contrast T1w images 

CSF - cerebrospinal fluid 

5 CTV - clinical target volume

GM - grey matter

GTV - gross tumour volume

MWU - Mann-Whitney U test

PTV - planning target volume

10 T1w - T1-weighted images

TBV - tumour bed volume

TFE - Turbo Field Echo 

WM - white matter

15
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Introduction

Radiotherapy is part of the standard treatment of high-grade gliomas following primary resection 

[1,2]. In particular, expanded clinical target volumes, but also technical limitations in dose delivery, 

such as positioning uncertainties and physical properties of the used irradiation technique, inevitably 

5 lead to irradiation of surrounding normal appearing brain. This can cause radiation induced brain 

injury, which is commonly categorised into acute, early delayed and late side effects, whereas late 

side effects occur several months after irradiation and are typically irreversible and progressive [3]. 

Late side effects include histopathological changes such as vascular alterations, demyelination and 

gliosis but also cognitive impairment, even when no obvious anatomical abnormalities are visible 

10 [3,4]. Such radiation-induced side effects can severely affect quality of life, particularly in long-term 

survivors [5-7].

We have previously shown that irradiation of normal appearing brain leads to cerebral atrophy and 

reduced perfusion [8,9] as well as changes in MR diffusion [10]. Both the anatomical and functional 

changes were significantly correlated with the regional radiation dose and progressed over time. The 

15 dose correlation also meant that these changes were significantly lower across the whole brain in 

patients treated with proton therapy, because they received a lower whole brain dose compared to 

patients treated with photon therapy [9,10]. 

Dose-dependent atrophy has been observed after irradiation across the whole brain [7,9,11] and 

substructures such as the hippocampus [12-15] and amygdala [16]. Brain atrophy has been linked 

20 with cognitive decline [6,7], however it is hypothesized that substructures, e.g. the hippocampus, are 

more radiosensitive [14] and therefore, together with their known function in memory and cognition 

[17], might be the driving force of cognitive decline after radiotherapy [15,18].

Recently, the question was raised if the cerebellum should be considered as an organ at risk due to 

increasing evidence of its contribution to cognition besides motor function [19]. A recent study by 

25 Dutz et al. [20] has shown that the volume receiving more than 30 or 40 Gy in the anterior 

cerebellum of adult patients treated for brain tumours correlated with a decrease in cognitive 

performance. Previous studies have found cognitive performance to decline with increasing 

cerebellar dose in children treated for infratentorial ependymoma [21], and linked cerebellar atrophy 

with cognitive performance in adult survivors of childhood brain cancer [21,22]. A preclinical study by 

30 Zhou et al. [23] demonstrated drastic atrophy and reduced perfusion in the cerebellum following a 

moderate radiation dose in juvenile rats. Given these findings, we wanted to analyse cerebellar 

volume changes after radiotherapy in a cohort of adult glioma patients using longitudinal structural 
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MR imaging. We related those changes to the mean cerebellar radiation dose, time after 

radiotherapy and patient age.  
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Methods

Patient cohorts

Data from two different prospective studies was combined for this analysis. The first patient cohort 

comprised data from an ongoing, longitudinal study (study A) of grade I-IV glioma patients, approved 

5 by the local ethics committee (NCT02824731, EK22012016). The second patient cohort included 

grade IV glioblastoma patients (study B). These data were acquired as part of a prospective, 

longitudinal study investigating the effect of 11C-methionine PET/MR for tailoring the treatment of 

patients with glioblastoma, approved by the local ethics committee (NCT01873469, EK41022013, BO-

EK-167052020).

10 Gross tumour resection was performed in most patients prior to radio(chemo-)therapy. Baseline MR 

images were acquired after surgery and typically two weeks before the start of radio(chemo-

)therapy. Follow-up MRIs were first acquired approximately three months after the end of 

radiotherapy and then every three months thereafter. However, patients occasionally skipped 

follow-up MRs or received clinical follow-up MRs at other centres, which were not used for analysis 

15 in this study. The scans were generally performed until either patient status worsened or patients 

required further clinical intervention due to clinical progression. 

The following exclusion criteria were used: No baseline MRI, no follow-up MRI, additional treatment, 

previous irradiation, lesion in the cerebellum, severe motion artefacts, aspergillus infection (one 

patient), external head trauma (one patient). 

20 Data acquisition

All MRI data were acquired on a 3 T Philips Ingenuity PET/MR scanner (Philips, Eindhoven, The 

Netherlands) using an eight channel head coil. 

Pre- and post-contrast T1-weighted (T1w) MR images were used for cerebellar segmentation. In 

study A, pre-contrast T1w images were acquired using a 3D gradient spoiled echo sequence acquired 

25 in sagittal orientation with 1 mm isotropic resolution. In study B, pre-contrast T1w MR images were 

acquired using a 3D Turbo Field Echo (TFE) sequence acquired in sagittal orientation at 1 mm 

isotropic resolution. This 3D TFE sequence was used in both studies to acquire post-contrast T1w 

images (CET1w) following the injection of intravenous contrast agent.

30
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Radiation treatment planning

Computed tomography (CT) scans for radiation treatment planning were performed prior to 

radio(chemo)therapy with the patient positioned supine with an individual head support and mask. 

For radiation treatment planning, the CTs were co-registered with the post-surgery MRI scans (T1w, 

5 T2w, CET1w) to define the tumour bed and potential residual tumour (tumour bed volume; TBV, or 

gross tumour volume; GTV, respectively). Depending on the tumour histology, the TBV (including the 

GTV) was expanded by a 1-2 cm isotropic margin, corrected for anatomical boundaries, to derive the 

clinical target volume (CTV). For proton therapy, dose was prescribed to the CTV taking into account 

inherent proton range uncertainties, whereas for photon beam irradiation, a planning target volume 

10 (PTV) was created by expanding the CTV using an isotropic margin of 0.5 cm. For this analysis, the 

planning CTs and corresponding dose maps were retrieved from the planning workstation. Prescribed 

total dose was typically either 54 Gy or 60 Gy depending on tumour histology and delivered in 27-30 

fractions. 

Data processing

15 Cerebellar volumes were calculated using a three-step process as illustrated in Figure 1. In step one, 

the Montreal Neurological Institute (MNI) 152 brain atlas [24] provided by the FMRIB Software 

Library (FSL) [25] was transformed to individual brain extracted T1w images using deformable 

coregistration implemented in Advanced Normalization Tools (ANTs) [26,27]. A cerebellum mask 

created in MNI space was then transformed to the individual T1w images to cut out the cerebellum. 

20 Step two cleaned up the resulting cerebellar volumes by removing any residual parts of the 

transverse sinuses. This was achieved by rigidly coregistering the CET1w images to the T1w images, 

segmenting the contrast enhancement in the CET1w images using Atropos [28] and subsequently 

removing these voxels from the T1w cerebellum images. In step three, Atropos segmentation [28] 

was used to segment the cerebellum into grey matter (GM), white matter (WM) and cerebrospinal 

25 fluid (CSF) using the T1w images and prior probability maps from the publicly available SUIT atlas 

[29]. The volume of each cerebellum was then calculated as the sum of all GM and WM probabilities. 

The segmentation of the cerebellum was visually inspected for all patients and time points. Manual 

correction was performed in cases where the automated pipeline still included parts of the 

transverse sinuses or parts of the cerebrum. 

30 The mean dose delivered to the cerebellum was calculated by rigidly coregistering the planning CT 

and corresponding dose maps to the baseline T1w images. 
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Statistical analysis

Relative cerebellar volumes Vrel were calculated for each patient as ratios to their corresponding pre-

radiotherapy baseline values. 

Analysis was carried out in R [30] using a linear mixed effects model with the relative cerebellar 

5 volume as the response variable and patient ID as grouping variable. To establish which fixed effects 

should be considered in this model, we first carried out multiple univariate analyses on all potential 

fixed effects (see supplementary material): time after radiotherapy, mean cerebellar dose, patient 

age, gender, low grade (grade I-II) or high grade (grade III-IV) tumour, radiotherapy type 

(proton/photon), chemotherapy (yes/no).  Significant predictors were then used as fixed effects in 

10 the linear mixed effects model. 

The difference in mean cerebellar radiation doses between proton and photon radiotherapy was 

compared using a non-parametric Mann-Whitney U test performed in MATLAB (The MathWorks, 

Inc., Natick, Massachusetts, USA). A corresponding effect size was calculated as r = Z/√N.

15

 

20



11

Results

In total, 91 patients with baseline MRIs and 349 follow-up MRIs were eligible for this study. Follow-

up MRIs were available at 3 (N = 87), 6 (N = 58), 9 (N = 38), 12 (N = 30), 15 (N = 25), 18 (N = 25), 21 (N 

= 18), 24 (N = 16), 27 (N = 15) and > 27 months (N = 37) after the end of radio(chemo)therapy. 

5 Patients treated with protons (N = 38) received a significantly lower mean cerebellar dose compared 

to patients treated with photons (N = 52) (median [range]: 0.4 Gy [0 Gy – 6.8 Gy] vs. 4.9 Gy [0.3 Gy – 

16.9 Gy] ; MWU: p < 0.001, r = 0.62). Full patient details are summarised in Table 1. Plotting the 

relative cerebellar volumes over time for all patients illustrates a general trend for cerebellar volume 

reduction (Figure 2). 

10 Univariate analysis using linear mixed effects modelling revealed that neither gender, tumour grade, 

radiotherapy type nor chemotherapy were able to predict relative cerebellar volumes (see 

supplementary material). On the other hand, time after radiotherapy, mean cerebellar dose and 

patient age were found to significantly predict the relative cerebellar volume. Consequently, we used 

the following multivariate linear mixed effects model:

15  ,𝑉rel = 𝑎 × 𝑑𝑜𝑠𝑒 + 𝑏 × 𝑡𝑖𝑚𝑒 + 𝑐 × 𝑡𝑖𝑚𝑒 × 𝑑𝑜𝑠𝑒 + 𝑑 × 𝑎𝑔𝑒 + 𝑒

R syntax: lmeModel = lme(Vrel ~ dose*time + age, data, random = ~ 1|id ).

The model coefficients are given in Table 2. All included parameters remained significantly related to 

the relative cerebellar volume, except for the cerebellar dose that showed a statistical trend. The 

model revealed that cerebellar atrophy increased with higher mean radiation dose and with 

20 increasing time after radiotherapy. Additionally, older patients were predicted to develop greater 

cerebellar atrophy over the same time span than younger patients (Figure 3). One year after 

receiving a mean cerebellar dose of 10 Gy, patients aged 30, 55 and 80 years were expected to lose 

approximately 1.6 %, 2.0 % and 2.4 % cerebellar volume, respectively (Figure 3A). After two years, 

these values increased to approximately 3.2 %, 3.6 % and 4.0 %, respectively (Figure 3B). 

25
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Discussion

To the best of our knowledge, this is the first longitudinal study reporting on dose dependant 

cerebellar volume loss after radiotherapy in adults. The cerebellar volume loss showed no signs of 

recovery within our observational period. This highlights the potential impact particularly for long-

5 term survivors following radiotherapy.

We found that time after radiotherapy, the product of time after radiotherapy and mean cerebellar 

dose as well as patient age were significant predictors for cerebellar volume loss. From the linear 

mixed effects model, we can estimate an expected cerebellar volume loss of around 2 % for a 55 year 

old patient receiving a mean cerebellar dose of 10 Gy (Figure 3A). While we found no previous 

10 studies investigating dose dependent cerebellar volume changes, Ailion et al. [22] found 

radiotherapy as a predictor of cerebellar atrophy in a cohort of 25 adult survivors of cerebellar 

childhood tumours. Several studies reported atrophy of cerebral subvolumes after 

radio(chemo)therapy. Karunamuni et al. [11] reported significant dose dependent cortical thinning 1 

year after radiotherapy in a cohort of 15 high grade glioma patients. Petr et al. [9] investigated 

15 volume loss of the cerebrum 3 and 6 months after the end of radiotherapy using a subset of patients 

used in this study and found significant grey matter atrophy of approximately 0.9 % per 10 Gy at 3 

months after the end of radio(chemo)therapy. Gommlich et al. [31] found a trend for decreasing 

white matter in adult glioma patients after irradiation, although the study was hampered by 

heterogeneous MR data acquired during routine follow-up, i.e. with different protocols, field 

20 strengths and resolutions. In a longitudinal study, Prust et al. [32] found progressive whole brain 

volume loss during and after radiotherapy with concurrent chemotherapy in a cohort of eight 

glioblastoma patients. Volume loss was about 1 % at approximately 3 months after the end of 

radiotherapy. In a cohort of primary brain tumour patients analysed one year after radiotherapy, 

Seibert et al. [12,16,33] found regional and dose dependant cortical thinning, a 6 % decrease in 

25 volume of the hippocampus receiving a radiation dose greater than 40 Gy and a decrease of the 

amygdala volume at a rate of 1.7 % per 10 Gy. Takeshita et al. [14] assessed hippocampal volumes of 

20 metastases patients receiving whole brain irradiation with a total dose of 30 Gy and found volume 

reductions of 1.8 %, 5.8 % and 9.2 % after 0-3, 4-7 and 8-11 months, respectively. The volume 

changes reported in these studies are thus comparable to the volume changes that we found in the 

30 cerebellum, despite focusing on different brain subvolumes, treatment regimens and radiotherapy 

techniques. 

For this study, radiation treatment planning was performed without specifically considering the dose 

to the cerebellum. Nevertheless, in our cross-section of patients we could show that the cerebellar 
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mean dose was significantly lower in patients treated with proton therapy compared to patients 

treated with photon therapy.  

The benefit of dose sparing using proton therapy has already been shown in children treated for 

brain cancer [34-36]. Previous studies have linked cognitive decline with radiation induced atrophy of 

5 the whole brain [7] and the hippocampus [15]. In children with infratentorial ependymoma, 

Merchant et al. [21] have shown that cerebellar dose correlated with poor cognitive performance 

assessed over a follow-up period of five years. Cerebellar atrophy in adult survivors of cerebellar 

childhood tumours was linked to a decrease in processing speed [22]. Dutz et al. [20] found that 

cognitive decline was linked to the volume receiving more than 30 or 40 Gy in the anterior 

10 cerebellum of adult patients treated for brain tumours. Cerebellar atrophy could explain this link 

between cerebellar dose and decreasing cognitive function, although the underlying mechanisms 

might be more complex.

There are several limitations of this study. (1) Although neurocognitive testing was available for some 

patients, the data could not be included here since these are primary endpoints of ongoing studies. 

15 We can therefore not assess the connection of cerebellar atrophy to cognition and at what level 

cerebellar atrophy becomes clinically relevant. (2) Segmentation accuracy of the cerebellar volume is 

limited by the MRI resolution and the ability to separate its outlines from surrounding tissues. Small 

errors in the cerebellar volume estimation in the baseline MRIs will impact all relative volumes 

determined in the follow-up MRIs. (3) The number of patients not receiving adjuvant chemotherapy 

20 was low (N = 12), of which only one patient received a cerebellar mean dose greater than 1 Gy. 

Consequently, we cannot assess the effect of radiotherapy alone on the cerebellar volume. 

Future work is now needed to analyse the potential connection between motor function, cognitive 

decline and cerebellar atrophy. Such work would be vital to establish at which point cerebellar 

atrophy becomes symptomatic and clinically relevant. However, we also recommend to 

25 simultaneously measure the volumes of the hippocampus, amygdala and the whole cerebrum to rule 

out that cerebellar atrophy is simply an indirect marker of atrophy of another brain region that is 

more relevant to cognitive function. Longer observational times of the patients are also needed to 

establish if cerebellar atrophy continues to progress beyond two years.

In conclusion, cerebellar volume decreases significantly and irreversibly after radio(chemo)therapy as 

30 function of follow-up time and radiation dose. The magnitude of atrophy is comparable to previously 

published results for the cerebrum, hippocampus and amygdala. Further work is required to 

correlate cerebellar volume loss with cognitive function and motor performance.
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Figures

Figure 1: Segmentation and volume measurement of the cerebellum illustrated for a patient. Step 1: 
Non-linear coregistration of the MNI152 brain atlas (bottom) and corresponding cerebellum mask 

5 (red) to the brain extracted T1w image of a patient (top). Step 2: Rigid coregistration of the CET1w 
image to the T1w image and segmentation of contrast enhancement (green) within the cerebellum 
mask (red). Contrast enhancing voxels were removed from the final cerebellum mask. Step 3: 
Segmenting the extracted cerebellum into CSF, WM and GM. The sum of GM and WM probabilities 
was used to calculate the cerebellar volume.

10
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Figure 2: Trend lines for all patients, created across all available time points to illustrate the general 
trend of the relative cerebellar volumes reduction over time in our patient cohort. 

5
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Figure 3: Illustration of the expected cerebellar volume loss 1 year (A) and 2 years (B) after 
radiotherapy for patients 30, 55 and 80 years of age. These plots were generated using the 
coefficients of the final linear mixed effects model given in Table 2. 
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Tables

Table 1: Patient information. For this analysis data was combined from two separate studies, study A 
(NCT02824731, EK22012016) and study B (NCT01873469, EK41022013). TMZ – temozolomide, PCV – 
procarbazine, lomustine (CCNU) and vincristine.

   study A  study B  study A + B
eligible Patients [N]       
 total/male/female  24/11/13  67/38/29  91/49/42
        
age at baseline [years]       
 mean ± std  45.6 ± 14.5  54.7 ± 13.9  52.3 ± 14.5
 range [min - max]  [20.1 - 76.7]  [23.2 - 81.8]  [20.1 - 81.8]
        
glioma grade [N]       
 grade I/II/III/IV  1/3/13/7  0/0/0/67  1/3/13/74
        
cerebellum volume at baseline [ml]       
 mean ± std  120.3 ± 12.1  117.4 ± 11.4  118.2 ± 11.9
 range [min - max]  [99.6 - 144.9]  [91.2 - 143.1]  [91.2 - 144.9]
        
mean cerebellum dose [Gy]       
 mean ± std  1.5 ± 2.3  4.8 ± 4.4  3.9 ± 4.2
 range [min - max]  [0 - 7.8]  [0 - 16.9]  [0 - 16.9]
        
RTx treatment [N]       
 Ph/H+/mix  4/19/1  48/19/0  52/38/1
        
number of MR scans [N]       
 total/manual correction  130/12  310/43  440/55
        
follow-ups       
 mean number of follow-ups [N]  4.4 ± 3.0  3.6 ± 3.2  3.8 ± 3.2
 mean follow-up period [days]  444.8 ± 311.4  422.2 ± 438.5  428.1 ± 407.3
 range follow-up period [days]  [85 - 1073]  [63 - 1874]  [63 - 1874]
        
chemotherapy [N]       
 TMZ/PCV/none  7/5/12  67/0/0  74/5/12

5



19

Table 2: Results of the multivariate linear mixed effects model 𝑉rel

. = 𝑎 × 𝑑𝑜𝑠𝑒 + 𝑏 × 𝑡𝑖𝑚𝑒 + 𝑐 × 𝑡𝑖𝑚𝑒 × 𝑑𝑜𝑠𝑒 + 𝑑 × 𝑎𝑔𝑒 + 𝑒

Coefficient Std. Error p value
cerebellar dose [Gy] a = -4.1×10-4 2.3×10-4 0.072
time [days] b = -9.0×10-6 1.6×10-6 <0.001
time × dose [years x Gy] c = -3.4×10-6 -0.4×10-6 <0.001
age [years] d = -1.7×10-4 -0.6×10-4 0.007
intercept e = 1.009 0.0032 <0.001

5
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