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Abstract

Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing
oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months
secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying
mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells,
and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the
hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy.
In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently
discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways
involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian
regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for
specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
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Background
HGGs are diagnosed in patients of all ages, including
children. Glioblastoma, the most aggressive HGG, typic-
ally occurs between 45 and 75 years of age and carries a
dismal prognosis of less than 15months. Surgery and
radiotherapy have been the cornerstone of treatment for
glioblastoma. To improve the poor outcomes associated
with this disease, numerous therapeutics have been
added to radiotherapy without success until the land-
mark study established a standard of care with gross sur-
gical excision followed by concurrent temozolomide and

radiotherapy [1]. While gains have been made in under-
standing glioblastoma biology, improving patient out-
come remains a significant challenge. Although the
addition of temozolomide has modest overall survival
benefit in patients with methylated MGMT promoter, it
confers little benefit in the 60% of glioblastoma patients
with unmethylated MGMT promoter [2]. In children,
the incidence of HGGs is much lower, but they similarly
have a very poor prognosis overall, with treatment con-
sisting of maximal surgical resection followed by radio-
therapy. The role of temozolomide is less clear in
pediatric high-grade gliomas (pHGGs) as compared to
glioblastoma. Among all the pHGGs, diffuse intrinsic
pontine glioma (DIPG) is the most aggressive form aris-
ing from the centre of the brainstem, the most critical
area of the brain. As a result, surgical resection is impos-
sible, and in most cases even a biopsy is hazardous.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: han.shen@sydney.edu.au
†Han Shen and Kristina Cook contributed equally to this work.
1Translational Radiation Biology and Oncology Laboratory, Centre for Cancer
Research, Westmead Institute for Medical Research, Westmead, New South
Wales 2145, Australia
2Sydney Medical School, University of Sydney, Camperdown, New South
Wales, Australia
Full list of author information is available at the end of the article

Shen et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:129 
https://doi.org/10.1186/s13046-020-01639-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s13046-020-01639-2&domain=pdf
http://orcid.org/0000-0003-2435-2150
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:han.shen@sydney.edu.au


During the past decade, clinical trials of chemotherapeu-
tic agents and targeted therapies in DIPG have not
shown any survival benefit, and radiotherapy is the only
standard treatment [3].
Radiotherapy is the targeted administration of X-rays

to destroy cancer cells and tumor tissue. It targets rap-
idly proliferating tumor cells by inducing oxidative stress
through increased Reactive Oxygen Species (ROS). With
active oxygen molecules including superoxide and hy-
droxyl radicals, ROS break chemical bonds and activate
the cascade in DNA damage and subsequent cell death.
During this process, oxygen is critical to stabilize the
DNA damage induced by ROS, and this forms the basic
mechanism by which radiation is used in cancer treat-
ment [4]. Hypoxia, a common characteristic of most
solid tumors, prevents the fixation of DNA damage by
oxygen, thus being a major cause of radioresistance in
cancer treatment [5]. Furthermore, hypoxia activates the
hypoxia-inducible factor 1 (HIF-1) pathway which favors
the survival of tumor cells by increasing their glucose
uptake and utilization via altered glucose metabolism
[6]. It also induces angiogenesis [7], creates an acidic
microenvironment and promotes proliferation [8], all of
which collectively dampen the efficacy of radiotherapy
(Fig. 1). HIF-1 is also well known to be expressed consti-
tutively in cancer cells under normoxic conditions
through cancer-specific genetic alterations [9]. Radio-
therapy, on the other hand, has also been reported to

stabilize HIF-1 signaling via radiation-induced reoxygen-
ation, ROS elevation and microvascular destruction,
leading to the development of acquired radioresistance
[10]. Interestingly, the dysregulation of circadian rhythm
has also recently been identified as a characteristic con-
tributing to growth, stemness and metabolic changes ob-
served in HGGs [11] (Fig. 2). The circadian rhythm
disorder modulated by HIF-1 signaling may even further
affect the radiosensitivity of tumor cells. In this review,
we summarize and discuss how the HIF-1 pathway im-
pacts on radioresistance of solid tumors with a focus on
HGGs, via modifying glucose metabolism and circadian
rhythm of tumor cells. Furthermore, inhibition of HIF-1
modulated glucose metabolism and circadian rhythm is
also discussed as a potential approach to overcoming
radioresistance of HGGs in both adult and pediatric
settings.

Radioresistance of HGG cells
Irradiation as a cancer therapy, was discovered over
twelve decades ago and has become the cornerstone of
treatment for many types of cancer. For HGGs, radio-
therapy is either given as definitive treatment for inoper-
able tumors or delivered post-surgery to the area of the
excision to kill residual tumor cells. The effectiveness of
radiotherapy relies mainly on its ability to cause lethal
damage to the DNA of cancer cells, with contributions
from damage to sub-cellular organelles, and triggers cell

Fig. 1 The mechanism of actions whereby the hypoxia inducible factor (HIF-1) regulates glycolysis, lactate pathway and pentose phosphate
pathways in radioresistance. ADP, adenosine diphosphate; ATP,adenosine triphosphate; CAIX, carbonic anhydrase 9; G6PD,glucose-6-phosphate
dehydrogenase; GLUT, glucose transporters; GSH, glutathione; GSSG, glutathione disulfide; HIF-1, hypoxia inducible factor-1; HK, hexokinase; LDHA,
lactate dehydrogenase A; MCT4, monocarboxylate transporter 4; NHE1, Na+/H+ exchanger isoform 1; PDH, pyruvate dehydrogenase; PDK,
pyruvate dehydrogenase kinase; ROS, reactive oxygen species
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death by inducing cellular stress response and activating
intracellular signaling pathways resulting in cell death
[12]. Although radiotherapy is one of the most effective
therapies for cancer treatment, most malignant tumors
inevitably relapse secondary to radioresistance. This is
particularly true for HGGs due to the high intrinsic
radioresistance of glioma cells, especially in the presence
of glioma stem cells (GSCs) that are enriched in the hyp-
oxic niche [13]. Radioresistance is a process in which ei-
ther the intrinsically radioresistant cells are selected for
by radiotherapy or the surviving tumor cells adapt and
develop acquired resistance due to the radiotherapy-
induced changes. This is an intricate process involving
multiple mechanisms which remain to be fully eluci-
dated. Hitherto, both pre-clinical and clinical studies
have revealed some of the mechanisms underlying this
phenomenon, including changes in capability of DNA
repair, cell cycle arrest, alterations of gene expression,
changes in microenvironment, induction of autophagy,
generation of cancer stem cells, and rewiring of meta-
bolic pathways [14–16]. In the following section, we will
primarily focus on metabolic reprogramming, one of the
hallmarks of cancer, because most of those aforemen-
tioned machineries converge in a common adaptation of
tumor cell metabolism that is strongly linked to radiore-
sistance in cancer treatment.

Role of hypoxia, HIF signaling mediated glucose
metabolism and radiotherapy in radioresistance of HGGs

Hypoxia in HGGs Hypoxia, or physiologically low levels
of oxygen tension, develops in HGGs from uncontrol-
lable cell proliferation and dysfunctional vascularization.
In patients with a malignant solid tumor, hypoxia is
strongly correlated with a poor prognosis, an increased
chance of metastasis and resistance to chemoradiother-
apy [17]. It is generally accepted that the oxygen level in
hypoxic tumor tissues is much lower than that in their
corresponding normal tissues and on average it is below
1–2% O2 (v/v) [18]. In glioblastoma, the hypercellular
zones, referred to as ‘pseudopalisading necrosis’, typically

surrounding necrotic foci are constantly exposed to
moderate hypoxia [19]. Hypoxia in glioblastoma has
been observed by magnetic resonance imaging (MRI)
where reduced oxygen diffusion is detected, consistent
with restricted blood flow [20]. Molecular markers of
hypoxia, such as HIF-1 and its downstream targets vas-
cular endothelial growth factor (VEGF) and carbonic
anhydrase 9 (CA IX), are consistently detected in glio-
blastoma using immunohistochemistry staining [21],
while dynamic contrast enhanced MRI reveals tumor
vascularity [22]. These features correlate with worse
progression-free and overall survival [23, 24]. Although
hypoxia is a well-known characteristic in adult HGGs,
its role in pHGGs remains relatively less known. Gen-
omics and metabolomics data from a recent study sup-
port hypoxia as an important key to preserve the
abnormal metabolism of pHGG cells and cell dissemin-
ation present in pHGG patients [25]. In addition, DIPGs
in the brainstem have been detected with low blood per-
fusion and regions of necrosis by using MR spectros-
copy, indicative of a hypoxic environment that supports
activation of HIF, which is associated with increased
proliferation, invasion and therapy resistance [26].

HIF-1α mediated reprogramming of glucose
metabolism and radioresistance Hypoxia induces tran-
scriptomic changes followed by proteomic alteration
within tumor cells. At the molecular level, the adapta-
tion of tumor cells to reduced oxygen tension is regu-
lated mainly by HIF, a transcription factor which
stabilizes in response to reduced oxygen levels. In the
human HIF family, there are three isoforms, HIF-1, HIF-
2 and HIF-3, all of which are heterodimers comprising
of α and β subunits. Of these three members, HIF-1α is
frequently overexpressed in tumor cells, and is the most
extensively studied in cancer research. HIF-1α is ubiqui-
tously expressed throughout tissues in the body, while
the HIF-2α and HIF-3α isoforms are only expressed in
select tissues (including the brain) and are not as well
studied.

Fig. 2 High-grade gliomas (HGGs) have multiple characteristics that contribute to their aggressive behavior. Increased levels of HIF, glycolysis and
radioresistance are common. Circadian dysregulation has also been identified as a recent characteristic contributing to growth, stemness and
metabolic changes observed in HGGs
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The transcription of genes that encode glucose trans-
porters and enzymes regulating glycolysis and the pen-
tose phosphate pathway (PPP) is extensively regulated by
HIF-1α [27] (Fig. 1). As hypoxia suppresses the activities
of the key enzymes controlling the rate of tricarboxylic
acid cycle, tumor cells switch to glycolysis for energy
production [28]. Pyruvate, lactate, and hydrogen ions are
abundantly produced in anaerobic glycolysis or the Pas-
teur effect [29]. In contrast to the Pasteur effect, a hall-
mark of cancer cells is a high rate of glucose
consumption and lactate generation even in the presence
of ample oxygen. This distinctive metabolic feature of
cancer cells was first observed in the 1920s by Otto
Warburg [30], referred to as the Warburg effect. With
the Warburg effect, cancer cells heavily rely on the
glycolytic pathway to support their energy demands
under normoxia [31]. This is also supported by later
studies showing the constitutive expression of HIF-1α in
many cancer cell lines independent of hypoxic circum-
stances [32]. Although the glycolytic phenotype may
seem counterintuitive due to the less efficient ATP pro-
duction by glycolysis compared with oxidative phosphor-
ylation, studies have revealed the use of glycolysis by
cancer cells provides a growth advantage and facilitates
malignant progression [31]. For example, the glycolytic
intermediate glucose-6-phosphate (G-6-P) is also used in
the PPP, which synthesizes precursors of nucleotides
and amino acids required for tumor cell growth and
proliferation.
HGGs, like most malignant solid tumors, are highly

glycolytic, producing large amounts of lactate as a meta-
bolic by-product [33]. It has been shown that tumors
with high levels of glycolysis are less responsive to che-
moradiotherapy and behave more aggressively [34].
More recent reports have also identified the Warburg ef-
fect to be implicated in resistance to oxidative stress in-
duced by radiotherapy [35]. Since G-6-P serves as a
substrate for the PPP responsible for the biogenesis of
the antioxidants NADPH and glutathione [36], the HIF-
1α–mediated Warburg effect has been associated with
the increased antioxidant capacity of tumor cells and
eventual radioresistance [37]. A very recent study reported
TP53 mutation as the main driver of increased radioresis-
tance in both patients and corresponding cellular models
of DIPG [38]. TP53 is known to impact glycolysis through
several mechanisms including transcriptionally repressing
the expression of glucose transporters, down-regulating
rate limiting enzymes of glycolysis, decreasing the expres-
sion of transporters responsible for lactate extrusion and
negatively regulating the AKT/mTOR [39] and NF-κB sig-
naling pathways [40]. It can also modulate expression of
glycolytic enzymes like phosphoglycerate mutase and
TP53-induced glycolysis and apoptosis regulator (TIGA
R), a stimulator of gluconeogenesis and the PPP [41].

These findings collectively indicate the aberrant glucose
metabolism may also play an important role in radioresis-
tance of DIPG and other pHGGs under the influence of
TP53 mutation.

Acquired radioresistance induced by radiotherapy Al-
though radiotherapy is used to eradicate any remnant tumor
cells after surgery, radiation is ironically known to transform
tumor cells into a more aggressive and radioresistant form,
for which the treatment options are very limited [42]. Several
mechanisms have been proposed for this paradoxical
phenomenon. Firstly, radiotherapy-induced reoxygenation
can stabilize HIF-1 signaling and this is believed to be in-
volved in radioresistance. Radiation is delivered in multiple
dose fractions to enable tumor reoxygenation in-between
fractions [43]. Tumor shrinkage over the course of radiother-
apy allows blood vessels to reach previously distant cells, thus
reducing the hypoxic fraction and reoxygenating hypoxic
cells. Following delivery of radiotherapy, reoxygenation and a
temporary reduction in hypoxia occurs due to the aerobic
tumor cells being killed. However, the radiotherapy-induced
reoxygenation also elevates the production of ROS, induces
depolymerization of cytoplasmic stress granules containing
HIF-1–regulated mRNA transcripts, and activates PI3K/
AKT/mTOR pathway, all of which eventually stabilizes the
HIF-1 expression in surviving tumor cells [44]. Secondly, the
post-radiotherapy upregulation of genes controlling DNA re-
pair, cell proliferation and anti-apoptosis is also believed to
play an important role in radiotherapy-induced radioresis-
tance, particularly when a sub-lethal dose of radiotherapy
was cumulatively delivered [45]. This has been frequently re-
ported by studies investigating adult glioblastomas and a very
recent report has also confirmed the similar findings in
pHGGs [46]. Last but not least, radiotherapy-induced gener-
ation and enrichment of cancer stem cells is also a major
obstacle for maintaining the efficacy of radiotherapy to eradi-
cate cancer cells. Bao et al. reported for the first time that
the percentage of CD133-positive cells increased in gliomas
after radiotherapy, indicative of an important role of radio-
therapy itself in the development of radioresistance [47]. In
addition, recent studies have consistently reported that radio-
therapy enhances the transdifferentiation of glioma stem-like
cells into tumor derived endothelial cells which may further
contribute to neovasculature and radioresistance [48, 49]. In
the end, the surviving radioresistant tumor cells will eventu-
ally proliferate and lead to cancer relapse within the previ-
ously irradiated field, which challenges the role of re-
irradiation in the treatment of recurrent HGGs.

Role of hypoxia and circadian rhythm in radioresistance of
HGGs
Circadian rhythms are endogenous, 24-h cycles that
regulate physiological, behavioral and cellular changes in
organisms. These rhythms control pathological processes
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that contribute to HGGs, including those involving cell
cycle, immune surveillance, metabolism and more [50,
51]. Radiotherapy induced DNA damage has also been
shown to be regulated by circadian rhythms [52]. Fur-
thermore, GSCs depend on circadian rhythms for
growth, metabolism and stemness [11], all of which im-
pact the efficacy of radiotherapy. A limited number of
studies have shown that HIF pathways interact with the
circadian pathways though this is yet to be investigated
in HGG radiotherapy models.

The biology of circadian rhythms and the molecular
clock The circadian machinery is disrupted in a wide
range of cancers [53], including HGGs [11, 54–56], and
it appears to have context-dependent roles that contrib-
ute to malignant behavior and radiotherapy resistance.
Circadian rhythms are generated by a molecular clock
encoded in the genome, which consists of a network of
interlocking transcriptional-translational feedback loops
(Fig. 3a). The central feedback loop is composed of tran-
scription factors, BMAL1 and CLOCK, which dimerize
and bind to the E-box DNA sequence in the promoters
of clock-controlled genes, including the period (PER)
and cryptochrome (CRY) genes. CLOCK/BMAL1 in-
duces the expression of PER and CRY isoforms, which
act as negative regulators of CLOCK/BMAL1 activity.
PER and CRY proteins accumulate, before being de-
graded by the proteasome through pathways including
the casein kinases. This enables CLOCK/BMAL1 activity
to resume, repeating the cycle approximately every 24 h.
There are also additional feedback loops involving RORα
and REV-ERBs, which act to increase or repress the
expression of BMAL1, respectively [50]. Circadian
rhythms are maintained in nearly every cell of the body
and they are cell autonomous, but individual cells are

synchronized to one another by external cues, such as
light, food intake and temperature. Epidemiological
studies have shown that environmental disruption of cir-
cadian rhythms may increase the risk of developing
some cancers [57–59]. Genetic disruption of circadian
clocks in animals can also promote tumorigenesis and
progression of specific cancers [52, 60–62].

Studies on circadian rhythms and gliomas There are
limited studies on circadian rhythms specifically in
HGGs. Abnormal rhythms are associated with high-
grade brain tumors [54, 63] and HGGs may have differ-
ent cellular circadian rhythms when compared to sur-
rounding healthy tissues [55, 56]. These altered rhythms
can result from genetic variations, chromosomal amplifi-
cations and/or changes to gene expression in clock-
related genes. For example, a genetic variant of PER1
has been associated with overall glioma risk [64], and de-
creased PER1 mRNA and protein has been observed in
HGGs when compared to lower-grade gliomas (LGG)
[65]. REV-ERBβ (NR1D2) is highly expressed in glio-
blastoma, and is required for cell proliferation, migration
and invasion [66]. Expression of CRY1 and CRY2 is
lower in HGGs compared to surrounding non-glioma
cells [67]. Chronic jetlag, an environmental circadian dis-
ruption, leads to differential regulation of glioma-related
genes in the brain of mice with and without a functioning
clock. These results indicate that the molecular clock
could potentially play a role in glioma risk [68].
The CLOCK gene is amplified in ~ 5–9% of glioblast-

oma patients [69, 70]. In support of this, several studies
have found that CLOCK expression is increased in
HGGs when compared to LGG or non-malignant cells
[54, 71]. CLOCK and its binding partner, BMAL1, are
thought to contribute to glioma proliferation, migration,

Fig. 3 a The basic mammalian circadian clock loop consists of transcription factors BMAL1 and CLOCK which express PER (PER1, PER2, PER3), CRY
(CRY1, CRY2), REV-ERB (NR1D1, NR1D2) and ROR (RORA, RORB, RORC) genes. The PER and CRY proteins accumulate and repress BMAL1/CLOCK
activity before being degraded through a mechanism involving casein kinases and the proteasome, which allows BMAL1 and CLOCK activity to
resume. In a second loop, the expressed ROR and REV-ERB proteins act to enhance or repress expression of BMAL1 gene. Genes/mRNAs indicated
in italics, proteins indicated by colored ovals. b Circadian genes demonstrate cyclical expression over a 24 h period. BMAL1, brain and muscle aryl
hydrocarbon receptor nuclear translocator (ARNT)-like 1; CLOCK, circadian locomotor output cycles kaput; PER, period; ROR, RAR-related
orphan receptor
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stemness and metabolic reprogramming [11, 66, 70, 71]
and a recent paper proposed that GSCs use BMAL1 and
CLOCK to alter these characteristics and gain a physio-
logical advantage [11]. CLOCK and BMAL1 knockdown
decreased glioblastoma proliferation through cell-cycle
arrest and apoptosis. This effect was especially potent in
GSCs when compared to differentiated glioblastoma
cells. Normal neural stem cell growth was unaffected by
CLOCK and BMAL1 knockdown, indicating that glio-
blastoma cells are unique in relying on these circadian
transcription factors for maximum cell growth [11].
Taken together, these studies support the emerging

idea that BMAL1 and CLOCK have tumor promoting
qualities in HGGs, while PER (and possibly CRY) may
have tumor suppressing roles, though this is likely to be
context and cancer dependent. A pan-cancer study using
genomic, transcriptomic and clinical data largely sup-
ports this [55]. Downregulation of the circadian genes
encoding CRY2, PER1, PER2, PER3, CLOCK, REV-
ERBβ, ROR-α and ROR-β was associated with signifi-
cantly higher mortality rates in the glioma cohort, hint-
ing at possible tumor suppressor roles. Overexpression
of BMAL1 in gliomas led to a poorer survival outcome
[55], indicating a potential tumor promoting role. Inter-
estingly, in this study, CLOCK downregulation in gli-
omas was associated with higher mortality [55] which
conflicts with other studies where CLOCK is overex-
pressed [54] or amplified [69, 70] in HGGs and contrib-
utes to malignant changes [11]. However, this study was
limited by a small number of non-tumor brain samples
(five), which were used as a comparison to determine
over- and under-expression [55]. Further study is clearly
warranted but overall circadian changes were strongly
linked to gliomas [55].

Links between circadian disruption, tumor hypoxia
and HIF One interesting finding to emerge from this
largescale multi-cancer bioinformatics analysis was an
association between markers of tumor hypoxia and cir-
cadian dysregulation, particularly in gliomas [55]. The
loss of proposed circadian tumor suppressors and/or an
increase in circadian tumor promoters was associated
with markers of tumor hypoxia, leading the authors to
propose that circadian dysregulation is exacerbated by
hypoxia [55]. There is evidence that hypoxia and HIF
can alter circadian rhythms and vice versa in a non-
tumor context [72–75]. This bidirectional relationship
may be important in HGGs, as both hypoxia and circa-
dian disruption can play a role in tumor progression.
While these relationships have only been studied in spe-
cific cell types and under certain circumstances, these
studies provide justification for exploring in the context
of HGGs.

Circadian gene expression is altered by hypoxia in he-
patocellular carcinoma cells through a mechanism
dependent on HIF-1α [76]. PER1 and CLOCK levels in-
crease in the brain when mice are exposed to hypoxia
[77]. These observations have led to several proposed
mechanisms, some of which have evidence in vitro and
in vivo. Hypoxia and HIF-1α can directly alter and regu-
late the molecular clock through HIF-1α binding to
BMAL1 to express E-box circadian genes, including the
PER and CRY genes in vitro [78]. Overexpression and
stabilization of HIF-1α increases expression levels of cir-
cadian genes [73, 75]. This may mean that hypoxia could
lead to the expression of circadian genes at inappropri-
ate times. HIF-1α can also alter the molecular clock
through indirect effects. HIF controls genes involved in
the production of acid, and an acidic environment sup-
presses oscillation of the molecular clock by inhibiting
mTORC1 [79].
Circadian rhythmicity also can affect the HIF-1α hyp-

oxic response. HIF-1 activity is gated by the circadian
clock, meaning that the strength of the hypoxic response
is clock-regulated [73]. Furthermore, there is an E-box
in the promoter of the HIF1A gene, indicating that
CLOCK/BMAL1 can induce expression of HIF1A [73].
CRY1 can bind directly to the HIF-1α protein in mice,
which dampens HIF-1 expression of target genes [80].
This means that during periods of high CRY1 expres-
sion, the maximal HIF-1α hypoxic response can be
dampened, though still present. During periods of low
CRY1, HIF activity increases, which leads to cellular pro-
liferation and migration in some circumstances [80].
Furthermore, PER2 has been found to bind to HIF-1α,
which increases HIF-1 activity, and has the opposite ef-
fect of CRY2 [81].
Synergistic effects have also been observed between

HIF and CLOCK/BMAL1. Both heterodimer transcrip-
tion factors co-occupy core clock genes, including PER1
and PER2, and it is thought that this is due to both E-
box and hypoxia response element (HRE) motifs being
present in the promoter of the same gene [73]. The con-
sequences of these findings for HGGs is difficult to in-
terpret, as most of these studies were conducted in
tissues other than the brain and not in gliomas. How-
ever, circadian rhythms, hypoxia and HIF-1 have all been
shown to contribute to enhance progression in HGGs
and should be investigated further.

Circadian rhythms and radiotherapy DNA repair
genes have cyclical expression patterns in mRNA and
protein expression [82, 83] and there is some initial evi-
dence that these rhythms can influence radiosensitivity.
Radioresistance is highest in the second half of the daily
light span when mice are exposed to whole body irradi-
ation [84]. When the same mice were exposed to a jet-
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lag protocol ‘shifting their time of day’, radiation sick-
ness was worsened. Further studies have begun to un-
ravel some of the possible reasons for circadian-
regulated radiosensitivity. Nucleotide excision repair by
xeroderma pigmentosum, a DNA damage recognition
protein, peaks in the afternoon/evening and is at its low-
est in the night/early morning in the mouse brain cortex
[85] and the skin [86]. These effects can be seen in gli-
oma models, as rat glioma cells synchronize at the G2/
M transition of the cell cycle during periods of high
PER2 expression, and this makes them more sensitive to
radiotherapy [87, 88]. PER1, another period isoform, may
have a role in radiation-induced apoptosis and DNA dam-
age in gliomas, as downregulation of PER1 attenuated
DNA damage in U343 glioma cells [89]. This may have
consequences for glioma treatment as decreased levels of
PER1 have been observed in HGGs [65] and this may
make tumor cells less susceptible to apoptosis and other
damaging effects from ionizing radiation [89].
The response to radiation in the tissues surrounding

tumors also follow daily circadian rhythms [52] and it
might be possible to minimize side effects by administer-
ing radiotherapy to HGGs during a time of day when
healthy tissues are less susceptible to its effects (chron-
oradiotherapy). Environmentally disrupted circadian
rhythms in mice, brought on by a shifting light cycle, al-
ters the gut bacterial composition and host radiosensitiv-
ity through an unexplained mechanism [90]. One study
in breast cancer suggested that radiotherapy had more
toxicity and side effects in the morning, and this was as-
sociated with a genetic variant of PER3 [91]. Time of
treatment administration affected the response to radi-
ation in females with bone metastases but had no effect
in males, indicating that gender differences and sex hor-
mones should be investigated for a role in circadian
regulation of the response to radiotherapy [92]. A similar
effect was seen in patients treated with whole brain
radiotherapy for metastases. The time of day for whole
brain radiotherapy was significantly related to overall
survival in elderly females, while there was no apparent
relationship in males [93]. Other clinical studies have
shown that radiotherapy timing affects treatment re-
sponse and toxicity depending on the tissue of interest
[94–100], though some of them clearly had confounding
factors. When these factors were accounted for, differ-
ences disappeared. For example, in one study, they
found that patients with more severe signs of illness and
metastases tended to be given afternoon appointments
[96]. When this was accounted for, differences between
groups disappeared.
Studies thus far on radiotherapy and circadian rhythms

are limited by several factors. The studies conducted
thus far are not directly comparable as the endpoints of
individual trials are not the same. Some studies used

overall survival as the endpoint, thus assessing circadian
timing effects on tumor itself, while other studies used
side effects as the endpoint, which generally reflects the
effects of radiation on the surrounding healthy tissues.
Healthy tissues may not have the same circadian oscilla-
tion as tumor tissues, and timing for maximal tumor re-
sponse or for minimal healthy tissue damage therefore
may not be the same, making it difficult to compare a
small number of studies. Furthermore, there is no clear
definition of morning, afternoon and evening, and the
times used in different studies were not the same. No
studies to our knowledge have focused on HGGs, and
how hypoxia and circadian rhythms may interact to
affect radiosensitivity of the tumor. Further prospective
randomised control trials are required to determine if
radiotherapy can be timed to target cancer cells and
avoid toxicity in healthy tissues.

Circadian rhythms, metabolism and epigenetics The
circadian clock has strong links to metabolism, and can-
cer cells, including those in gliomas, have significantly
altered metabolism that contributes to radioresistance.
Specific diets and timed feedings can alter the circadian
clock in various organs [101–106] and metabolites in
human blood and muscle show rhythmic circadian pat-
terns [107, 108], indicating there is a bidirectional rela-
tionship between circadian rhythms and metabolism.
Animal models of jet lag and shift work can alter circa-
dian rhythms, leading to increased rates of cancer and
for some cancers this may be driven by metabolic
changes linked to circadian disruption [109, 110]. The
circadian clock also affects cellular metabolism and gli-
oma cells are known to have abnormal metabolism.
Oncogenic changes in glioblastoma, including muta-

tions in TP53, amplification of MYC or deletion of
PTEN, alter metabolism and increase glycolysis [111,
112]. The expression of genes for MYC, PTEN and p53
are known to cycle in a circadian rhythmic fashion [83,
113] and there may be crosstalk between glioma cell me-
tabolism and circadian rhythms. For example, in osteo-
sarcoma and neuroblastoma cells, MYC disrupts the
circadian clock by activating CLOCK and BMAL1, which
alters glucose metabolism and glutaminolysis [114]. MYC
has been shown to drive an abnormal metabolic program
in glioblastoma cells and inhibition of this pathway shows
therapeutic benefit in animal models [112]. Circadian
rhythms can also act on the MYC pathway, as CRY2 pro-
motes MYC degradation, and a loss of CRY2 stabilizes
MYC, enhancing cellular transformation [115].
Additional HGG oncogenic pathways that control me-

tabolism have been shown to interact bidirectionally
with circadian rhythms. AKT and mTOR can set the
pace for the circadian clock [116], and mTOR itself is
cyclically ubiquitylated according to the clock [117].

Shen et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:129 Page 7 of 14



While most of these findings have come from healthy
humans/animals or cancers other than HGGs, one study
found that GSCs can reprogram their metabolism to
promote growth and survival and that this occurs
through a mechanism using the circadian clock and epi-
genetic changes [11]. In GSCs, BMAL1 preferentially
binds to the promoter region of a significant number of
metabolism genes, particularly those involved in glycolysis
and the TCA cycle. In normal neural stem cells, BMAL1
only bound to half of these genes. This indicates that
BMAL1, a key circadian rhythm regulator, may be capable
of inducing the expression of a significant number of
metabolic genes specifically in GSCs [11]. The preferential
binding was due to epigenetic histone modifications which
enabled greater access to E-box binding sites in GSCs
[11]. This study clearly demonstrates that circadian
rhythms can be used by HGGs to alter metabolism, in-
cluding glycolysis which supports HGG progression.

Targeting HIF-1, glucose metabolism and circadian rhythms
as an approach to improving radiosensitivity of HGGs
HIF-1
Theoretically, the deregulated glucose metabolism of
tumor cells can be targeted at different levels, either by
targeting the upstream transcriptional factor HIF-1 or
via inhibiting key enzymes involved in downstream glu-
cose metabolic pathways. HIF-1 inhibition leads to meta-
bolic changes, with a decreased rate of glycolysis [118]
and increased rate of tricarboxylic acid cycle [119]. Be-
cause the production of ROS are accompanied by en-
hanced mitochondrial oxidation, the therapeutic strategy
of HIF-1 inhibition could potentially enhance the effect
of radiotherapy [120], due to sharing the same mecha-
nisms of cell killing. On the other hand, many other
drugs targeting different signaling pathways may also be
attributed partly to their secondary effect of HIF-1 inhib-
ition. For example, anti-mitochondrial agents that re-
duce oxygen consumption spare more oxygen within
tumor cells, leading to alleviated hypoxia and lower
levels of HIF-1 [121]. Drugs targeting PI3K/Akt pathway
also repress HIF-1 activation and sensitize tumor cells to
apoptosis [122]. Although a large number of novel com-
pounds have been shown to inhibit HIF-1 in preclinical
setting, to the best of our knowledge there is no com-
pound in clinical trials that directly and specifically in-
hibits HIF-1 activity. The molecular targeting of HIF-1
activity is very challenging because the pathways are
complex, and it remains unclear where the main vulner-
abilities lie.
As an alternative approach, hypoxia-activated prodrugs

(HAPs) have been developed to specifically target hyp-
oxic cells of tumors [123]. HAPs can be metabolized
under hypoxic conditions to release an active drug that
is more cytotoxic to hypoxic cells than normoxic cells

through mechanism of bioreduction [124]. Therefore,
the combination of radiotherapy and bioreductive drugs
presents an attractive opportunity for synergistic effects.
Nitro-based HAPs were the first generation of bioreduc-
tive drugs that undergo the oxygen-sensitive redox cyc-
ling [125]. This class of HAPs mimics oxygen to
radiosensitize tumor cells [126]. Despite promising re-
sults from pre-clinical models, outcome of clinical trials
were disappointing, with combination arm showing no
significant survival benefit compared to radiotherapy
alone in HGG patients [127]. The failure was thought to
be due to the low drug concentrations achieved being
not enough for radiosensitization [128]. Further attempts
have been made to develop the second generation of
HAPs including pimonidazole, etanidazole, and nimora-
zole. Due to the long half-lives of these drugs there was
greater toxicity in human studies, and both pimonada-
zole and etanidazole showed negative results in phase I
clinical trials [129], with nimorazole being the only one
showing no major adverse effects in combination with
radiotherapy [130]. It is now being routinely used in
combination with conventional radiotherapy to treat
head and neck cancers in Denmark [131] and being fur-
ther evaluated in Phase II trials for the treatment of head
and neck cancers in combination with hyperfractionated
radiotherapy (NCT01880359, NCT01950689). Following
the initial interest in oxygen mimetic bioreductive drugs,
a new generation of DNA-targeting bioreductive pro-
drugs have been developed to be activated to cytotoxic
drugs in the hypoxic environment, with PR-104 and TH-
302 (evofosafamide) being the two representative drugs
in this class. A recent preclinical study in breast cancer
tumor xenografts indicated that both PR-104 and TH-
302 sensitized tumors to irradiation, particularly in
BRCA2-knockout mutants [132]. Although there are no
clinical trials testing the two drugs in combination with
radiotherapy, TH-302 has been reported to be safe in
combination with VEGF inhibitor bevacizumab in pa-
tients with recurrent glioblastoma [133]. Tirapazamine
(TPZ) is one of the best characterized HAPs that has
been tested in various preclinical and early phase clinical
trials and has yielded promising results. Preclinically, TPZ
has showed synergistic or enhanced efficacy in combin-
ation with radiotherapy to treat melanoma cell lines and
mouse models [134], which led to a phase 1 trial of TPZ
and radiotherapy in the treatment of refractory solid tu-
mors, suggesting TPZ can be safely used concurrently
with radiotherapy as a radiosensitizer [135]. However, the
combination of TPZ and chemoradiotherapy failed in a
phase III trial for the treatment of head and neck cancers,
although the hypoxic tumors were not selected upfront
[131]. Moreover, the combination of TPZ and radiother-
apy also failed to show benefit in a single-arm, open-
labelled phase II study for glioblastoma. There was
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acceptable toxicity but no significant improvement in sur-
vival [136]. The repeated failings of trials testing these
bioreductive prodrugs that have shown promising results
preclinically raise questions as to which factors are limit-
ing clinical success. Perhaps the most important limitation
of bioreductive prodrugs in the context of these clinical
trials is the failure to identify patients who are most likely
to benefit from HAPs. Regarding the treatment of HGGs,
penetration of the blood brain barrier is another critical
factor that should be assessed comprehensively in both
preclinical and clinical models.

Glucose metabolism
There are several key glycolytic enzymes that can be tar-
geted pharmacologically in cancer treatment. The first
orally administered small molecule that was tested in the
early 1980’s to inhibit glycolysis was lonidamine, as an
inhibitor of mitochondria-bounded hexokinase [137].
Lonidamine was later tested in a randomized clinical
trial for glioblastoma in combination with radiotherapy,
but failed to show therapeutic improvement compared
to radiotherapy alone [138]. Following the failure of loni-
damine, a structural analogue of glucose, 2-deoxy-D-glu-
cose, was tested. Metabolically, it inhibits glycolysis via
competitive inhibition of hexokinase 2 that controls the
first rate-limiting step of glycolysis [139–141]. It was also
reported to reduce the endoplasmic reticulum stress-
related pathways which is significantly correlated to the
radioresistance of GSCs [142]. Furthermore, 2-deoxy-D-
glucose is also able to modify the DNA repair pathways
to optimize radiotherapy in HGG treatment [143].
Treatment with 2-deoxy-D-glucose is cytostatic and
radiosensitizes a range of cancer cells including HGGs
[144]. These findings led to a phase I/II trials testing 2-
deoxy-D-glucose in combination with radiotherapy in
patients with HGG, which demonstrated this combined
treatment was well tolerated without any acute toxicity
or late radiation damage to the normal brain tissue
[145]. This combination therapy also resulted in a mod-
erate increase in median survival with a significantly im-
proved quality of life [146]. Another leading compound
3-bromopyruvate, a pyruvate analogue, is both an alkyl-
ating agent and an inhibitor of hexokinase 2. 3-
bromopyruvate inhibits tumor growth in a dose-
dependent manner in vivo [147], but its off-target effect
as well as the inability to penetrate the blood brain bar-
rier impeded its further application in HGGs [148]. An-
other key enzyme that can be pharmacologically
targeted is pyruvate dehydrogenase kinase, which con-
trols the rate and amount of pyruvate entering the tri-
carboxylic acid cycle by negatively regulating pyruvate
dehydrogenase activity. Inhibition of pyruvate dehydro-
genase kinase shifts the glucose metabolism and in-
creases oxygen consumption of tumor cells, which in

turn inducing higher level of ROS, thus improving the
radiosensitivity of the tumor cells [149]. Dichloroacetate
(DCA), a small molecule inhibitor of pyruvate dehydro-
genase kinase (PDK) with the potential for such meta-
bolic modulation, has been shown to reverse the
Warburg effect, thereby inhibiting both tumor cell
growth and angiogenesis [150, 151]. By combining with
radiotherapy, dichloroacetate enhances the radiosensitiv-
ity of several types of cancer in vitro [152–154] and
in vivo including adult and pediatric HGGs [155, 156].
Dichloroacetate has been used as an orphan drug for
various acquired and congenital disorders of mitochon-
drial metabolism in both adult and pediatric patients for
decades and has recently been demonstrated to be feas-
ible and well-tolerated in patients with recurrent HGGs
in a recent Phase I clinical trial [157]. In addition, a re-
cent study has tested the efficacy of DCA in a small co-
hort of HGG patients, suggesting metabolic modulation
through pyruvate dehydrogenase kinase inhibition as a
novel therapeutic strategy for the treatment of this dev-
astating brain tumor [158]. Interestingly, the human tox-
icity from chronic DCA exposure is generally limited to
a reversible peripheral neuropathy that is now known to
be influenced by age. The dose-limiting neuropathy in
the glioblastoma study above occurred at a DCA dose
that is known to cause no side effects in children. The
identical dose known to cause neuropathy in adults with
mitochondrial disease has been safely given to children
with congenital mitochondrial diseases for many years
[159]. These findings and clinical results suggest that tri-
als targeting the pediatric brain tumor population with
DCA may be warranted, particularly given the safety and
reduced toxicity of chronic administration of DCA in
children. Moreover, melatonin, the secretory product of
pineal gland, has also been recently reported to promote
the synthesis of acetyl-CoA from pyruvate by inhibiting
PDK in breast cancer models [160]. The inhibitory effect
of melatonin on PDK not only reverses the Warburg ef-
fect, reduces tumor mass, and improves the sensitivity of
tumor cells to chemoradiotherapy [160, 161], it also
leads to a circadian rhythm of glucose metabolism in
these cancer cells [162, 163].

Circadian clock
Because components of the molecular clock sustain
growth, metabolism and stemness in HGGs [11], there
may be opportunities to identify new drug targets and
even combine with radiotherapy. Sulli et al., identified
two REV-ERB agonists, SR9009 and SR9011, that impair
glioblastoma growth in vivo and improve survival with-
out causing toxicity [164]. REV-ERBs repress the tran-
scription of BMAL1, so REV-ERB agonists should
ultimately decrease BMAL1 levels. This would support
the finding that BMAL1 drives growth and progression
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in glioblastoma [11]. The efficacy of SR9009 in a glio-
blastoma mouse model was similar to that of temozolo-
mide, the current therapeutic standard for this cancer
[164]. There are a number of other recently discovered
compounds that target circadian proteins and some of
these have been shown to have anti-cancer effects. Fur-
ther work will be required to determine if this may be a
useful strategy for inhibiting growth and improving the
radiosensitivity of HGGs. On the other hand, future re-
search has also been suggested to focus on chronora-
diotherapy, where radiotherapy is given at specific times-
of-the-day when a tumor is likely to be most susceptible
to its effects and surrounding healthy tissues are the
least susceptible [165]. Chronoradiotherapy may offer a
promising new way to improve outcomes of cancer
treatment as well as alleviating side-effects, though well-
controlled studies are still needed to determine if there
is a benefit. There are few prospective randomized con-
trol trials on chronoradiotherapy and only one study
that has identified the genetic association between the
time-of-day differences and radiotherapy outcomes [91].
Further work is also needed to identify a potential bio-
marker underlying this effect to predict which patients
might benefit the most from chronoradiotherapy.

Conclusions
HGGs are fast-growing, aggressive tumors with few
treatment options. Radiotherapy is a first-line treatment
option, though radioresistance commonly develops in
HGGs and this is at least partially due to hypoxia and
activation of the HIF pathway. HIF is also known to
regulate the expression of genes involved in glycolysis
and maintaining stemness of HGGs. Recent work has
uncovered links between the circadian clock and HIF

pathway while the circadian pathway has been found to
drive proliferation, survival and stemness in GSCs [11,
70] (Fig. 4). Although there are a large number of studies
focusing on all these abovementioned aspects, little is
known about how HIF and circadian rhythms may inter-
act on a mechanistic level, and how this interaction fur-
ther modulates tumor metabolism and contributes to
radioresistance in HGGs. The relationship between
tumor metabolism, circadian rhythms and HIF is com-
plex and future studies should focus on how these key
pathways interact to affect the radiosensitivity of HGGs
so that clinical outcomes can be further improved.
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