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-BACKGROUND: In the revised World Health Organization 2016 classification
of central nervous system tumors, “diffuse midline glioma, H3 K27M-mutant” has
been added as a new diagnostic entity. However, some confusion exists con-
cerning this diagnostic entity because H3 K27M-mutant diffuse midline glioma is
diagnosed with grade IV regardless of morphologic phenotype. Furthermore, the
significance of H3 K27M mutation in tumors that aren’t typical “diffuse midline
glioma, H3 K27M-mutant,” such as those with an unusual location and nontyp-
ical histology, remains unclear.

-CASE DESCRIPTION: To elucidate further such unusual tumors, we describe
here a rare case of pediatric low-grade glioma located in the tectum, which was
morphologically a pilocytic astrocytoma (PA) with genetically H3 K27M mutation
but no microvascular proliferation, necrosis, mitoses, or other genetic alter-
ations, insofar as we were able to observe. At the latest follow-up, 28 months
after surgery, radiotherapy, and chemotherapy, the patient was found to be free
from any neurologic deficits and MRI demonstrated that the tumor was stable
without tumor regrowth. This case might be identified as “diffuse midline gli-
oma, H3 K27M-mutant”, grade IV, when applying only the current World Health
Organization 2016 classification. In addition, we discuss the morphologically
benign gliomas harboring the H3 K27M mutation based on the literature.

-CONCLUSIONS: We describe here a rare case and present a short literature
review of circumscribed/nondiffuse gliomas, particularly in PA with H3 K27M
mutation. However, the significance of H3 K27M mutation for PA remains un-
clear, so further studies and clinical data are needed to elucidate the biology
and optimal treatment of such tumors.
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INTRODUCTION

The World Health Organization (WHO)
Classification of Tumors of the Central
Nervous System (CNS) was recently
revised in 2016, introducing an integration
of phenotype and genotype, which im-
proves the objectivity of the classification,
and the adoption of a more homogeneous
biological narrow classification, which
enables accurate diagnosis, appropriate
treatment, and prognosis prediction.1 In
this revision, “diffuse midline glioma, H3
K27M-mutant” including what is referred
to as “diffuse intrinsic pontine glioma,”
has been added as a new diagnostic
entity in the classification of “diffuse
astrocytic and oligodendroglial tumors.”2

This is because accumulated evidence
has indicated that diffuse midline
glioma, H3 K27M-mutant at amino acid
27 resulting in the replacement of lysine
by methionine (K27M), are present in the
majority of high-grade infiltrative astrocy-
tomas associated with aggressive clinical

rights reserved.
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behavior and poor prognoses that arise in
the midline CNS structures of children
and young adults.3-13 Furthermore, such
histone mutation has been considered to
be a highly specific and driver tumori-
genesis for pediatric and young adult
glioblastoma pathogenesis including
diffuse intrinsic pontine glioma.14,15

However, some confusion does exist in
the revised WHO 2016 classification of
CNS tumors because H3 K27M-mutant
diffuse midline glioma is diagnosed with
WHO grade IV regardless of morphologic
phenotype. In other words, we should give
preference to the molecular genetic fea-
tures when the histology does not match
the molecular parameters. On the other
hand, Orillac et al16 stated in a letter to the
editor of Acta Neuropathol Commun in 2016
that “the H3 K27M mutation in the
EPTEMBER 2020 www.journals.
midline glioma should not be used as
the only the criteria for the diagnosis of
WHO grade IV.” Moreover, more
recently, cIMPACT-NOW (the Con-
sortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy—
Not Official WHO) Working Committee 3
presented a recommendation for clarifying
the diagnostic criteria of “diffuse midline
glioma, H3 K27M-mutant,” as follows:
“the term diffuse midline glioma, H3 K27M-
mutant should be reserved for tumors that
are diffuse (i.e., infiltrating), midline (e.g.,
thalamus, brain stem, spinal cord, etc.),
gliomas, and H3 K27M-mutant and should
not be applied to other tumors that are H3
K27M-mutant.”17 Thus the significance of
H3 K27M mutation in tumors that are
not typical “diffuse midline glioma, H3
K27M-mutant,” such as those with an
elsevier.com/world-neurosurgery 91
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Figure 1. Preoperative computed tomography (CT) scans.
Noncontrast axial CT images demonstrate a mass lesion with a
small calcification on the right side of the midbrain and

ventriculomegaly consistent with noncommunicating
hydrocephalus.
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unusual location and nontypical histology,
remains unclear.
We describe here a rare case of pediat-

ric, midline, tectum glioma harboring the
H3 K27M mutation, histologically a pilo-
cytic astrocytomas (PA) with pleomor-
phism and a slightly high Ki-67
proliferation index with no microvascular
proliferation, necrosis, or mitoses. It
might be identified as “diffuse midline
glioma, H3 K27M-mutant” and grade IV
when applying only the current WHO 2016
classification. In addition, we present a
short literature review of morphologically
benign gliomas (circumscribed gliomas,
especially PA) harboring the H3 K27M
mutation including tectal gliomas.
CASE PRESENTATION

History and Examinations
A 13-year-old female was referred to our
department because her head computed
92 www.SCIENCEDIRECT.com
tomography (CT) ordered by an ophthal-
mologist at our hospital had disclosed an
intracranial abnormality (Figure 1). Three
days before the CT, she had experienced
diplopia accompanied by headache. Before
this event, she had been in good health
and her family history was unremarkable.
At admission, her consciousness level was
clear, while she displayed mild headache
and esotropia of the left eye (30�), but her
eye movement showed no restriction.
Neurologic examinations demonstrated
no abnormalities except for the
ophthalmologic problem. In a fundus
examination, her optic discs were found to
have mild papilledema. Routine laboratory
blood tests including for tumor markers
and hormonal tests revealed no obvious
abnormalities.
CT scans and magnetic resonance im-

aging (MRI) of the head demonstrated a
relatively well-circumscribed midbrain
mass lesion of approximately 30 mm in
length (Figures 1 and 2). CT images
WORLD NEUROSURGERY, http
showed a small calcification within the
isodensity mass lesion. The greater part
of this lesion exhibited iso to slightly
high signal intensity on T1-weighted
images and heterogeneous high signal
intensity on T2-weighted images, while
partial peripheral and spot enhancement
could be detected after contrast medium
administration on MRI. Perifocal edema
was not obviously observed in the adjacent
brain, but hydrocephalus due to obstruc-
tion of the cerebral aqueduct was clearly
evident. The above imaging findings
indicated a midline glioma centered
within the tectum, causing hydrocephalus
due to mass obstruction of the cerebral
aqueduct.

Surgery
Three days after admission to our depart-
ment, endoscopic surgery was performed
for a third ventriculostomy, as well as a
biopsy for hydrocephalus and diagnosis
based on histopathology, respectively.
s://doi.org/10.1016/j.wneu.2020.05.240

www.sciencedirect.com/science/journal/18788750
https://doi.org/10.1016/j.wneu.2020.05.240


A

D E F

B C

Figure 2. Preoperative magnetic resonance imaging (MRI). (A
and B) Axial T1-weighted images; (C) axial T2-weighted image;
(D and E) gadolinium-enhanced, T1-weighted axial images; (F)
gadolinium-enhanced T1-weighted sagittal image. The relatively
well-circumscribed midbrain lesion arising in the tectum

displayed isointensity to slightly high signal intensity on
T1-weighted images and heterogeneous high signal intensity on
T2-weighted images. Gadolinium-enhanced MRI demonstrated a
mass lesion with partial peripheral and spot enhancement in the
tectum.
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However, these procedures were aban-
doned due to hemorrhage from the
choroid plexus near the foramen of
Monro, and a cerebrospinal fluid drainage
tube was then placed in the right anterior
horn of the lateral ventricle. Ten days
later, to avoid the risk of severe morbidity,
subtotal removal of the exophytic lesion (1
main purpose was to achieve a histologic
diagnosis, especially of enhanced sites)
was planned and carried out via the oc-
cipital transtentorial approach employing
the neuroimaging navigation of the Stealth
Navigation System (Medtronic Japan CO.,
LTD.). The main procedures used for
surgical removal of tectal tumors are the
suboccipital transtentorial approach and
infratentorial supracerebellar approach.
The former offers a larger view, better
control of bleeding, and a smaller working
distance. Its disadvantage is the obstruc-
ted view by the Galen complex. The
WORLD NEUROSURGERY 141: 91-100, S
infratentorial supracerebellar approach is
especially useful in the case of small le-
sions that develop in the middle area. Its
disadvantage is represented by a narrow
operative field, especially to the lateral
extension, and the risk of a sacrifice
bridging vein or precentral cerebellar
vein.18 In addition, because the patient’s
tentorium was standing, we chose the
suboccipital transtentorial approach due
to our preference. Mass lesion removal
from the space between the precentral
cerebellum vein and basal vein of
Rosenthal was initiated. The
intraoperative findings indicated that the
lesion was grayish white and slightly
soft. When reaching deeply into the
brainstem parenchyma, however, distinct
boundaries were not evident. The
surgical procedure was therefore
terminated after removal of as much
material as possible at this stage (partial
EPTEMBER 2020 www.journals.
removal). The immediate pathology of
intraoperative frozen-sections indicated a
diagnosis of low-grade glioma. One week
after the tumor removal, a ventriculoper-
itoneal shunt was installed.

Histopathologic Investigations
Microscopic examinations of the surgical
specimen revealed that the tumor dis-
played a biphasic pattern with loose areas
and dense areas containing numerous
Rosenthal fibers (Figure 3). However,
eosinophil granular bodies were rarely
found in the tumor. The overall
cellularity was moderate to relatively
high. Most tumor cells resembled
astrocytoma in their appearance, and
some tumor cells appeared to be bipolar
neoplastic astrocytes. The tumor cells
were characterized by regular round or
oval nuclei in the dense areas, but
distinct nuclear atypia was observed in
elsevier.com/world-neurosurgery 93
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Figure 3. Microscopy of the surgical specimen (hematoxylin-eosin stain, upper: original
magnification � 75, bar ¼ 70 mm, lower: original magnification � 150, bar ¼ 40 mm). The tumor
displayed a biphasic pattern with alternating dense and loose components. Left images, dense foci;
Rosenthal fibers are seen as brightly eosinophilic structures within this part of the tumor. Right
images, loose foci; the cells are more loosely packed.
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the loose areas. However, there was no
microvascular proliferation, necrosis, or
mitoses.
The tumor cells were immunohis-

tochemically positive for S100 protein,
glial fibrillary acidic protein (GFAP),
oligodendrocyte transcription factor 2
(Olig2), alpha-thalassemia/mental retar-
dation syndrome X-linked protein (ATRX),
and H3 K27M, but they were negative for
p53 and isocitrate dehydrogenase R132H
(mIDH1 R132H). The Ki-67 proliferation
Figure 4. Immunohistochemical staining of the surgica
40 mm). Left, H3 K27M exhibited strong nuclear posi
was 4.8% in the most stained areas.

94 www.SCIENCEDIRECT.com
index was 4.8% in the most stained areas
(Figure 4).
Furthermore, the following findings were

indicated by the Japan Children’s Cancer
Group, which provides central diagnostic
services (details omitted). In short, IDH1
R132, IDH2R172, BRAFT599, BRAFV600,H3F3A
G34, HIST1H3B K27, TERT C228, FGFR1 N546,
and FGFR1 K656 were the wild types, but
H3F3A K27M was the mutant type as investi-
gated using pyrosequencing. KIAA1549-BRAF
was not recognized when examined by
l specimen (original magnification � 150, bar ¼
tivity in the tumor cells. Right, the Ki-67 index

WORLD NEUROSURGERY, http
reverse transcription�polymerase chain re-
action. Their central review of the histopa-
thology indicated diffusemidline glioma,H3
K27M-mutant, WHO grade IV
(histologic phenotype: low-grade localized
astrocytoma).

Postoperative Course
The patient’s postoperative course was
uneventful. The histologic phenotype was
low-grade localized astrocytoma consis-
tent with PA, displaying pleomorphism
and a slightly high Ki-67 proliferation in-
dex, in addition to H3 K27M mutation.
Furthermore, because complete surgical
removal of her tumor was not performed,
she was treated with focal radiation ther-
apy at a dose of 50 Gy for 25 times of the
fraction with adjuvant chemotherapy and
concomitant daily temozolomide, fol-
lowed by maintenance temozolomide (for
about 1 year). At the latest follow-up, 28
months after surgery, she was found to be
free from any neurologic deficits and MRI
demonstrated that the tumor was stable
without tumor regrowth (Figure 5).
DISCUSSION

Exhaustive gene expression analyses have
demonstrated that specific genetic alter-
ations could drive distinct subsets of glial
neoplasms, dependent on not only the
histologic phenotype but also the tumor
localization and patient age, and could be
associated with the prognoses.13,19,20 The
H3 K27M mutation has been considered to
represent one of such genetic alterations
in the midline CNS structures of children
and young adults.3-13 However, recent
findings have strongly suggested that a
wide range of morphologic features
including histologically circumscribed/
nondiffuse gliomas occurring not only in
the pons but also in the spinal cord,
thalamus, hypothalamus, and pineal
region in both children and adults can
(rarely but certainly) harbor the H3 K27M
mutation.13,21-23 Furthermore, a number of
studies including those in the most recent
literature, have indicated that the H3
K27M mutation is associated with a poor
prognosis regardless of histologic
presentation, tumor location, or patient
age.21,22,24-27 On the other hand, some of
the nontypical “diffuse midline gliomas”
with the same H3 K27M mutation
including PA, ependymomas, diffuse
s://doi.org/10.1016/j.wneu.2020.05.240
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Figure 5. Postoperative magnetic resonance imaging (MRI). (A
and B) Axial T1-weighted images; (C) axial T2 weighted image; (D
and E) gadolinium-enhanced T1-weighted axial images; (F)
gadolinium-enhanced T1-weighted sagittal image. The residual

tumor on the midline displayed isointensity to slightly high signal
intensity on T1-weighted images and slightly high signal intensity
on T2-weighted images. Gadolinium-enhanced MRI
demonstrated a lesion with slight enhancement in the tectum.
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astrocytoma, and ganglioglioma have been
reported without a poor prognosis as WHO
grade IV.16,17,28 The significance of H3
K27M mutation in gliomas thus remains
unclear as regards tumor localization,
patient age, and histologic phenotype.
PA, a histopathologic benign tumor

(WHO grade I), occurs frequently in chil-
dren, located mainly in the cerebellum,
optic pathways, brainstem, and spinal
cord, and is histologically characterized by
a biphasic pattern: a compact area con-
taining bipolar cells with Rosenthal fibers
and a loose area containing multipolar
cells with microcysts, myxoid stroma, and
eosinophilic granular bodies. However, PA
can display a wide range of tissue patterns,
although it rarely exhibits mitoses,
hyperchromatic and pleomorphic nuclei,
glomeruloid vascular proliferation, or ne-
crosis.29,30 Moreover, PA may be due to a
genetic alteration of the mitogen-
activating protein kinase/extracellular
signal-regulated kinase (MAPK/ERK)
WORLD NEUROSURGERY 141: 91-100, S
pathway including KIAA1549-BRAF fusion
transcripts, BRAF V600E, FGFR1, KRAS, NF1
mutations, etc.29,31-37 On the other hand, a
small fraction of PA develops anaplastic
changes associated with aggressive
behavior, although clear criteria for such
tumors have not yet been defined.29,30,36

Recent studies have suggested that PA
with anaplasia is associated with
molecular alterations including activation
of the PI3K/mTOR pathway, PTEN,
CDKN2A, ATRX, and H3 K27M, as well as
the presence of alternative lengthening of
telomeres (ALT),29,38,39 although the
precise sequence of events leading to PA
with anaplasia remains unknown.
Tectal glioma is rare, occurring pre-

dominantly in children but accounting for
<5%of brainstem tumors in children.40 Liu
et al,41 in a retrospective study of 45 tectal
gliomas, found that 83% were similar to
PA and 17% could be aligned with diffuse
astrocytoma. However, no H3 K27M
mutation was detected in their study,
EPTEMBER 2020 www.journals.
while BRAF V600E mutation and KIAA1549-
BRAF fusion were observed in 8% and
25%, respectively. Furthermore, large
series of clinicopathologic assessments,
by Solomon et al in 2016, Pratt et al in
2018, and Kleinschmidt-DeMasters and
Mulcahy Levy in 2018, did not reveal cases of
tectal gliomas (including PA) withH3K27M
mutation. Taken together, these findings
indicate that tectal PA with H3 K27M
mutation is rare. Our case was found to be a
pediatric midline, tectum, low-grade as-
trocytoma consistent with PA. The case
described byMorita et al42 is the only case of
tectum PA with H3 K27M mutation aside
from ours. Our case was similar to theirs
including the genetic information and
tumor localization, but there was a
difference in patient age (their case was a
53-year-old man) and histology including
vessel abnormalities (their case had
glomerular vessels).
To the best of our knowledge, after

undertaking a careful search of the
elsevier.com/world-neurosurgery 95
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Table 1. Characteristics of 23 Cases of Pilocytic Astrocytoma (PA) (including PA with Anaplastic Changes) with H3 K27M Mutation

Source Age (Years) Sex OS (Months) Status Location Initial Histology Treatment Co-Occurring Mutations Other Details

Jones DT et al.,
201334

6 F 17.2 L TH PA n/a FGFR1 mutation
Somatic NF1 alteration

Nguyen AT et al.,
201542

10 F 12 D BS PA with aggressive
features versus HGG

Ch, Re BRAF V600E mut.: P

Hochart A et al.,
201527

7 F 137 D SC PA Re, Ch, RT IDH1/2 mut.: N
PTEN mut.: N

KIAA1549-BRAF fusion: N
BRAF mut.: N

ACVR1 mut.: N no loss of 16p

TP53 mutation in recurrent tumor
Olig2 IHC: P

Synaptophysin IHC: N
EGFR IHC: N

Malignant transformation into
glioblastoma after 10 years

Orillac C et al.,
201616

24 F 50 L TH PA Re IDH1/2 mut.: N
BRAF V600E mut.: N
3' BRAF duplication: N

High Ki-67 proliferation index and
rapid recurrence within 14 months

Reers S et al.,
201736

32 M 21 D SC PA Re, P FGFR1 hot-spot mut.: N
KIAA1549-BRAF fusion: N
BRAF V600E mut.: N

No evidence for MAPK/ERK signaling
pathway activation on IHC

Meyronet D et al.,
201723

18 F 24 D BS PA or LGG B, RT IDH1/2 mut.: N
EGFR amp.: N
TERT mut.: N

BRAF V600E mut.: N

MGMT: not methylated

Meyronet D et al.,
201723

21 F 3 D PF PA or LGG B IDH1/2 mut.: N
EGFR amp.: N
TERT mut.: N

BRAF V600E mut.: N

MGMT: not methylated

Meyronet D et al.,
201723

43 F 6 D SC PA or LGG B IDH1/2 mut.: N
EGFR amp.: N
TERT mut.: N

BRAF V600E mut.: N

MGMT: not methylated

Morita S et al.,
201841

53 M 44 L TE PA Re IDH R132H: N
KIAA1549-BRAF fusion: N
BRAF V600E mut.: N
ATRX IHC: retained

p53 IHC: focally P
Olig2 IHC: focally P

Pratt D et al.,
201821,*

n/a F n/a n/a n/a PA n/a n/a

Pratt D et al.,
201821,*

50 n/a n/a n/a SC PA n/a n/a

Kleinschmidt-
DeMasters BK and
Mulcahy Levy JM,
201820

49 F 16.2 L SC PA n/a n/a Supratentorial leptomeningeal/dural
metastasis with glioblastoma

transformation 1 year after diagnosis
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El Ahmadieh TY
et al., 201826

21 F 22 L TH PA Re, RT, Ch IDH R132H: N
BRAF V600E mut.: N
BRAF duplication: N

El Ahmadieh TY
et al., 201826

25 M 11 L TH PA with anaplasia Re, RT, Ch n/a

Rodriguez FJ et al.
in 201938

53 F 6 L C PA with anaplasia RT, Ch IDH R132H: N
BRAF duplication: P
BRAF V600E mut.: N

ATRX IHC: lost
CDKN2A: No mutation

p53 IHC: strongly positive
ALT: P

Rodriguez FJ et al.
in 201938

4 M 4 D PF PA with anaplasia Re IDH R132H: N
BRAF duplication: N
BRAF V600E mut.: N

ATRX IHC: lost
CDKN2A: no mutation

p53 IHC: strongly positive
p16 IHC: partial loss

ALT: P

Rodriguez FJ et al.
in 201938

36 F 39 L C PA with anaplasia n/a IDH R132H: N
BRAF duplication: N
BRAF V600E mut.: N

ATRX IHC: lost
CDKN2A: no deletion

p53 IHC: N
p16 IHC: partial loss

ALT: P

Rodriguez FJ et al.
in 201938

10 M 25 D 3rd
ventricle

PA with anaplasia Re IDH R132H: N
BRAF duplication: N
BRAF V600E mut.: N

ATRX IHC: lost
CDKN2A: no deletion

p53 IHC: N
ALT: P

Rodriguez FJ et al.
in 201938

51 M 55 D SC PA with anaplasia Re IDH R132H: N
BRAF duplication: N
BRAF V600E mut.: N
ATRX IHC: partial

CDKN2A: No deletion or
mutation

p53 IHC: N
ALT: P

Ebrahimi A et al. in
201922

44 M L BS PA ATRX IHC: retained
IDH R132H: N

BRAF V600E mut.: N

MGMT: not methylated

Ebrahimi A et al. in
201922

9 M L BS PA ATRX IHC: retained
IDH R132H: N

BRAF V600E mut.: N
ACVR1: p. G328E

TP53: wild type
MGMT: not methylated

OS, overall survival; F, female; L, living; TH, thalamus; n/a, not available; D, deceased; M, male; BS, brainstem; Ch, chemotherapy; Re, resection; BRAF mut., BRAF V600E mutation; P, positive; SC, spinal cord; RT,
radiotherapy; IDH mut., isocitrate dehydrogenase mutation; N, negative; MGMT meth, MGMT promoter methylation; P, pineal region; TE, tectum; C, cerebellum; PF, posterior fossa; PA, pilocytic astrocytoma;
HGG, high-grade glioma; LGG, diffuse low-grade glioma; P, proton beam therapy; B, biopsy; pTERT mut., TERT promoter mutation; ALT, alternative lengthening of telomeres.

*From supplementary material of Pratt D et al., 2018.21
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literature, we found 23 cases of PA with H3
K27M mutation as summarized in
Table 1.16,21-24,27-29,35,37,39,42,43 After
excluding cases that were histologically
suspected as PA with anaplastic changes,
16 cases were identified as PA with H3
K27M mutation (we could not include
the cases reported by Reinhardt et al38

because we were unable to collect
sufficient data from their series.
However, their cases might be included
in the study of Rodriguez et al29). On
the basis of the available data obtained,
except in the cases of anaplastic change,
the patient age ranged from 6 to 53 years
(mean: 26.8 years). The spinal cord was
the most common location (n ¼ 5),
followed by the thalamus (n ¼ 4),
brainstem (n ¼ 3), tectum (n ¼ 2,
including our case), and posterior fossa
(n ¼ 1). The longest survival period was
137 months, and the shortest was 3
months. No one revealed IDH1/2
mutation including anti-IDH1 (R132H)
immunoreactivity. Neither BRAF V600E
mutation nor KIAA1549-BRAF fusion was
detected in them. In addition, no one
displayed TERT and MGMT promoter mu-
tation, either. ATRX immunohistochem-
istry was performed in 5 cases, and only 1
demonstrated ATRX expression loss.
These findings together indicate that most
cases of PA with H3 K27M mutation did
not show other genetic alterations except
PA with anaplasia, suggesting that H3
K27M-mutant PA might represent 1 of the
glial tumor spectra driven by this muta-
tion as also mentioned by Meyronet
et al.24 However, the significance of H3
K27M-mutant PA for age of onset, site of
onset, and/or prognosis remains unclear.
Further studies and clinical data are thus
needed concerning the biology and
optimal treatment of PA with H3 K27M
mutation.
CONCLUSIONS

We describe here a rare case of pediatric,
midline, tectum PA with H3 K27M muta-
tion without other genetic alterations and
present a short literature review of
morphologic PA harboring H3 K27M mu-
tation. The significance of H3 K27M mu-
tation for PA was unclear, so further
studies and clinical data are needed to
elucidate the biology and optimal treat-
ment of such tumors.
s://doi.org/10.1016/j.wneu.2020.05.240
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