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Abstract

More than 70,000 primary central nervous system tumors are diagnosed in theUnited States each year.
Approximately 36% of these are meningiomas, making it the most common primary brain tumor.
Because meningioma risk increases dramatically with age, the healthcare burden of meningioma
in the developed world will continue to rise as demographics shift toward an older population. In
addition to demographic factors associated with increased meningioma risk (i.e., older age, female
sex, African American ethnicity), increased bodymass index is a strong risk factor. A history of atopic
allergies, eczema, and increased serum IgE are all consistently associated with reduced meningioma
risk, suggesting a potential role for immunosurveillance. Although ionizing radiation is a strong
meningioma risk factor, it accounts for very few cases at the population level. Recent studies suggest
that diagnostic radiation (e.g., dental X-rays) increases meningioma risk. Because radiation dosages
associated with medical imaging have decreased dramatically, the public health impact of this expo-
sure is likely in decline. Genome-wide association studies have identified common inherited variants
in the geneMLLT10 and RIC8A as low-penetrance meningioma risk alleles. To provide further insight
into the etiology of meningioma, future studies will need to simultaneously examine genetic and
environmental risk factors, while also stratifying analyses by subject sex.

MENINGIOMA INCIDENCE1

Although primary brain tumors are relatively rare
compared with metastatic brain tumors, they consti-
tute an important source of morbidity and mortality.
More than 70,000 new cases of primary malignant
and benign brain and central nervous system (CNS)
tumors are diagnosed in the United States each year.
Of these, 36.0% are meningiomas and 28.6% are gli-
omas (Ostrom et al., 2015b). This makesmeningioma
the most common primary brain tumor in adults,
although glioma remains the most common primary
malignant brain tumor in adults, accounting for
approximately 80% of malignant brain tumor

diagnoses (Ostrom et al., 2015b). Meningioma inci-
dence rates have increased over the last 30 years, with
increased use of diagnostic imaging, improved
reporting, and changing outlooks toward diagnosis
in the elderly suspected to account for this observed
increase (Ostrom et al., 2013). In the United States,
from 2008 to 2012, meningioma had an average
age-adjusted incidence rate of 7.86 per 100,000
population per year (Ostrom et al., 2015b). The
Central Brain Tumor Registry of the United States
(CBTRUS) data from 2004 to 2010 indicate that
94.6% of newly diagnosed meningioma are classified
as WHO grade I tumors, 4.2% as WHO grade II and
1.2% as WHO grade III (Kshettry et al., 2015b).
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In theUnited States, themedian age at diagnosis of
a meningioma between 2006 and 2010 was 65 years
(Ostrom et al., 2015b). Meningiomas are rare in chil-
dren, accounting for just 2.9% of primary brain
tumors in pediatric populations (age 0–14 years)
(Ostrom et al., 2015a). The average annual incidence
rates for selected adult brain tumor histologies,
stratified by age at diagnosis, are shown in Fig. 1.1.
Incidence rates of meningioma increase monotoni-
cally with advancing age, reaching a peak incidence
of 51.3 cases per 100,000 population per year in indi-
viduals aged 85 and older. As with other neoplasms,
the increased incidence of meningioma with age
could be due to the length of time required for cellular
transformation, the necessity of key genetic alter-
ations prior to the onset of clinical disease, dimin-
ished immunosurveillance, or increased opportunity
for detection of subclinical tumors over longer
periods of time.

DIFFERENCES IN INCIDENCE BY SEX

Men are at increased risk of glioma, embryonal
tumors, germ cell tumors, and primary CNS lym-
phoma, whereas women are at increased risk of
pituitary tumors and meningioma (Ostrom et al.,
2014b, 2015a, b). In the case of meningioma, the
incidence rate in females aged 0–19 is approximately
the same as that in males aged 0–19, meaning that

the female-to-male incidence rate ratio (IRR) is
approximately 1.0 (Wiemels et al., 2010). In individ-
uals aged 20–34, the female:male IRR increases to
approximately 2.0, before reaching a maximum
of 3.1 in individuals aged 35–44 (Wiemels et al.,
2010). Subsequently, this IRR begins to taper off,
dropping to approximately 1.5 in individuals aged
85+ (Fig. 1.2). Because female sex confers the largest
relative risk for meningioma during peak reproduc-
tive years, investigators have examined factors
associated with endogenous and exogenous female
hormones as potential meningioma risk factors.
A comprehensive understanding of meningioma eti-
ology must account for these sex differences. How-
ever, this important epidemiologic observation
remains poorly understood.

DIFFERENCES IN INCIDENCE BY
GEOGRAPHY AND ETHNICITY

Interpretations of ethnic and geographic variation in
the occurrence of brain tumors are complicated by
problems in ascertainment and reporting. Regions
with the highest reported rates of primary brain
tumors (e.g., Northern Europe, United States, and
Israel) generally have better access to medical imag-
ing than areas with the lowest rates (Inskip et al.,
1995). The absolute variation in the occurrence of
brain tumors between high-risk and low-risk areas
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Fig. 1.1. Incidence of common adult brain tumor histologies, by age at diagnosis. Data fromCentral Brain Tumor Registry of

the United States (CBTRUS), 2008–12, table 12, age-adjusted to the 2000 US standard population.
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is of the order of fourfold, compared with a 20-fold
difference for lung cancer and a 150-fold difference
for melanoma (Forman et al., 2013). Thus, for menin-
gioma, it seems unlikely that there are strong envi-
ronmental risk factors associated with geography.
However, some of this variation in incidence suggests
that interethnic differences may exist in inherited
susceptibility or exposure to yet unknown risk factors
of relatively small effect (Kshettry et al., 2015b).

Within the United States, African Americans have
a 1.23-fold higher rate of meningioma than non-
Hispanic whites and a 1.21-fold higher rate of menin-
gioma than Asians/Pacific Islanders (Ostrom et al.,
2015b). This increased risk ofmeningioma in African
Americans is difficult to attribute to differences in
access to medical care or diagnostic practices, as
African Americans typically experience reduced
access relative to white and Asian populations in
the United States. Interethnic differences in meningi-
oma incidence are even more pronounced when
stratifying by WHO tumor grade (Fig. 1.3). African
Americans have a 1.33-fold increased risk of grade
II meningioma relative to whites, and a 1.56-fold
increased risk of grade III meningioma relative to
whites. In addition, Asian Americans have a 1.35-fold
increased risk of grade II meningioma relative to
whites, and a 1.63-fold increased risk of grade III
meningioma relative towhites (Kshettry et al., 2015b).

When analyses are stratified by tumor site (spinal
vs intracranial), a different picture is revealed. The
highest incidence of spinal meningioma is observed
in Hispanics, who have a 1.21-fold increased risk of
spinal meningioma relative to non-Hispanic whites
(Kshettry et al., 2015a). Non-Hispanic whites have a
1.39-fold increased risk of spinal meningioma relative
to African Americans, who have the lowest rate of
spinal meningiomas (Kshettry et al., 2015a). Why
African Americans are at significantly increased risk
of intracranial meningioma but significantly decreased
risk of spinal meningioma relative to whites has not
been explored.

PATIENT PROGNOSIS

Population-based data from Scandinavia suggest that
survival of patients with meningioma improved
during the latter half of the 20th century (Sankila
et al., 1992; Helseth, 1997). This improvement may
be partly due to earlier diagnoses accompanying
advances in imaging technology. In 2011, Cahill
and Claus estimated the 3-year survival rate for US
patients with nonmalignant intracranial meningioma
to be 85% (Cahill and Claus, 2011). Although
patients with WHO grade I tumors have good overall
survival, prognosis is substantially poorer for patients
with malignant histology. Between 2008 and 2012,

Fig. 1.2. Age- and sex-specific annual incidence rates (per 100,000 population) for meningioma in the United States

(2002–06). The left Y-axis scale refers to the bar graphs of meningioma incidence. The female-to-male incidence rate ratio

(IRR) is indicated by a diamond at each age group, and the axis for the female-to-male IRR is on the right Y-axis. The peak IRR
of 3.1 occurs in the 35–44 year age group. Modified and adapted from Wiemels, J., Wrensch, M., Claus, E.B., 2010. Epide-

miology and etiology of meningioma. J Neuro-Oncol 99, 307–314.
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US patients with malignant meningiomas experi-
enced 3-year, 5-year, and 10-year “all-cause” survival
probabilities of 71.0%, 65.2%, and 57.5%, respec-
tively, but malignant meningioma patients ages
20–44 had a 10-year survival probability of 82.2%
(Ostrom et al., 2015b).

Prognostic factors for patients with meningioma
have not been thoroughly studied, perhaps because
these patients typically have a more favorable pro-
gnosis than those in whom other brain tumors (e.g.,
gliomas) are diagnosed.Generally, older age at diagno-
sis and higher tumor grade contribute to poorer prog-
nosis. The results from a large study of 9000 patients
revealed the following additional prognostic factors
for benign meningioma: female sex, tumor size, resec-
tion, and radiotherapy. For malignant meningioma, the
prognostic factors included only age, resection, and
radiotherapy (Cahill and Claus, 2011).

In the last 3 years, two major whole-exome
sequencings projects were completed to investigate
genomic alterations in meningioma tumor genomes.
Clark et al. performed whole-exome sequencing
on 50 WHO grade I meningiomas and identified
mutations in NF2, TRAF7, KLF4, AKT1, and SMO
(Clark et al., 2013). NF2mutations rarely co-occurred
with these other mutations. The TRAF7 mutation,
however, tended to co-occur with mutations of either
KLF4 or AKT1. The investigators then validated these

findings by performing targeted sequencing of the five
genes and copy-number analysis of chromosome
22 (whereNF2 is located) in an additional 250 tumors.
Brastianos et al. performed whole-genome or whole-
exome sequencing on 17 WHO grade I meningioma
samples, followedbyvalidation sequencing in30addi-
tional WHO grade I samples and 18 grade II/III
samples. They found mutations similar to those of
Clark et al. and also identified mutations in NF2,
SMO, and AKT1 (Brastianos et al., 2013).

Abedalthagafi et al. analyzed 150 meningiomas
using array-comparative genomic hybridization, fol-
lowed by targeted sequencing of AKT1, KLF4, NF2,
PIK3CA, SMO, and TRAF7. They found that PI3K
mutations are as common as those in AKT1 and
SMO, and also commonly co-occurred with those in
TRAF7 (Abedalthagafi et al., 2016). Recently, muta-
tions in the TERT gene promoter have been identified
in 6%–7% of meningioma patients (Goutagny et al.,
2014; Sahmet al., 2016),where they are associatedwith
significantly shorter time to progression (10 months vs
179 months) (Sahm et al., 2016). These mutations
generate a novel transcription factor binding site,
leading to increased expression of TERT, reactivation
of telomerase, competent telomere maintenance, and
cellular immortalization (Bell et al., 2015).

Genomic analyses of meningioma have largely
been limited due to a lack of long-term clinical
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Fig. 1.3. Meningioma incidence, byWHO tumor grade and ethnicity. Data from Central Brain Tumor Registry of the United
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follow-up, leaving investigators unable to evaluate
samples for predictors of tumor recurrence, progres-
sion, or overall survival. Thus, with the exception of
TERT promoter mutations, the clinical relevance of
these newly identified somatic changes remains
unknown. Whether the somatic driver mutations
underlyingmeningioma development are also associ-
ated with patient outcome will require additional
investigation using larger well-annotated datasets.

INHERITED RISK

A genetic predisposition to meningioma has long been
suspected because of the increased risk of meningioma
observed in first-degree relatives of affected patients
and also because of the existence ofmeningioma in rare
familial cancer syndromes (e.g., Neurofibromatosis
type II). A recent case–control study revealed that
meningioma patients were four times more likely than
controls to report a first-degree family history ofmenin-
gioma (Claus et al., 2011).Many studies have attempted
to identify rare genetic mutations conferring increased
meningioma risk within families, leading to the identi-
fication of several genes, including SMARCB1 (van den
Munckhof et al., 2012), SMARCE1 (Smith et al., 2013;
Gerkes et al., 2016), SUFU (Aavikko et al., 2012;
Schulman et al., 2016), and PTCH1 (Kijima et al.,
2012) (Table 1.1). Although such methods can identify
genes contributing to meningioma risk in families
with rare Mendelian tumor predisposition syndromes,
these genes likely explain only a small proportion of
meningioma incidence at the population level (Claus
et al., 2011).

GENOME-WIDE ASSOCIATION
STUDIES

Prior to the advent of genome-wide association
studies (GWAS), numerous candidate–gene associa-
tion studies were conducted in meningioma case–
control sets, exploring polymorphisms involved in
folate metabolism (Li et al., 2013), innate immunity
(Rajaraman et al., 2010), insulin-like growth factor
pathways (Lonn et al., 2008), and DNA repair
(Leone et al., 2003; Bethke et al., 2008; Kiuru
et al., 2008). In general, these studies have not been
subjected to replication testing in an independent
sample and are highly susceptible to false-positive
findings. Indeed, candidate–gene approaches to iden-
tify common inherited variants that are reproducibly
associated with brain tumor risk have had limited
success in stark contrast to the GWAS approach
(Walsh et al., 2013).

Table 1.1

Exposures studied as possible meningioma risk factors

Association
(magnitude
and
direction) Subgroup specificity

Established risk factors
High dose radiation +++ None
Female vs male gender ++ Strongest for WHO

grade I tumors
Increasing age +++ None
African American vs non-

Hispanic white
ethnicity

+ Strongest for WHO
grade II/III tumors

Asian American vs non-
Hispanic white ethnicity

+ WHO grade II/III
tumors

Increased BMI + None
Familial cancer syndromes (gene)
Neurofibromatosis type
2 (NF2)

+++ None

Melanoma–astrocytoma
syndrome (CDKN2A)

+++ None

SMARCE1 mutation +++ Clear-cell meningioma
SMARCB1 mutation +++ None
SUFU mutation +++ None
Gorlin syndrome
(PTCH1)

+++ None

Inherited single-nucleotide polymorphisms
rs11012732-A
(MLLT10)

+ None

rs2686876-T (RIC8A) + Unknown
Probable risk factors
Allergies/asthma � None
Eczema � None
Elevated IgE � None
Family history of brain

tumors
+ None

Dental X-rays + None
Cigarette smoking + Meningioma in men
Cigarette smoking � Meningioma in women
Hispanic vs non-Hispanic

white ethnicity
+ Spinal meningioma

Non-Hispanic white vs
African American
ethnicity

+ Spinal meningioma

Possible risk factors
NSAID use + None
Infant head circumference + None
Probably not risk factors
Head injury � None
Alcohol use � None
Residential power

lines/EMF

� None

Reproductive factors � None
Viral infections � None
Cell phone use � None

+++Odds ratio�5.0; ++5.0>odds ratio�2.0; +2.0>odds ratio�1.0;
�odds ratio¼1.0; �1.00>odds ratio�0.50.

EPIDEMIOLOGY OF MENINGIOMAS 7



In a GWAS, individuals with the disease of interest
(e.g., meningioma) and healthy controls are geno-
typed for hundreds of thousands of single-nucleotide
polymorphisms (SNPs) to discover alleles that are
significantly more common in those with the disease
than in those without. GWAS have had great success
in revealing the genetic etiology of primary brain
tumors, especially glioma (Walsh et al., 2015). For
meningioma, a GWAS conducted in Europeans has
identified a highly statistically significant low-
penetrance susceptibility locus (rs11012732) in the
MLLT10 gene on chromosome 10, conferring a 1.5-
fold increased risk of meningioma (Dobbins et al.,
2011). The association between meningioma risk
and this common heritable polymorphism was subse-
quently validated in an independent replication dataset
from theUnitedStates (Egan et al., 2015). Interestingly,
SNPs inMLLT10 have been previously associatedwith
risk of hormone-related neoplasms, including ovarian
cancer (Pharoah et al., 2013) and ER+ breast cancer
(Michailidou et al., 2013). A second GWAS of
American meningioma patients, which involved
meta-analysis with the European GWAS data, identi-
fied a second risk locus on 11p15.5 (rs2686876) near
RIC8A, conferring a 1.4-fold increase in meningioma
risk (Claus et al., 2018).

ALLERGY, IMMUNOLOGY,
AND MENINGIOMA RISK

Numerous studies have shown that allergic conditions,
including asthma, hay fever, eczema, and food aller-
gies, reduce brain tumor risk (Wigertz et al., 2007;
Berg-Beckhoff et al., 2009; Turner et al., 2013). Linos
et al. conducted a formal meta-analysis of a subset of
these studies and concluded that allergies reduce
glioma risk by nearly 40% (Linos et al., 2007). This
observation appears to extend to both acoustic neu-
roma and meningioma (Claus et al., 2011; Turner
et al., 2013). Indeed, a separate meta-analysis of
meningioma indicated that eczema conferred a 25%
reduction in meningioma risk (Wang et al., 2011).
Similar effect sizes were observed for allergy overall
and also for hay fever (Wang et al., 2011). These
effects appear to be strongest for adult-onset allergies,
as results from the INTERPHONE study suggested
that the inverse associationswith asthma and hay fever
strengthened with increasing age of allergy onset
(Turner et al., 2013).

Although mechanisms underlying the protective
effect of allergies have not been elucidated, it may
arise from increased tumor immunosurveillance in

individuals with allergies and autoimmune disease
(Dunn et al., 2002). It is also possible that the inverse
association results from immune suppression by the
preclinical tumor, but validation of the inverse asso-
ciation in prospective data sources makes this expla-
nation less convincing. Meningioma patients have
also been observed to have lower levels of serum
IgE, a marker of atopy, than healthy controls
(Wiemels et al., 2011). Although that study was
conducted in meningioma patients following diag-
nosis, similar results have been observed for adult
gliomas when using prediagnostic sera (Calboli
et al., 2011).

Polyomaviruses (simian virus 40, JC virus, and
BK virus), adenoviruses, retroviruses, and herpes
viruses have also been investigated in relation to
the genesis of meningioma in experimental animal
models and in limited epidemiologic studies
(Weggen et al., 2000; Poltermann et al., 2006). The
potential risk from these agents has not been well
addressed in epidemiologic studies, but evidence
for viral involvement in meningioma etiology gener-
ally appears weak (Weggen et al., 2000; Poltermann
et al., 2006). Renewed interest in a potential viral ori-
gin for some brain tumors may spark new epidemio-
logic studies, but such studies must consider the
potential importance of low-level infection, requiring
stringent technical conditions and development of
more sensitive assays.

PERSONAL MEDICAL HISTORY

Cyclooxygenase-2 (COX-II) enzymes are commonly
expressed in meningiomas (Ragel et al., 2005;
Buccoliero et al., 2007), and treatment with selective
COX-II inhibitors has shown inhibitory growth
effects in vivo (Ragel et al., 2007). Therefore, nonste-
roidal anti-inflammatory drugs (NSAIDs), including
aspirin, was hypothesized to reduce brain tumor risk
(Ulrich et al., 2006). In a large nested case–control
study, a paradoxical 1.35-fold increased risk of
meningioma was observed with use of nonaspirin
NSAIDs (Bannon et al., 2013). Although this was
not the expected direction of the effect, the study
was conducted using a large dataset of prospectively
collected, population-based primary care patients,
providing a representative sample of UK patients.
Furthermore, the assessment of NSAID use via
medical record review within a system of socialized
medicine helped to eliminate recall biases. The
authors controlled for protopathic bias by excluding
NSAID/aspirin use 1 and 3 years prior to diagnosis.
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Given these study strengths, the potential relationship
between NSAID use and increased meningioma risk
merits future study.

A recent meta-analysis identified a significant
association between body mass index (BMI) and
increased meningioma risk (Sergentanis et al.,
2015). Overweight/obesity statuswas associatedwith
a 1.27-fold increased risk of meningioma in females
and a 1.58-fold increased meningioma risk in males.
A significant dose–response relationship was also
observed (Sergentanis et al., 2015). AMendelian ran-
domization approach leveraging genetic instruments
known to be associated with interindividual variation
in BMI provided support for obesity as ameningioma
risk factor for meningioma. Genetic predisposition to
higher BMI and higher body fat percentage were both
associated with significantly elevated risk of menin-
gioma (Takahashi et al., 2019). Hypothesized mech-
anisms underlying these associations include chronic
insulin resistance, increased activity of insulin-like
growth factors and increased levels of circulating
estrogen in overweight persons. Other anthropomet-
ric measures, such as birth weight, have not been con-
sistently associatedwith subsequentmeningioma risk
in adulthood. However, a larger head circumference
at birth has been associated with an increased risk
of developing meningioma as a young adult among
subjects in a Swedish birth cohort (Tettamanti
et al., 2016).

IONIZING RADIATION

Sources of exposure to ionizing radiation include
occupation, therapeutic and diagnostic medical pro-
cedures, and proximity to atomic bomb explosions
(including atmospheric testing of nuclear weapons).
Survivors of the bombing of Hiroshima have elevated
risk of meningioma, increasing with the estimated
dose of radiation (Sadamori et al., 1996; Shintani
et al., 1999). The use of ionizing radiation to treat
tinea capitis (i.e., ringworm) and skin hemangioma
in infants and children, once common practice, has
been associated with relative risks of 18, 10, and 3,
for nerve sheath tumors, meningiomas, and gliomas,
respectively (Braganza et al., 2012). This treatment
was applied en masse to Israeli immigrants coming
from North Africa and the Middle East during the
1950s. Analysis of meningioma incidence data in
these immigrant cohorts revealed an iatrogenic epi-
demic of meningioma that fundamentally shifted
the national meningioma incidence pattern of Israel
(Sadetzki et al., 2000).

As further evidence of iatrogenic meningioma
resulting from radiotherapy, second primary brain
tumors occur more frequently than expected in
patients previously treated for a first brain tumor.
The standardized incidence ratio for a second primary
CNS tumor in brain tumor patients treated by surgery
alone is 2.0 (95%CI 1.2–3.2) vs 5.1 (95%CI 2.5–9.4)
for patients treatedwith radiotherapy (Salminen et al.,
1999). However, these results may be influenced by
the fact that people with higher grade tumors aremore
likely to both receive adjuvant radiotherapy and also
to have multiple primary cancers due to underlying
genetic predisposition.

Results from case–control studies investigating
the link between meningioma and exposure to ioniz-
ing radiation have observed variable effect sizes, per-
haps because of imprecise estimates of age at first
exposure, imprecise estimates of ration dosage, or a
low prevalence of exposure to high doses of ionizing
radiation in large samples of controls. However, the
consistent and strong results from prospective studies
of people exposed to ionizing radiation provide
unquestionable evidence of a linear dose–response
association between ionizing radiation exposure
and meningioma risk. Future studies should consider
the potential for interaction between ionizing radia-
tion and both age at exposure and genetic variation
that may mediate susceptibility to the tumorigenic
effects of radiation.

Despite the known association between ionizing
radiation and meningioma risk, therapeutic doses of
ionizing radiation contribute to the development of
only a small proportion of meningiomas in adults
because exposure to therapeutic levels of ionizing
radiation is rare and the vast majority of meningioma
patients report no such exposure. For example, in one
study, between 1% and 3% of meningioma patients,
as well as controls, reported a history of at least
one therapeutic dose of ionizing radiation exposure
before their brain tumor diagnosis (Blettner et al.,
2007). However, among pediatric populations where
meningioma is much rarer, previous therapeutic radi-
ation is perhaps the second leading cause of meningi-
oma, second to only neurofibromatosis (Erdincler
et al., 1998).

Elucidating a possible role for more common radi-
ation exposure, such as that resulting from dental
radiographs, requires more precise and reliable
assessment of exposure. Evidence thus far supports
a role for diagnostic radiation in causing meningi-
oma. Claus et al. reported that persons with meningi-
oma were twice as likely as controls to have received
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bitewing X-rays on an annual or more frequent basis
(Claus et al., 2012a). Similar findings were recently
reported for a hospital-based study of acoustic neu-
roma (Han et al., 2012). Because radiation dosage
has decreased dramatically since the time period
during which patients in these studies received
X-rays, the public health impact of dental X-rays
on meningioma incidence is likely on the decline.

NONIONIZING RADIATION,
INCLUDING MOBILE PHONE USE

To date, epidemiologic studies of adult brain tumors do
not support the hypothesis that residential power lines
increase the risk of brain tumors (Wrensch et al., 1999).
A limitation with studies of EMF exposures and adult
brain tumors is that the pertinent exposure period and
the mechanisms through which EMFmight contribute
to brain tumor risk are unknown. The possibility that
more affluent individuals may avoid living near
high-power lines further complicates analyses by gen-
erating differences in socioeconomic status between
exposed and unexposed subjects.

Cellular phone technology was introduced in the
1980s and the vast majority of people in the United
States now use mobile phones. Public concern over
the potential health effects of mobile phones has
prompted additional study of exposure to radio-
frequency fields and brain tumor risk. In 2011, the
International Agency for Research on Cancer (IARC)
published a monograph evaluating the potential carci-
nogenic risks to humans of mobile phones. IARC clas-
sified radiofrequency fields as a possible carcinogen
(IARC group 2B), meaning that there “could be some
risk” of carcinogenicity and that “additional research
into the long-term effects of mobile phone use is
warranted.” Recent epidemiologic studies reporting
on glioma risk in relation to cellular phone use in adults
have demonstrated generally null results (Ostrom et al.,
2014a). Time trends of age-standardized meningioma
incidence rates are an important tool to examine the
possible associations between mobile phone use and
meningioma risk. Although mobile phone use has
increased extremely rapidly worldwide, meningioma
incidence rates have remained relatively stable.

The UK Million Women study examined brain
tumor risk in relation to duration of use of a mobile
phone in a prospective manner (Benson et al., 2013).
Meningioma risk was not significantly different for
daily users of cellular phones compared with never-
users in the UK sample. Although brain tumor inci-
dence has not increased with the marked increase in

mobile phone use, the latency period of brain tumors
may be extremely long, especially for meningioma.
Thus, the potential association between cellular phone
use and meningioma risk deserves continued monitor-
ing as data on long-term heavy users accrues.

REPRODUCTIVE AND
HORMONAL FACTORS

In part because females have a lower risk for glioma
and a greater risk for meningioma, investigators have
examined factors associated with endogenous and
exogenous female hormonal status as putative brain
tumor risk factors, including ages at menarche and
menopause, gravidity, parity, use of oral contracep-
tives, and use of hormone replacement therapy
(HRT). Endogenous estrogen and other female hor-
mone levels are highest in women between the ages
of menarche and menopause; therefore investigators
have examined age-specific meningioma incidence
rates to look for patterns related to hormone levels.
Results suggest that the female-to-male IRR reaches
its apex (�3.1) during peak reproductive years
(Wiemels et al., 2010).

There is no consistent or convincing evidence that
parity is associated with risk for meningioma
(Schlehofer et al., 1992; Jhawar et al., 2003). Incon-
sistent results pertaining to oral contraceptive use and
HRT have been reported for meningioma risk (Hatch
et al., 2005; Wigertz et al., 2006). Results from a
population-based case–control study revealed ele-
vated meningioma risk in women with increased
BMI and in premenopausal women taking oral
contraceptives but did not identify significant associ-
ations betweenmeningioma risk and postmenopausal
HRT (Claus et al., 2013).

Data from a large multicenter case–control study
revealed that cigarette smoking significantly reduced
meningioma risk in women, but increased meningi-
oma risk in men (Claus et al., 2012b). The authors
hypothesized that the increased risk of meningioma
observed in male smokers was likely related to the
known tumorigenic effect of chemicals contained in
cigarette smoke, while the decreased risk of meningi-
oma in female smokers was possibly related to dimin-
ished hormone levels. Because smoking could
potentially abrogate a strong meningioma risk factor
in women (hormone levels), it is conceivable that this
effect could supersede the modest increased risk of
meningioma conferred by tobacco-related chemical
exposures in this population. Their results highlight
the importance of analyzing meningioma risk
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separately for men and for women. Additionally,
although the protective effect of tobacco use on
meningioma risk may seem aberrant, smoking is also
consistently associated with decreased risk of acous-
tic neuroma (Schoemaker et al., 2007; Benson et al.,
2010; Palmisano et al., 2012).

ENVIRONMENTAL FACTORS FOR
WHICH EVIDENCE IS INCONCLUSIVE

Numerous dietary, experiential, and environmental
factors studied in relation to meningioma risk have
shown inconsistent associations. That is, one or more
studies found a positive association but other studies
found no association. Such factors include dietary
intake of N-nitroso compounds (Preston-Martin and
Henderson, 1984), dietarymaternal intake ofN-nitroso
compounds (Baldwin and Preston-Martin, 2004),
alcohol consumption (Benson et al., 2008; Galeone
et al., 2013), head injury and trauma (Inskip et al.,
1998; Preston-Martin et al., 1998), and exposure to
electromagnetic fields (Cocco et al., 1999; Berg
et al., 2006). In addition to small sample sizes, possible
explanations for the inconsistent findings include inva-
lid or imprecise measurements of exposure (due to the
use of self-reported or proxy-reported exposures),
unfocused hypotheses (resulting from conveniently
nesting case–control studies within larger prospective
cohorts), and failure to account for confounders or
effect modifiers (e.g., sex). Continued progress in
understanding meningioma risk factors is dependent
on the construction of large studies with quality expo-
sure assessments, along with analysis of genetic factors
thatmodify the effects of such exposures.A synopsis of
putativemeningioma risk factors, including the relative
strength of the associations, is summarized inTable 1.1.

CONCLUSION

Few strong environmental risk factors have been
identified for meningioma, although exposure to
ionizing radiation and reduced allergies are both con-
sistently associated with increased meningioma risk.
Only 1%–3% of meningiomas can be directly
attributed to the inheritance of rare high-penetrance
gene mutations. Using a GWAS approach, a single
low-penetrance genetic variant in MLLT10 was
robustly associated with meningioma risk. As a result
of the long latency period between potential tumori-
genic exposures (e.g., ionizing radiation) and menin-
gioma presentation, researchers have primarily
conducted retrospective (e.g., case–control) study
designs, which do not necessitate long-term subject

follow-up. Progress in identifying meningioma risk
factors using retrospective study designs has been
impeded by potential biases (e.g., protopathic bias
and recall bias). Furthermore, many case–control
studies of meningioma have had insufficient sample
sizes to exclude the effects of statistical variation
on study results. Future studies will need to be large
enough so that environmental and constitutive
genetic risk factors can be examined simultaneously,
while also stratifying analyses by subject sex. When
these issues are addressed, the potential interaction
among genetic predisposition and environmental
and occupational exposures can be better elucidated,
more fully revealing the etiology of meningioma, the
most common brain tumor in adults.
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GENE ABBREVIATIONS

AKT1, v-akt murine thymoma viral oncogene homo-
log 1; KLF4, Kruppel-like factor 4 (gut); MLLT10,
myeloid/lymphoid or mixed-lineage leukemia
(trithorax homolog, Drosophila); translocated to10;
NF2, neurofibromin 2 (merlin); PIK3CA,
phosphatidylinositol-4,5-bisphosphate 3-kinase, cat-
alytic subunit alpha; PTCH1, patched 1; SMARCB1,
SWI/SNF related, matrix associated, actin-dependent
regulator of chromatin, subfamily b, member 1;
SMARCE1, SWI/SNF related, matrix associated,
actin-dependent regulator of chromatin, subfamily
e, member 1; SMO, smoothened, frizzled family
receptor; SUFU, suppressor of fused homolog
(Drosophila); TERT, telomerase reverse transcrip-
tase; TRAF7, TNF receptor-associated factor 7, E3
ubiquitin protein ligase.
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