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Abstract
Objectives To perform a systematic review regarding the developments in the field of radiomics in lymphoma. To evaluate the
quality of included articles by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), the phases classification
criteria for image mining studies, and the radiomics quality scoring (RQS) tool.
Methods We searched for eligible articles in the MEDLINE/PubMed and EMBASE databases using the terms “radiomics”,
“texture” and “lymphoma”. The included studies were divided into two categories: diagnosis-, therapy response- and outcome-
related studies. The diagnosis-related studies were evaluated using the QUADAS-2; all studies were evaluated using the phases
classification criteria for image mining studies and the RQS tool by two reviewers.
Results Forty-five studies were included; thirteen papers (28.9%) focused on the differential diagnosis of primary central nervous
system lymphoma (PCNSL) and glioblastoma (GBM). Thirty-two (71.1%) studies were classified as discovery science accord-
ing to the phase classification criteria for image mining studies. The mean RQS score of all studies was 14.2% (ranging from 0.0
to 40.3%), and 23 studies (51.1%) were given a score of < 10%.
Conclusion The radiomics features could serve as diagnostic and prognostic indicators in lymphoma. However, the current
conclusions should be interpreted with caution due to the suboptimal quality of the studies. In order to introduce radiomics into
lymphoma clinical settings, the lesion segmentation and selection, the influence of the pathological pattern and the extraction of
multiple modalities and multiple time points features need to be further studied.
Key Points
• The radiomics approach may provide useful information for diagnosis, prediction of the therapy response, and outcome of
lymphoma.

• The quality of published radiomics studies in lymphoma has been suboptimal to date.
• More studies are needed to examine lesion selection and segmentation, the influence of pathological patterns, and the
extraction of multiple modalities and multiple time point features.

Keywords Lymphoma . Multidetector computed tomography . Magnetic resonance imaging . Positron emission tomography,
computed tomography
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Introduction

For decades, medical imaging has transformed from a
simple diagnostic tool to an enormous source of clinical
data. The emergence of new technologies and the require-
ments of precision medicine have given rise to a new
promising field of research called “radiomics” [1, 2].
The main goal of radiomics is to extract quantitative im-
aging features from medical images and to analyse tumour
heterogeneity as a whole [3, 4]. As one of the important
characteristics of malignant tumours, heterogeneity is re-
lated to malignant biological behaviour and can reflect the
development, therapy responses, and clinical outcomes of
tumours [5, 6]. Noninvasive detection of tumour hetero-
geneity by quantitative imaging has attracted considerable
attention, and recent radiomics research has shown a
promising association between imaging heterogeneity
and solid tumour characteristics [7–11].

Lymphoma presents serious challenges for diagnosis
and treatment because of its complex heterogeneity.
Given the many types of lymphoma, the intertumoural
heterogeneity of lymphoma is common. In addition, one
type of lymphoma can show different intratumoural het-
erogeneity in a single patient [12, 13]. An intuitive man-
ifestation of intratumoural heterogeneity is lymphoma
transformation, namely the evolution of low-grade lym-
phoma into high-grade lymphoma during the disease
course; this transformation is related to disease progres-
sion and poor prognosis [13]. In this sense, it is essential
to explore the heterogeneity of lymphoma and to identify
the clinical-image-genome model of highly invasive lym-
phoma for treatment selection. A few previous studies
have explored the potential role of the radiomics approach
as a diagnostic, classification and prognostic predictor
tool in lymphoma. However, the results are controversial.
Recently, several evaluation criteria and guidelines have
been proposed to aid the assessment of radiomics research
[14, 15]. Thus, we sought to systematically review the
lymphoma radiomics literatures and evaluate the quality
of studies according to the above criteria and guidelines.

Materials and methods

This systematic review was performed according to the
PRISMA statement [16]. The PRISMA checklist is provided
in Supplemental Table S1.

Literature search strategy

We performed a comprehensive literature search to iden-
tify English language studies published in MEDLINE/
PubMed and EMBASE (Ovid) without a start date

limitation; the search result was last updated in January
2020. We used a search string containing free-text and/or
Medical Subject Headings (MeSH) search of 3 key search
terms: “radiomics”, “texture” and “lymphoma”. The ref-
erences cited in the retrieved studies were also explored,
and duplicate findings were discarded to ensure that no
data overlap occurred.

Eligibility criteria and data extraction

The criteria for including studies were as follows: (a) articles
were full-text and written in English; (b) radiomics investiga-
tions aimed at relevant objectives in clinical application for
lymphoma; and (c) imaging modalities such as ultrasound,
computed tomography (CT), magnetic resonance imaging
(MRI), scintigraphy and positron emission tomography
(PET) or PET/CT were applied. The exclusion criteria were
as follows: (a) preclinical and animal studies; (b) studies not
within the field of interest; (c) studies focused on methodo-
logical aspects, or test-retest studies; (d) testing data (not med-
ical images) as input for algorithms; and (e) case reports, re-
views, poster presentations, conference abstracts and expert
opinion papers. All articles were identified by two reviewers
according to the aforementioned criteria. The extracted data
included the following: study title, author, publication time,
study population, patient characteristics, measurement charac-
teristics, results and conclusions.

Quality assessment and data analysis

The quality of the studies was independently assessed by two
reviewers. The criteria included the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) [17], the phase
classification criteria for image mining studies [15] and the
RQS tool [14]. The QUADAS-2 is used for diagnostic accu-
racy studies as detailed in Supplemental Table S2; any dis-
agreement was resolved by consensus. The phase classifica-
tion criteria assign image mining studies to the discovery sci-
ence and phases 0–IV (Supplemental Table S3); any disagree-
ment was resolved by consensus. The RQS tool evaluates the
validity and bias of the studies (Supplemental Table S4); a
radiomics study can achieve a total of 36 points maximum,
and scores are presented in the form of a percentage.
Agreement between the reviewers was assessed by means of
a weighted kappa statistic in SPSS version 25.0 for Mac. If all
ratings are the same for at least one reviewer, the weighted
kappa value cannot be calculated [18, 19].

Results

A total of 332 records were identified until 25 January
2020. After full-text review, 45 studies were included in
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this systematic review, and the entire process is shown in
Fig. 1. For the sake of simplicity, we condensed the in-
cluded studies into two categories by intended use:
diagnosis-related studies (n = 29) [20–42, 44–49] and
therapy response and outcome-related studies (n = 15)
[50–64]. One study explored both the diagnostic and
prognostic value of radiomics features in diffuse large B
cell lymphoma (DLBCL) [43], so we analysed it in both
categories. All the studies were retrospective. The sample
size ranged from 9 to 251, and 9 of 45 (20%) studies
enrolled more than 100 patients. A total of 15 studies
(33.3%) performed validation analysis, including 12
diagnosis-related studies [22–24, 26–28, 31, 33, 37, 41,
44, 48] and 3 therapy response- and outcome-related stud-
ies [58–60]. The most commonly used radiomics software
included MATLAB and the MATLAB-based packages
(n = 14), LifeX (n = 10), MaZda (n = 6) and Pyradiomics
(n = 5). A brief introduction of the software or the plat-
forms used in the included studies is shown in
Supplemental Table S5. There were 23, 16 and 6 studies
that performed manual, semiautomatic and automatic seg-
mentation, respectively.

Radiomics for diagnosis and classification
of lymphoma

Thirty studies (66.7%) [20–49] explored the diagnostic feasi-
bility of radiomics features in lymphoma (Table 1). The most
common modality was MRI (16 of 30). Thirteen papers

[21–32, 42] focused on the differential diagnosis of primary
central nervous system lymphoma (PCNSL) and glioblastoma
(GBM). A majority of results showed that radiomics features
can be used to effectively differentiate lymphoma from anoth-
er disease, and the area under the curve (AUC) values of all
the studies ranged from 0.730 to 1.000. Several studies [27,
28, 35, 42, 45–47] compared the diagnostic performance of
radiomics features with that of other diagnostic methods (e.g.,
visual evaluation, the ADC value, PETmetabolic parameters);
the results indicated that radiomics features can diagnose or
classify lymphoma more accurately. Only one study [32] re-
ported that textural features are noninferior to expert human
evaluation in the differentiation of PCNSL and enhancing
glioma.

Radiomics for prediction of therapy responses
and outcome of lymphoma

Sixteen studies (35.6%) [43, 50–64] examined the association
between radiomics features and the therapy response or out-
come of lymphoma (Table 2); of these studies, 18F-FDG-
PET and PET/CT were the most common modalities (11 of
16 studies). Nine studies demonstrated a promising relation-
ship between radiomics features and therapy response in pa-
tients with Hodgkin’s lymphoma (HL) [54, 58, 59, 63], non-
Hodgkin’s lymphoma (NHL) [50, 51, 57, 59], DLBCL [60]
and follicular lymphoma (FL) [61]. Two studies [57, 60] re-
ported that texture features could not evaluate the therapy

Fig. 1 Flowchart of study
selection. n = number of records
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response of NHL, although several features were correlated
with the presence of a residual mass at the end of therapy [57].

In addition to treatment response, ten studies focused on
the outcome of lymphoma and found that radiomics features
are prognostic predictors for the outcome of patients with HL
[53, 62, 63], DLBCL [43, 64] and other types of lymphoma
[52, 53, 55–57, 61]. Several studies [43, 53, 55, 56, 63, 64]
reported a better performance of radiomics features than that
of clinical parameters (e.g., Ann Arbor stage) and convention-
al parameters. Only one study [61] reported that texture fea-
tures were not significant predictors of progression-free sur-
vival (PFS) in FL.

Quality analysis of the included studies

The risk of bias and applicability concerns according to the
QUADAS-2 for 30 diagnosis-related studies are shown in
Fig. 2 (Supplemental Table S6). Regarding patient selection,
20 studies were considered to have a high or an unclear bias
risk because of the unclearness of the detailed exclusion
criteria [20–23, 31, 38, 39, 44, 49] and/or the limitation of

case-control studies [20, 27, 33, 34, 39, 45, 47–49].
Regarding the index test, 10 studies were considered to have
an unclear bias risk, because no threshold was used and the
blinding between the index test and reference standard was
unclear [22, 29–31, 36–38, 43, 44, 49]. The applicability con-
cern was high for 19 studies [20–22, 24, 25, 28, 31, 32, 34–36,
38, 41, 43–47, 49] because the variability in the parameters of
the radiomics approach was not detected. No study was con-
sidered as high risk in the domain of reference standard be-
cause the reference standard of all studies is pathology.

According to the phase classification criteria for image
mining studies, 32 of 45 (71.1%) were classified as discovery
science and 12 of 45 (26.7%) were classified into phase 0
(Fig. 3a). The details of the RQS of all included studies and
the mean RQS between reviewers are provided in
Supplemental Table S7. The mean RQS of all studies were
14.2% (ranging from 0.0 to 40.3%), and 23 of 45 (51.1%)
studies were given a quality score of < 10% (Fig. 3b, c). The
inter-observer agreement is presented in Supplemental
Table S8. According to the weighted kappa coefficient, the
inter-reviewer reliability of 11 domains was moderate to good

Fig. 2 Grouped bar charts of the
risk of bias and concern for
applicability of the included
diagnosis-related studies using
QUADAS-2

Eur Radiol



(0.60–1.00). Nevertheless, the inter-rater reliability was poor
in the “Comparison to gold standard” (0.394) and the
“Potential clinical utility” (0.036). In addition, the scores on
the “Image protocol quality” and the “Prospective study reg-
istered in a trial database” are completely consistent between
the two reviewers. The scores on the “Cost-effectiveness anal-
ysis” are discrepant (one reviewer gave all the studies a 0), and
the inter-reviewer agreement of the above domains could not
be assessed by the weighted kappa coefficient.

Discussion

The present systematic review explored whether radiomics
could provide information about the diagnosis, therapy re-
sponse and outcome of lymphoma, and evaluated the quality
of included studies using the QUADAS-2, the phase classifi-
cation criteria for image mining studies, and the RQS. Despite
promising results, those studies were far from providing de-
finitive conclusions for clinical implementation and

widespread use of radiomics with regard to immature phases
and relatively poor quality.

Notably, 44 of 45 (97.8%) studies were classified as the
discovery science or phase 0, because of a lack of valida-
tion analysis, sample size limitation (< 100 patients) and/or
retrospective design. For example, one study with 77 pa-
tients only reported a high diagnostic accuracy (AUC =
0.921) of radiomics features in the training cohort, but this
result is less reliable and needs to be further validated [27].
It has been proposed that at least 10 to 15 observations per
variable will produce stable estimates for a linear model
[65], and at least 50 patients are suggested to be included
in radiomics studies [15]. Additionally, a limited number
of studies performed external validation analysis [23, 26,
28]. Ideally, the performance of the prediction model
should be validated on a dataset that is independent from
the training dataset. Another available option is the cross-
validation if independent validation cohorts are not avail-
able [66]. A systematic review [15] analysed 141 studies
on radiomics and found that 84% of studies were classified

Fig. 3 a Histogram of the phase
of studies according to the
modality; b pie chart of the mean
RQS score of studies; c histogram
of the mean RQS score of each
study, where the mean RQS
scores are listed from left to right
in order of citation
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as phase II–III, but they only included high-quality studies
and excluded studies that lacked validation or conventional
metrics for the report of validation results. Thus, the cur-
rent results of lymphoma radiomics research are still
immature.

The lack of a rigorous procedure largely contributed to the
low RQS scores of the included studies. Some studies only
reported the association of radiomics features and lymphoma
characteristics without the awareness of establishing a predic-
tion model [21, 25, 34, 50, 51, 54]. Few studies have analysed
feature robustness considering differences across machines,
segmentations or temporal variability. In addition, the associ-
ation and combination of radiomics and genomics, known as
“radiogenomics”, were absent in the current studies. Further
radiogenomic studies are needed to reveal predictive radiomic
signatures and gene expression patterns and to broaden clini-
cal imaging into genomic and molecular imaging. These re-
sults are similar to those of a previous systematic review [67],
which reported that a majority of included studies scored be-
low 50%. Another article [68] reported a mean RQS score of
26.1% in 77 radiomics studies with a high-impact factor, and
the RQS scores were low in the domains of test–retest analy-
sis, prospective study, clinical utility, and open science. In the
last few years, several guidelines have been proposed to en-
courage radiomics workflows to be described in detail and
provide suggestions for research related to the construction
of models [69–71]. These guidelines need to be pursued for
radiomics to become a viable tool in clinical situations.

There were some discrepancies in the inter-reviewer inter-
pretation of the RQS tool. Eleven studies [26, 27, 29, 32, 33,
38, 43, 47, 54, 57, 59] received different scores in
“Comparison to gold standard” by two reviewers, which
may be explained by the unclear definition of the current gold
standard method, and no gold standard exists for the assess-
ment of the outcome (e.g., changes in NHL tissue during
chemotherapy). Additionally, the contents of some domains
may be subjectively interpreted by reviewers. For example,
the domain of “Potential clinical utility” suggested reporting
the application of the model in a clinical setting. One reviewer
regarded decision curve analysis as the only criterion, while
another also considered statements in these studies. Finally,
some components may require a professional background and
sufficient knowledge of statistics, which limits their wide-
spread use and promotion, such as “Calibration statistics” (re-
port calibration-in-the-large or calibration plots). The complex
radiomics workflow contributed to the complex evaluation
components of the RQS tool and posed challenges to inter-
reviewer agreement. As radiomics is still a work-in-progress
biomarker and is developing constantly, the RQS tool should
be revised as well to become a widely accepted tool for radio-
logical research methodologies [67, 68].

Segmentation methods of lymphoma are contentious due
to the multiplicity and multifocality of lymphoma, especially

in lesions with indistinct borders. A total of 23 of 45 (51.1%)
studies performed manual delineation methods. Although
good inter-observer repeatability of manual segmentation
was reported [25, 32, 35], it is a subjective and labourious
method related to high intra- and interoperator variations
[57, 72]. Additionally, different segmentation methods may
include and exclude different tumour areas [73, 74], and fur-
ther studies should explore what type of segmentation is more
suitable for lymphoma. For instance, it was found that in
PCNSL and GBM, the number of features increased after
expanding the edge of the ROI, suggesting that the peri-
tumour area may contain valuable information [42]. Several
studies performed multiple segmentations [26, 42, 53, 57, 59]
and reported better segmentation methods with respect to out-
come prediction [57, 59].

The values of radiomics features may be significantly in-
fluenced by tumour volumes, particularly in tumours with
relatively small size [75–77]. This is why previous studies
recommended cutoff values of tumour volumes for radiomics
analysis, for instance, 10 cm3 [75], 45 cm3 [76] and 60 cm3

[77]. Most of the included studies did not report the volume of
target lesions or selected lesions according to the
abovementioned criterion, thereby affecting the robustness
of the results. For PET, some radiomics features also depend
on metabolism [78]. Several studies defined conventional
PET metabolic parameters (e.g., SUV-based parameters) as
radiomics features and/or considered them independently of
each other [55, 56, 61–64]. This may contribute to feature
redundancy and underestimated performance of radiomics.
Therefore, selecting lesions with caution and investigating
the interactions between features are recommended for further
research.

Inter- and intratumoural heterogeneities vary with the
pathological pattern of lymphoma [13]. Lymphoma le-
sions located in different organs or tissues can provide
different radiomics information, considering the different
contrast and signal-to-noise ratio of images [35].
Published studies have mainly classified lymphoma ac-
cording to affected organs [20–32, 36–38, 42, 45–48],
and some studies did not present a detailed pathology
pattern [33, 50, 53], which may contribute to confusing
results. One study with 60 patients [44] classified lym-
phoma subtypes with learning algorithms. For HL, the
sensitivity and predictive positive value of this approach
were 97.0% and 94.1%, respectively. However, the small
number of patients within each pathological type sub-
group could have biased the results. It is unclear whether
the change in features due to the pathology pattern is
larger than that of the location or not, which should be
evaluated in future work [15].

18F-FDG-PET/CT plays an indispensable role in the diag-
nosis, staging, therapeutic evaluation and follow-up manage-
ment of lymphoma [79]. Eighteen of the included studies
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(40.0%) extracted radiomics features from PET images.While
a limited number of the included studies compared or integrat-
ed radiomics features extracted from PET and CT images
[47–49, 63, 64], it was found that combined modalities
achieved a better performance than a single modality [80].
Therefore, the performance improvement by use of
multimodality features should be investigated. Additionally,
among 11 studies focused on the predictive and prognostic
value of PET, ten studies (90.9%) derived features from pre-
treatment images. Only one study [60] explored the predictive
value of features derived from pre- and posttreatment images
in solid tumours and lymphoma, and the results showed that
the change in radiomics features may be associated with treat-
ment response in solid tumours. Longitudinal features derived
from images at multiple time points can provide complemen-
tary information and improve prediction performance [60].
Thus, analysing features from images at different time points
(pretreatment, during treatment and posttreatment) is useful to
illuminate temporal variabilities of radiomics features and to
deepen the understanding of radiomics potential in lymphoma
treatment decisions.

The limitations of this systematic review are as follows.
First, only published English language articles were included.
Second, the body of literature is small when considering the
number of lymphoma subtypes, treatments and imaging tech-
niques. Third, we did not validate extracted study
characteristics.

Conclusions

In summary, the radiomics approach shows potential utility
for diagnosis, therapy response evaluation and outcome pre-
diction in lymphoma. Nevertheless, the immature phases and
low quality of the studies imply that current conclusions are
not robust. Before radiomics can be successfully introduced
into lymphoma clinical settings, more research is needed to
examine lesion segmentation and selection, the influence of
pathological pattern and the extraction of multiple modalities
and multiple time point features.
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