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Summary
Purpose Galunisertib, a TGF-β inhibitor, has demonstrated antitumor effects in preclinical and radiographic responses in some
patients with malignant glioma. This Phase 1b/2a trial investigated the clinical benefit of combining galunisertib with
temozolomide-based radiochemotherapy (TMZ/RTX) in patients with newly diagnosed malignant glioma (NCT01220271).
Methods This is an open-label, 2-arm Phase 1b/2a study (N = 56) of galunisertib (intermittent dosing: 14 days on/14 days off
per cycle of 28 days) in combination with TMZ/RTX (n = 40), versus a control arm (TMZ/RTX, n = 16). The primary objective of
Phase 1b was to determine the safe and tolerable Phase 2 dose of galunisertib. The primary objective of Phase 2a was to confirm
the tolerability and pharmacodynamic profile of galunisertib with TMZ/RTX, and the secondary objectives included determining
the efficacy and pharmacokinetic (PK) profile of galunisertib with TMZ/RTX in patients with glioblastoma. This study also
characterized the changes in the major T-cell subsets during TMZ/RTX plus galunisertib treatment. Results In the Phase 2a study,
efficacy results for patients treated with galunisertib plus TMZ/RTX or TMZ/RTX were: median overall survival (18.2 vs 17.9
months), median progression-free survival (7.6 vs 11.5 months), and disease control rate (80% [32/40] vs 56% [9/16] patients)
respectively. PK profile of galunisertib plus TMZ/RTX regimen was consistent with previously published PK data of
galunisertib. The overall safety profile across treatment arms was comparable. Conclusion No differences in efficacy, safety or
pharmacokinetic variables were observed between the two treatment arms.
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Introduction

Glioblastoma (GB) is the most common and aggressive brain
cancer representing approximately 15% of all primary brain
tumors, and about 55% of all gliomas [1]. The standard of care
for patients with GB consists of maximal surgical resection
followed by radiotherapy (RTX) with concomitant and main-
tenance temozolomide (TMZ). This therapy results in
progression-free survival (PFS) at 6 months of 53.9% and
median overall survival of 14.6 months [2]. Most of the
therapy-responsive patients will die within a period of 2 years
and the 2- and 5-year overall survival rates are 27% and 9.8%,
respectively [3].

GB is characterized by persistent angiogenesis at the tumor
site, and decreased peripheral immune responsiveness in pa-
tients [4]. GB microenvironment is enriched in immunosup-
pressive molecules such as transforming growth factor
(TGF)-β that plays a specific role in cancer cell growth [5],
in addition to affecting immune cell response, and endothelial
cell and fibroblast differentiation [6, 7].

TGF-β is a multifunctional cytokine that is involved in a
variety of cell functions including cell proliferation, migration,
survival, and death that influence tumor growth in advanced
forms of cancer [6, 7]. Upon binding to their ligands
(TGF-β1, 2, and 3), the TGF-β kinase receptors are phosphor-
ylated triggering phosphorylation of SMAD2 and SMAD3,
and formation of SMAD complexes [8, 9].

Galunisertib is an oral small molecule inhibitor of TGF-β
kinase receptor type I (TGF-β RI/ALK5) [10] and selectively
inhibits the serine/threonine activity of the receptor, thereby
preventing the phosphorylation of downstream proteins,
SMAD2 and SMAD3 [10]. The antitumor activity of
galunisertib has been demonstrated in three different in vivo
tumor models; two breast cancer models, MX1 and 4 T1; and
a non-small cell lung cancer model, Calu6 and fibrosis
[11–13].

Based on the role of TGF-β in patients with malignant GB,
evidence of antitumor effects of TGF-β inhibitors such as
galunisertib (including in a monotherapy study in glioblasto-
ma), and a favorable short- and long-term toxicity profile [14,
15], a multicenter Phase 1b/2a clinical trial was initiated to
investigate the clinical benefit of combining galunisertib with
standard TMZ-based radiochemotherapy (TMZ/RTX) in pa-
tients with newly diagnosed malignant glioma.

Methods

Patients

Eligible male and female patients were 18 years and
older with histological ly proven, World Health
Organization Grade III (Phase 1b part only) and IV

(Phase 1b/2a) malignant glioma. Patients with newly di-
agnosed and untreated intracranial GB including lower
grade glioma, which evolved into GB were eligible.
Patients with moderate or severe cardiac disease were
not eligible. Adequate hematologic, hepatic, and renal
function, and a performance status of ≤ 1 on the
Eastern Cooperative Oncology Group (ECOG) scale
were required. Concurrent use of stereotactic radiosur-
gery was not allowed. A biopsy or resection was re-
quired no more than 6 weeks prior to treatment and an
MRI was required within 72 h after surgery; measurable
or assessable disease was not required. Patients were re-
quired to begin study treatment within 2–6 weeks after
surgery.

This study was conducted according to the principles of
good clinical practice, applicable laws and regulations, and
the Declaration of Helsinki. The protocol was approved by
each institution’s review board. This study was conducted in
9 centers in 3 countries. Between April 2011 and August
2015, 101 patients entered the study but only 75 patients were
enrolled and received at least one dose of galunisertib or TMZ
(patients on therapy; Online Resource: Supplemental Fig. 1).
All patients provided written informed consent. This trial is
registered with ClinicalTrials.gov (NCT01220271).

Study design

In Phase 1b, two dose levels of galunisertib (2 cohorts: 160 mg/
day or 300 mg/day) in combination with radiochemotherapy
were studied to determine the dose for the Phase 2a portion of
the study (Online Resource: Supplemental Fig. 2A). In Phase 2a,
eligible patients were enrolled, and randomized (3:1) to either
galunisertib at 300 mg/day plus radiochemotherapy, or to a con-
trol arm of radiochemotherapy (Online Resource: Supplemental
Fig. 2A). Patients received galunisertib on an intermittent dose
regimen of 14 days on/14 days off for a 28-day cycle (Online
Resource: Supplemental Fig. 2B).

Study treatment

RTX consisted of 30 fractions at 1.8 to 2.0 Gy/dose (5 days a
week for 6 weeks) for a total dose up to 60 Gy (Online
Resource: Supplemental Fig. 2B). Galunisertib was given
orally twice daily as 150 mg tablets for 14 days on/14 days
off. TMZ was administered as recommended [2]. All patients
received at least 6 cycles of therapy until disease progression,
death, or discontinuation due to adverse events (AEs), or other
reasons.

Safety assessments

Safety was evaluated on all patients (Phase 1b and 2a) who
received at least one dose of galunisertib or TMZ. Safety
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analyses included AE rates, laboratory and non-laboratory
changes, physical examination and other safety observations
including cardiac safety, such as echocardiography/Doppler,
chest CT scan, and cardiac plasma markers (brain natriuretic
protein, Troponin I, Cystatin C and high sensitivity C-reactive
protein).

Efficacy assessments

Primary objective of the Phase 1b study was to determine the
safe and tolerable Phase 2a dose of galunisertib in patients
treated concomitantly with radiochemotherapy, and the phar-
macokinetics (PK) of galunisertib in combination with TMZ.

Primary objective of the Phase 2a study was to confirm the
tolerability, and evaluate the pharmacodynamic (PD) effect on
T-cells of galunisertib when combinedwith TMZ-based radio-
chemotherapy in patients with GB, as measured by changes in
response biomarkers and their relationship to clinical benefit
(overall survival [OS]). The secondary objectives were to
evaluate time-to-event variables such as progression-free sur-
vival (PFS), time-to-treatment failure (TTF), time-to-tumor
progression (TTP), duration-to-tumor response (DTR), over-
all response rate and clinical benefit rate. Galunisertib PK was
also characterized (Online Resource: Supplemental Methods).
Assessment of tumor response was based on Response
Assessment in Neuro-Oncology (RANO) criteria [16]
(Online Resource: Supplemental Methods).

Pharmacodynamics of biomarkers

Tumor tissue and blood samples were collected at baseline
and at specified times post-baseline. The baseline expression
of tissue biomarkers including glial fibrillary acidic protein
(GFAP), Ki67, CD3, phospho-SMAD2 (pSMAD2), and
isocitrate dehydrogenase 1 (IDH1) R132H was evaluated by
immunohistochemistry staining and scoring method as de-
scribed previously [17] (Online Resource: Supplemental
Methods).

Patients’ hematology, and expression of lactate dehy-
drogenase (LDH), YKL-40, and serum S100β were deter-
mined by clinical laboratory tests. Plasma TGF-β and
MDC/CCL22 were measured by enzyme-linked immuno-
sorbent assay (ELISA) (R&D systems), and multi-analyte
immunoassay panel (MAIP) of 47 analytes (Myriad/
RBM), respectively.

Blood samples from patients were collected and prepared
for flow cytometry by Quintiles laboratories (Durham, NC) to
determine the expression of CD3+ T cell subsets, such as
CD4+ and CD8+, and T regulatory cells defined as CD4 +
CD25 + CD127-FoxP3+. Cell staining strategy is described in
Online Resource: Supplemental Methods.

Statistical methods

Patient disposition, demographic, safety, drug-related treat-
ment-emergent adverse events (TEAEs), and response data
were summarized using patient number, frequency counts,
or percentages as appropriate. The safety analysis was based
on summaries of AEs reported in Common Terminology
Criteria for Adverse Events (CTCAE) version 4.0, and possi-
bly drug related.

All time-to-event variables were analyzed using the
Kaplan-Meier method with 90% confidence interval
(CI). Univariate Cox models were used to evaluate results
for potential prognostic markers by considering their im-
pact on OS and PFS. Continuous markers were first con-
verted to 2-level categorical variables by dichotomizing at
the median and hazard ratios between treatment arms es-
timated for each level.

The absolute cell number of Treg cells, CD4+, and CD8+ T
cells from each patient were presented in profile plots together
with the geometric mean and 90% CI at baseline, Day 42 and
Day 182 for each cell type. Pair-wise t-Tests were used to
estimate the change from baseline to Day 42 for T cell subsets
in each arm.

Results

Phase 1b

A Phase 1b study was performed to determine a safe and
tolerable Phase 2a dose of galunisertib in combination
with radiochemotherapy in patients with GB (Online
Resource: Supplemental Fig. 1). PK analysis for
galunisertib was also completed at two dose levels of
galunisertib (160 mg/day [n = 10] or 300 mg/day [n = 9])
given to Phase 1b eligible patients (Online Resource:
Supplemental Table 2) . The dose escalat ion of
galunisertib to 300 mg/day did not increase the toxicity
profile, and overlapping toxicity was not observed when
combined with radiochemotherapy (Online Resource:
Supplemental Table 3). The Phase 1b PK data were con-
sistent with previous PK analyses of galunisertib (Online
Resource Supplemental Fig. 4A-C). Based on overall tox-
icity and PK information from Phase 1b, 300 mg/day of
galunisertib was selected for the Phase 2a part of the
study (Online Resource: Supplemental Results).

Patient dispositions, demographics, and baseline
characteristics

A total of 59 patients from multiple centers were randomly
assigned to the Phase 2a study, and 56 patients received at
least one dose of galunisertib at 300 mg/day [14]
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concomitantly with TMZ-based radiochemotherapy (n = 40)
or TMZ-based radiochemotherapy (n = 16; Fig. 1). Among
the Phase 2a patients, 38/56 (67.9%) had received complete
or partial surgery as the only prior treatment for their disease;
26/40 (65%) patients who had prior surgery were treated with
galunisertib plus radiochemotherapy; and 12/16 (75%) pa-
tients were treated in the radiochemotherapy alone arm
(Table 1).

Treatment discontinuation

The major reason for treatment discontinuation was progres-
sive disease (37/56 [66.1%] (Fig. 1). By the end of the study,
42/56 (75%) patients from the two treatment arms had died
(galunisertib plus radiochemotherapy, 31/40 [77.5%]; radio-
chemotherapy, 11/16 [68.8%]). Of those who died, 35/56
[62.5%] were due to disease progression, 3/56 [5.4%] were
due to AEs that started 30 days after study treatment discon-
tinuation and cause of death was not reported for 4/56 [7.1%]).
Among the 56 patients enrolled in the Phase 2a clinical trial,
28 (50%) patients moved to other anti-cancer therapies (main-
ly bevacizumab and TMZ) after treatment discontinuation due
to disease progression (Fig. 1).

Efficacy of treatment

Overall survivalwas 18.2months (95%CI: 13.4, 20.6months)
in the galunisertib plus radiochemotherapy arm compared to
17.9 months (95% CI: 10.7, 24 months) in the radiochemo-
therapy arm (Fig. 2a-c). Galunisertib plus radiochemotherapy,
and radiochemotherapy alone had a censoring rate of 22.5%
and 31.3%, respectively.

The galunisertib plus radiochemotherapy arm showed a
median PFS of 7.6 months (95% CI: 6.1, 10.4 months), and
the probability that PFS at 12 and 24 months, was 25% (90%
CI: 14, 37%) and 5% (90% CI: 1, 14%), respectively (Fig. 2b
and c). In comparison, the radiochemotherapy arm had a me-
dian PFS of 11.5 months (95% CI: 5.4, 15.9 months) (Fig. 2b
and c).

Assessment of tumor response showed that 3 out of
40 patients (7.5% [90% CI: 2.1, 18.3%]) from
galunisertib plus radiochemotherapy arm had a complete
response compared to none in radiochemotherapy arm
(Online Resource: Supplemental Table 1). Therefore,
the overall disease control rate in the galunisertib plus
radiochemotherapy arm was higher than in the radioche-
motherapy arm (80% [90% CI: 66.8, 89.6%] vs 56.3%
[90% CI: 33.3, 77.3]).

Phase 2a

59 patients randomized

56 patients enrolled and received ≥1 dose

Galunisertib + TMZ/RTX
(N=40)

TMZ/RTX
(N=16)

● Reason for treatment discontinuation:
- Progressive disease n=30
- Adverse event n=1

o Grade 4 Pneumonitis
- Subject decision n=4
- Physician decision n=4
- Consent withdrawn n=1

● Reason for study discontinuation:
- Subject decision n=2
- Death n=31

o Study disease n=26
o Adverse eventsa n=2
o Not reported n=3

●Treatment cycles received per patient before discontinuation:
- Galunisertib: Median 6.5 cycles

Range 2-23 cycles
- TMZ: Median 6 cycles, 

Range 2-15 cycles
● Anti-cancer therapies after study drug discontinuation, n (%) 

- Patients receiving ≥ 1 therapy, n=22 (55)
- Antineoplastic agents: 

o Bevacizumab n=10 (25)
o TMZ n=6 (15)

● Reason for treatment discontinuation:

- Progressive disease n=7
- Sponsor decision n=1
- Subject decision n=3
- Physician decision n=4
- Consent withdrawn n=1

● Reason for study discontinuation: 
- Death n=11

o Study disease n=9
o Adverse eventa n=1
o Not reported n=1

● Treatment cycles received per patient before 
discontinuation:

- TMZ: Median 7 cycles, 
Range 2-14 cycles

● Anti-cancer therapies after study drug discontinuation, n (%)
- Patients receiving ≥ 1 therapy, n=6 (37.5)
- Antineoplastic agents: 

o Bevacizumab n=0 (0.0)
o TMZ n=2 (12.5)

Fig. 1 Patient dispositions from treatment. Abbreviations: TMZ= temozolomide; RTX= radiation. aAEs not-related to study treatment as AEs happened
>30 days after discontinuation of study treatment.
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Safety profile (AEs)

Possible all grade drug-related TEAEs (determined by
CTCAE grade) occurring at a frequency of ≥10% of patients
are described in Table 2. The most common (≥20%) all grade
laboratory events in galunisertib plus radiochemotherapy arm
were platelet count decreased (45%), lymphocyte count de-
creased (32.5%), and white blood cells decreased (30%). The
percentage of grade 3–4 drug-related TEAEs was higher in
patients treated with galunisertib plus radiochemotherapy
compared to radiochemotherapy alone. Grade 3–4 most com-
mon drug-related TEAEs (≥10%) were decreases in platelet,
lymphocyte, and white blood cell count. The most commonly
reported (≥20%) all grade non-laboratory events in the
galunisertib plus radiochemotherapy arm were fatigue
(62.5%), nausea (52.5%), constipation (40%), alopecia
(40%), vomiting (30%), and appetite decreased (20%).

Correlation between biomarkers and clinical benefit

Describing and comparing the effect of galunisertib in combi-
nation with TMZ-based radiochemotherapy on major subsets
of circulating immune cells, particularly Tregs (CD4 +
CD25 + CD127-FoxP3+ T cells), was one of the main trans-
lational objectives of this study (Online Resource:
Supplemental Fig. 3). The analysis of OS/PFS across baseline
biomarkers showed no association between baseline Tregs
and OS/PFS (Online Resource: Supplemental Fig. 3A and

3B). The subgroup most favoring galunisertib plus radioche-
motherapy treatment compared to control was a high ratio of
CD4/CD8, however it was not statistically significant.

Next, we evaluated the T cell counts in both treatment arms
every 2 weeks for 24 weeks (Fig. 3a). Variability within and
between patients was observed, but when the geometric means
were assessed at baseline, Day 42 (end of radiation therapy), and
Day 182 (adjuvant phase), it was apparent that CD4 and CD8
lymphocytes in galunisertib plus radiochemotherapy arm were
numerically decreased during radiochemotherapy (i.e., Day 42)
as previously reported for CD4 T cells [18]. A pair-wise T-test
analysis comparing the geometric mean of CD4, CD8, and Treg
cells at baseline and Day 42 showed a significant decrease in
these cell types in the galunisertib plus radiochemotherapy arm
(Baseline vs Day 42: 545.0 vs 260.2 [CD4]; 227.2 vs 131.8
[CD8]; 19.8 vs 12.1 [Treg]; Fig. 3b). After radiation, the cell
counts stayed steady or slightly recovered over time when
galunisertib and TMZ were given as an adjuvant treatment.
After 200 days of galunisertib plus radiochemotherapy treatment,
approximately 22 weeks after radiation (≈ Cycle 8) and during
adjuvant treatment with TMZ, we observed two clusters of pa-
tients, one with a high number of CD8 T cells (11/16 patients),
the other with a low cell number (5/16 patients) by a cutoff of
around 120 cells/μl (Fig. 3a). This may suggest that galunisertib
treatment may provide some protective effect on CD8 T cell
population in a subset of patients.

Previous studies identified IDH1 R132H mutation as a posi-
tive prognostic marker of GB that occurs with a prevalence of

Table 1 Patient demographics
and baseline characteristics Characteristics (Phase 2a) Gal + TMZ/RTX

N = 40

TMZ/RTX

N = 16

Total

N = 56

Gender, Male 22 (55.0) 11 (68.8) 33 (58.9)

Age, years, mean, (SD) 58.7 (8.9) 57.8 (11.6) 58.4 (9.7)

Race, White 39 (97.5) 15 (93.8) 54 (96.4)

ECOG PS

0 14 (35.0) 8 (50.0) 22 (39.3)

1 26 (65.0) 7 (43.8) 33 (58.9)

Missing 0 (0.0) 1 (6.3) 1 (1.8)

Basis of initial pathological diagnosis

Histopathological 39 (97.5) 16 (100) 55 (98.2)

Missing 1 (2.5) 0 (0.0) 1 (1.8)

Study entry pathological diagnosis

Glioblastoma 39 (97.5) 16 (100) 55 (98.2)

Glioma, oligodendroglioma 1 (2.5) 0 (0.0) 1 (1.8)

Prior treatment

Surgery 26 (65.0) 12 (75.0) 38 (67.9)

Partial 14 (35.0) 6 (50.0) 20 (35.7)

Complete 12 (30.0) 6 (50.0) 18 (32.1)

To note: data given as No. (%) unless otherwise indicated

Gal galunisertib, TMZ temozolomide, RTX radiation, SD standard deviation, ECOG PS Eastern Cooperative
Oncology Group performance status
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almost 85% in secondary GB and approximately 5% in primary
GB [19]. In the present study, the IDH1 R132H mutation was
found on 6 of the 78 (8%) Phase 1b/2a-tested patients and all 6
were treated with galunisertib plus radiochemotherapy, 4 in the
Phase 1b Cohort (data not shown) and 2 in the Phase 2a Cohort
(Online Resource: Supplemental Table 4).

Prior to therapy, the expression of the following known
tumor tissue biomarkers CD3, Ki67, GFAP, and pSMAD2
were assessed (Online Resource: Supplemental Table 4). No
association between these factors and clinical outcome were
identified (data not shown). In addition, the PD analysis con-
ducted to determine the effect of galunisertib plus radioche-
motherapy treatment on plasma markers (LDH, YKL-40,
S100β, TGF-β and MDC/CCL22) did not find any associa-
tion between the treatment and biomarkers (data not shown).

Discussion

We here report the efficacy, safety, and PD of galunisertib com-
bined with radiochemotherapy in newly diagnosed malignant
glioma. The overall toxicity and PK results from the Phase 1b
study (Online Resource: Supplemental Results) were used to
determine the recommended Phase 2a dose. Additionally, PK

studies done during Phase 2a showed that the plasma levels of
galunisertib were not altered when combined with TMZ and
radiation (Online Resource: Supplemental Fig. 4) and achieved
the targeted biologically effective dose level.

While both treatments showed comparable results for median
OS (18.2 vs 17.9 months), the galunisertib plus radiochemother-
apy group had a shorter estimated PFS than the radiochemother-
apy group (7.6 vs 11.5 months). This difference might be ex-
plained by the small number of patients in both arms or the earlier
withdrawal of patients from galunisertib plus radiochemotherapy
arm. For example, 55% of patients from the experimental arm
were moved to subsequent therapies, versus 37.5% of patients
from control received other therapies (Fig. 1).

The overall safety data across treatment arms was similar;
however, the frequency of grade 3–4 toxicities was higher in
the galunisertib plus radiochemotherapy arm. There was a
severe case of myeloablative marrow aplasia during the first
cycle of treatment in a Phase 1a patient; this finding is more
likely related to the known side effect of TMZ and radiation
than to galunisertib treatment [20]. Galunisertib was not asso-
ciated with bone marrow side effects in preclinical toxicology
studies evaluating galunisertib in human bone marrow assays
or in other combination studies with chemotherapeutic agents
[14].
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0.1
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0 4 8 12 16 20 24 28 32 36

Gal + TMZ/RTX TMZ/RTX
95% CI 95% CI

Time (months)

median

Number 
of patients 
at risk

40 35 18 9 4 3 2 0 0 0
16 14 10 7 4 3 2 1 1 0

Arms Median, m
(95% CI)

12-month (%)
(90% CI)

24-month (%)
(90% CI)

Censoring 
Rate (%)

Hazard ratio
(90% CI)

OS Gal + TMZ/RTX
TMZ/RTX

18.2  (13.4, 20.6)
17.9  (10.7, 24.0)

74 (59, 83) 
80 (56, 92)

27 (16, 39) 
33 (15, 53)

22.5
31.3 1.2 (0.7, 2.1)

PFS Gal + TMZ/RTX
TMZ/RTX

7.6 (6.1, 10.4)
11.5  (5.4, 15.9)

25 (14, 37)
47 (25, 66)

5   (1, 14)
13 (3, 31)

7.5
18.8 1.8 (1.0, 3.1)

TTF Gal + TMZ/RTX
TMZ/RTX

7.1 (5.5, 8.9)
8.8 (5.1, NR)

NR
NR

NR
NR

22.5
56.3 1.3 (0.6, 2.6)

TTP Gal + TMZ/RTX
TMZ/RTX

7.2   (6.1, 10.3)
11.5 (6.8, 22.5)

24 (13, 37)
43 (20, 64)

5   (1, 15)
21 (5, 44)

22.5
43.8 2.0 (1.1, 3.9)

DTR Gal + TMZ/RTX
TMZ/RTX

3.7 (1.9, 7.6)
NR

NR
NR

NR
NR

NR
NR 1.7 (0.3, 11.2)

c

Fig. 2 Summary of treatment responses. Kaplan-Meier estimates of OS
(a), and PFS (b). Summary of OS, PFS, TTF, TTP, and DTR (c).
Abbreviations: m =months; OS = overall survival; PFS = progression-

free survival; TFF = time-to-treatment failure; TTP = time-to-tumor
progression; DTR = duration of tumor response; Gal = galunisertib;
TMZ = temozolomide; RTX = radiation; NR =Not reported

Invest New Drugs



In addition, because cardiovascular toxicities are associated
with small molecule inhibitors of TGF-β signaling in preclin-
ical toxicology studies [21], cardiac toxicity was monitored in
all patients. Galunisertib treatment did not show any clinically
significant cardiac safety concerns, which are consistent with
previous reports for a TGF-β small molecule inhibitor [22].

Biomarker studies did not find any correlation between base-
line T cell subsets (including Tregs) and OS or PFS (Online
Resource: Supplemental Fig. 3A and 3B). As reported by others,
the CD4+, CD8+, and Treg cells count at 10 weeks post radio-
chemotherapy treatment were numerically decreased [23, 24].
The longitudinal analysis shows early decrease of CD4+ and
CD8+ Tcell counts during radiation, followed by a steady phase
or a slight recovery in these cells over timewithin the galunisertib
plus radiochemotherapy arm, while the pattern of CD4+, CD8+,
and Treg cell counts were steady over time in the radiochemo-
therapy arm during both radiation and post-radiation phases. In
other diseases, such as lung cancer, transient decreases in CD8+
Tcells followed by an increase is associated with better OS [25].
Hence, the relevance of our observation needs further examina-
tion in order to decide whether such a response would be also
expected in GB patients.

An exploratory analysis was performed to examine whether
any two clusters of patients with respect to OS and PFS emerged
after 200 days of galunisertib plus radiochemotherapy treatment
(Fig. 3a). This limited analysis set showed that the 5 patients with
a low number of CD8+ T cells had a mean OS of 25.5 months

and mean PFS of 14.4 months, and the 11 patients with a higher
number of CD8+ cells had a mean OS of 19.4 and mean PFS of
13.1 months. However, these observations need further confir-
mation in larger cohorts of patients.

Furthermore, we found no association between OS and
MDC/CCL22 contrary to reports for second line treatment
of GB patients [26]. It is possible that baseline levels of
MDC/CCL22 are different between first and second line pa-
tients. Additionally, we found no association between
pSMAD2 levels in tumor tissue and OS. The presence of
CD3+ T cells in tumor tissue was not associated with OS
changes. These findings are different from those reported for
the second line patients treated with galunisertib [17].

TGF-β is a major driver of glioma progression, via its role
in tumor cell proliferation and invasion, angiogenesis, and
immune suppression within the tumor microenvironment
[27]. Blocking TGF-β signaling by inhibition of its receptor
TGF-β RI is one strategy for abrogating its pro-tumorigenic
effects. Galunisertib is one of the only drugs in development
designed to specifically target TGF-β RI; it is furthest along
the clinical trial pipeline [28], not only in the setting of recur-
rent glioma/GB (in combination with TMZ/RTX in the current
study and in combination with lomustine in [15, 26]), but also
for other solid tumors. Galunisertib is currently being evalu-
ated in Phase 1/2 or Phase 2 studies in combination with
immune checkpoint inhibitors [29, 30], sorafenib [31], and
gemcitabine [32]. In a Phase 2 study in patients with

Table 2 Drug-related TEAEs by CTC grade (≥10%)

Gal + TMZ/RTX (N = 40) TMZ/RTX (N = 16)

Grade 1–2 Grade ≥3 All Grade Grade 1–2 Grade ≥3 All Grade

Laboratory Event

Platelet count decreased 12 (30.0) 6 (15.0) 18 (45) 3 (18.8) 1 (6.3) 4 (25.1)

Lymphocyte count decreased 5 (12.5) 8 (20.0) 13 (32.5) 2 (12.5) 1 (6.3) 3 (18.8)

White blood cells decreased 8 (20.0) 4 (10.0) 12 (30) 1 (6.3) 0 (0.0) 1 (6.3)

ALT increased 4 (10.0) 3 (7.5) 7 (17.5) 2 (12.5) 0 (0.0) 2 (12.5)

Neutrophil count decreased 5 (12.5) 2 (5.0) 7 (17.5) 2 (12.5) 0 (0.0) 2 (12.5)

Anaemia 6 (15.0) 0 (0.0) 6 (15) 0 (0.0) 0 (0.0) 0 (0.0)

Non-laboratory Event

Fatigue 24 (60.0) 1 (2.5) 25 (62.5) 6 (37.5) 0 (0.0) 6 (37.5)

Nausea 21 (52.5) 0 (0.0) 21 (52.5) 8 (50.0) 1 (6.3) 9 (56.3)

Constipation 16 (40.0) 0 (0.0) 16 (40) 4 (25.0) 0 (0.0) 4 (25.0)

Alopecia 16 (40.0) 0 (0.0) 16 (40) 3 (18.8) 0 (0.0) 3 (18.8)

Vomiting 11 (27.5) 1 (2.5) 12 (30) 5 (31.3) 0 (0.0) 5 (31.3)

Decreased Appetite 8 (20.0) 0 (0.0) 8 (20) 2 (12.5) 0 (0.0) 2 (12.5)

Headache 6 (15.0) 0 (0.0) 6 (15) 2 (12.5) 0 (0.0) 2 (12.5)

Dyspepsia 5 (12.5) 0 (0.0) 5 (12.5) 1 (6.3) 0 (0.0) 1 (6.3)

Weight decreased 5 (12.5) 0 (0.0) 5 (12.5) 1 (6.3) 0 (0.0) 1 (6.3)

To note: data given as No. (%) unless otherwise indicated

ALT alanine aminotransferase, Gal galunisertib, TMZ temozolomide, RTX radiation, TEAE treatment-emergent adverse events
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pancreatic cancer, the first line treatment of galunisertib in
combination with gemcitabine resulted in an OS benefit of
8.9 months compared to 7.1 months for patients receiving
gemcitabine alone (hazard ratio [HR], 0.79; 95% CI, 0.59–
1.09) [32]. In HCC patients with elevated alpha-fetoprotein
prior to treatment and who had previously progressed on so-
rafenib or were considered not eligible to receive sorafenib,
galunisertib monotherapy achieved a median OS of
7.3 months (95% CI, 4.9–10.5). OS was longer for those pa-
tients who showed reduced alpha-fetoprotein (>20% from
baseline) compared to non-responders (21.5 months vs
6.8 months) [33]. While these signals were encouraging, the
sponsor discontinued future clinical development for
galunisertib in mid-2017 [34]. Other TGF-β RI inhibitory
drugs in early clinical development (Phase 1) include
LY3200882 [35] and vactosertib [36], however there are no
published reports of efficacy of these compounds as of yet. In

contrast to these small molecule approaches, large molecule
development has had advances, including M7824 (bintrafusp
alfa), which is currently being evaluated in registration stud-
ies, including for NCSLC [37].

In conclusion, the combination of galunisertib with stan-
dard radiochemotherapy did not accentuate the toxicity profile
of the radiochemotherapy. Even though survival probability
was unchanged between the two treatments and PFS was re-
duced in the galunisertib plus radiochemotherapy arm, the
disease control rate was higher in the galunisertib plus radio-
chemotherapy treatment when compared to radiochemothera-
py treatment alone. Due to new R&D priorities, Eli Lilly
discontinued the development of galunisertib in 2017 [34].
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