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Abstract
Glioblastoma multiforme (GBM) is a very aggressive and infiltrative brain tumor with a high mortality rate. There are
radiomic models with handcrafted features to estimate glioblastoma prognosis. In this work, we evaluate to what extent of
combining genomic with radiomic features makes an impact on the prognosis of overall survival (OS) in patients with GBM.
We apply a hypercolumn-based convolutional network to segment tumor regions from magnetic resonance images (MRI),
extract radiomic features (geometric, shape, histogram), and fuse with gene expression profiling data to predict survival rate
for each patient. Several state-of-the-art regression models such as linear regression, support vector machine, and neural
network are exploited to conduct prognosis analysis. The Cancer Genome Atlas (TCGA) dataset of MRI and gene expression
profiling is used in the study to observe the model performance in radiomic, genomic, and radiogenomic features. The results
demonstrate that genomic data are correlated with the GBM OS prediction, and the radiogenomic model outperforms both
radiomic and genomic models. We further illustrate the most significant genes, such as IL1B, KLHL4, ATP1A2, IQGAP2,
and TMSL8, which contribute highly to prognosis analysis.

Keywords Brain tumor segmentation · Glioblastoma · Survival prediction · Hypercolumn ·
Convolutional neural network (CNN) · PixelNet.

1 Introduction

Glioblastoma multiforme (GBM) is the most reported
malignant histological type. Sixteen percent of the pri-
mary brain tumors accounts for GBM [10]. Mostly they
are grade IV astrocytomas. GBM-affected patients have a
poor prognosis, with less than 3% survival 5 years after
diagnosis [27]. Poor prognosis is a result of intra-tumor
heterogeneity [23], which can be seen in levels of protein
expression, metabolic behavior, or bioenergetic behavior,
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besides their micro-environment biochemistry and struc-
tural composition [11]. Non-invasive medical images [26]
depict the entire tumor with its environment overcoming this
heterogeneity. As a non-invasive medical imaging method,
MRI is frequently utilized in diagnosis, prognostic anal-
ysis, and therapy or other treatment planning of patients
with GBM. MRI extracts compositional, structural, func-
tional, and physiological facts. With that information, MRI
captures in vivo multidimensional portraits of GBMs, as a
powerful diagnostic imaging tool [9]. Mostly manual anno-
tation is used to segment the brain tumor in the MRI,
which directs to many decision-making for treatments, other
treatment planning, and overall survival calculations. How-
ever, these methods are time consuming, are tedious, and
might contain human-level errors. Therefore, the necessity
of automatic segmentation and survival prediction arises.

Nonetheless, these descriptors are unable to provide
molecular-level data, which are heterogeneous as well.
Accordingly, to overcome this constraint, the concept of
radiogenomics is initiated, where we study the relationship
between imaging and corresponding genomic features.
Radiogenomics has the potential to predict the clinical
characteristics of GBM non-invasively [13]. Remarkable
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associations have connections with anatomical imaging
characteristics and underlying histopathologies such as
tumor cell proliferation and contrast-enhancing tumor,
necrotic tissue, and hypointensity on T1-weighted images
and between non-enhancing and hyperintensity on T2-
weighted images.

Other attributes of GBM, which show the association
between radiology and pathology, as the growth in vascu-
lar permeability, are visible through the enhancement after
administration of exogenous contrast. Moreover, tumor size,
location, composition, and characteristic features comprise
relationships with molecular and genomic characteristics,
including gene expression signatures [11]. Gene expression
profiling indicates the gene expression under a particular
biological condition. It can be used for pattern characteri-
zation, as the cellular status is comprehended in the gene
expression profile. Verhaak et al. [39] exploit gene expres-
sion to classify GBM into four sub-types, such as proneural,
neural, classical, and mesenchymal. The study clarifies that
survival varies with the subtype for GBM patients. Further-
more, Kin et al. [20] identify a specific survival model for
GBM integrating genomic expression data.

Recently, the deep learning approach in this field
proliferated, mostly in the applications of segmentation
[18], classification [36], and regression [17]. By doing
segmentation, we can extract volume and shape features
to do a quantitative analysis of clinical parameters
[6]. Initially, convolutional neural network (CNN)–based
architectures such as U-net are for segmentation [7].

Furthermore, CNN architectures are used for segmentation
and extract features such as shape, histogram, and geometric
features from the whole tumor and sub-regions. Later,
apply machine learning approaches like random forest
regression (RFR) [34], artificial neural network (ANN)
[17], support vector machine (SVM) [28], linear regression
(LR) [33], and gradient boosting (GB) [1] for overall
survival prediction. Jungo et al. [19] have proposed a full-
resolution residual convolution network for segmentation
and derive geometrical features (volume, volume ratios,
surface, surface irregularity, etc.) from predicting overall
survival by training a fully connected neural network on
four selected features.

In this study, we propose the OS prediction approach by
fusing radiomic and genomic features, as shown in Fig. 1.
We leverage the hypercolumn-based convolutional network
inspired by multi-model PixelNet [16] and modify it to
improve the performance for the segmentation of the tumor
regions from MRI. We extract features such as geometric,
fractal, and histogram for a selected number of regions
from the segmented tumor. Subsequently, recursive feature
elimination (RFE) is applied to derive the most dominant
features from both gene expression and other extracted
features for overall survival prediction with regression
models. We utilize the TCGA dataset containing gene
expression and MRI for the GBM patients, demonstrating
that integrating genomic features with radiomic can boost-
up the prediction accuracy of the overall survival days while
identifying the most important features for the model.

Fig. 1 Our proposed
“Radiogenomic” approach
overview. It fuses geometric,
intensity, volumetric, genomic
and clinical information to
predict OS
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Fig. 2 The overall survival
distribution of patients of our
dataset. 3:1:2 ratio for
short:medium:long survival is
maintained in both training and
testing datasets
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2Methodology

2.1 Dataset

The radiogenomic experiments of this study are conducted
on The Cancer Genome Atlas (TCGA) dataset. To predict
tumor regions, we train the segmentation model using The
Multimodal Brain Tumor Segmentation (BraTS) 2017 data
[3, 4, 25].

2.1.1 TCGA

TCGA1 is one of the largest cancer databases consisting
of imaging and genomic data. The study [39] is extracted
202 cases of gene expression profiling value from TCGA,
where 59 cases of these contain MRI data. There are
commonly two available modalities of flair and T1 contrast.
All the MRI scans are skull-stripped and registered to
155 × 240 × 240 voxel as BraTS 2017 by using open-
source software 3D slicer [31]. TCGA does not have tumor
delineation. Therefore, we employ the trained model of
BraTS 2017 to predict the tumor regions of the TCGA
dataset.

On the other hand, there are gene expression level data
of 1740 genes available for each case. Figure 3 discloses
the relationship between the obtained gene expression
information of the 1740 genes and the overall survival
class. The dataset is divided into 47 and 12 cases for the
training and validation of the OS estimation experiments.
The distribution of data as short, medium, and long survival
classes is in Fig. 2. The relationship between the obtained
gene expression information of the 1740 genes and the
overall survival class is illustrated in Fig. 3.

2.1.2 BraTS 2017

BraTS 2017 dataset is used to train our segmentation model,
which is to further predict the tumor segmentation for
the TCGA dataset. The dataset contains the training and

1https://www.cancer.gov/tcga

validation set of 285 and 46 cases. There are four modalities
of flair, t1 contrast, t1, and t2. We use flair and t1 contrast for
this study as TCGA dataset those modalities only. The voxel
size of each modality is 155 × 240 × 240, with isotropic
voxel spacing. There are three regions, such as necrotic
and non-enhancing tumor (NCR/NET-label 1), edema (ED-
label 2), and enhance tumor (ET-label 4) annotated in the
ground-truth.

2.2 Segmentationmodel

Our model is inspired by multimodal PixelNet [5, 16]
architecture where consists of 15 convolution block as
[24, 35], a hypercolumn, and a multilayer perceptron as
illustrated in Fig. 4 . We have added 3 more convolution
blocks with kernel size of 3 × 3 which improves the
deeper level feature learning and boosts the segmentation
prediction of tumor regions. As PixelNet has freedom of
sampling pixel while training, hence, we choose pixels
inside brain region (ignoring large MRI padding or
background) which helps to minimize the class skewness.
Therefore, the model consists of 18 convolutional layers (c),
a hypercolumn (hp), and 3 fully connected layers (fc) such
as:

{c11, c12, c21, c22, c31, c32, c33, c42, c43, c51, c52, c53, c61,
c62, c63, c7, c8, hp, f c1, f c2, f c3}.

Convolutional features from 7 layers denoted as
{c12, c22, c33, c43, c53, c63, c7} are extracted to form the
hypercolumn. Only the pixels in brain region of healthy and
cancerous tissues are considered the region of interest (ROI)
for the model training. An ROI hypercolumn descriptor can
be denoted by,

hp ROI = [c1(p ROI), c2(p ROI), ..., cM(p ROI)] (1)

where ci(p ROI) denotes the feature vector from ith
layer, and hp ROI denotes the multi-scale hypercolumn
features for the pixel p. The hypercolumn vector is
made of concatenating hypercolumn descriptors. Resulted
hypercolumn is then fed to the multi-layer perceptron
(MLP), which consists of 3 fully connected layers.

https://www.cancer.gov/tcga
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Fig. 3 Heatmap of the gene
expression profiles with GBM
patients. In the heatmap, the
X-axis represents the 1740
genes, and the Y-axis represents
the 59 patient cases. The left
color bar represents the overall
survival where yellow—short
survival, blue—medium
survival, and orange—long
survival. In the heat map, the
low to high gene expression
levels are shown by the color
gradient from green to red
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2.3 Survival prediction

We extract numerous novel radiomic features from seg-
mented tumor volume to train regression models of survival
days. For example, geometric, shape, location, and his-
togram features are extracted from 3 regions of the tumor.

2.3.1 Feature extraction

We extract geometrical features of first axis length, sec-
ond axis length, third axis length, first axis coordinates,
second axis coordinates, third axis coordinates, centroid
coordinates, eigenvalues, equatorial eccentricity, and merid-
ional eccentricity, for the sub-regions of the tumor necrosis,
enhanced tumor, and the whole tumor as [12, 17, 21].
The lengths and the coordinates are taken for each sub-
region, as shown in Fig. 5. Eccentricity measures how
much circular a certain sub-region is, while meridional
eccentricity and equatorial eccentricity give the eccentricity

of a section by a plane, through the longest and short-
est axes and the center, perpendicular to the polar axis
respectively.

On the other hand, the fractal dimension is measured
to get the geometrical complexity of biological structures
from the regions of necrosis and enhanced tumor. Figure 6
shows the box-counting method [38] is used to determine
the fractal properties of the 3D segmented MRI.

To get texture and histogram of the selected region,
kurtosis is calculated, which quantifies the non-Gaussianity
of an arbitrary probability distribution of the areas of
necrosis and enhanced tumor. Kurtosis can be formulated as
follows [8].

k = E(x − μ)4

σ 4
(2)

where σ is the standard deviation of x, μ is the mean of x,
and E is the expected value.

T1c Flair 4096 4096
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Fig. 4 Our proposed segmentation architecture. A single layer of the hypercolumn vector is made of feature descriptors from multiple
convolutional layers (shown in the dashed yellow box). This hypercolumn vector propagates to the MLP for 4 class pixel-wise classification
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Fig. 5 Visualization of the extracted geometry features for the whole
tumor sub-region, which contains necrosis, enhancement region, and
edema. Red label: necrosis, yellow label: enhancement, green label:
edema

Overall, we extract 96 geometric and histogram features
and fuse with the clinical feature, age, and genomic features
to conduct further experiments.

2.3.2 Regression model

A couple of state-of-the-art regression models are exploited
in the study to estimate the survival rate by using
radiomic, genomic, and radiogenomic features. These are
support vector machine (SVM), linear regression (LR),
artificial neural network (ANN), random forest (RF),
and gradient boosting (GB). Recurrent feature elimination
(RFE) [14] technique is applied to select the most
important radiogenomic features, as a fusion of both
radiomic and genomic features. The well-known python
library sklearn [30] is utilized to design all the regression
experiments.

3 Experiments and results

3.1 GBM segmentation

We train and validate our segmentation model with BraTS
2017 dataset. The hyper-parameters are tuned as learning
rate 0.0015, momentum 0.9, and weight decay 0.0001.
Pytorch [29] deep learning framework is used to conduct all
the experiments.

Further, the BraTS 2017 trained model is exploited to
predict the GBM region segmentation for the TCGA dataset.
Table 1 shows the segmentation accuracy our models
for BraTS 2017 validation dataset. Dice and Hausdorff

metrics are to evaluate the regions of the tumor, such as
enhanced tumor (ET), whole tumor (WT), and tumor core
(TC). The performance of our model (modified PixelNet)
is compared with original PixelNet [5] and well-known
segmentation model UNet [32]. Our model produces better
performances with most of the evaluation metrics. The
predicted segmentation for BraTS 2017 and TCGA are as
shown in Figs. 7 and 8 respectively.

3.2 Overall survival prediction

The most significant features selected with RFE out of
radiomic, genomic, and radiogenomic features are used to
train regression models of linear regression (LR), ANN,
SVM, random forest (RF), and gradient boosting (GB).
Fivefold cross-validation is performed to evaluate the mod-
els with the metrics of accuracy, sensitivity, and specificity.
Table 2 and Fig. 9 demonstrate the performance of the
radiomic, genomic, and radiogenomic model for all these
models. Initially, 25 and 50 radiogenomic features, given in
the Appendix, are selected with RFE for prediction and
later, tuned the feature selection to obtain the best number
of features that impacts the overall survival prediction.

Linear regression shows the best performance with an
accuracy of 89.58% and MSE of 8324.172 for genomics.
The performance of the linear regression model increases
to an accuracy of 91.6% with radiomics, where the input
comprises 28 genomic markers and 5 radiomic markers,
altogether 33 radiogenomic features (given in the Appendix,
after feature elimination. These radiomic markers consist
of the centroid coordinates and fractal dimensions of the
enhancement region and second axis length of the necrosis
region. However, random forest regression (RFR) and gra-
dient boosting (GB) showed a low performance compared
to the other models. Table 2 shows the performance with
radiogenomics for several models.

4 Discussion

We have used two normalization methods to obtain the best
regression model: standardize radiomic features by scaling
to unit variance and scale radiomic features individually to
the unit norm and removing the mean. Normalizing by the
first method gives the best results. Furthermore, adding age
increases performance.

Moreover, RFE improves the performance of our model
by eliminating features with a lower impact on overall
survival. ANN models on selected genomics features
selected radiomic features and the combination of both
radiomic and genomic features gives a low mean squared
error (MSE) and high accuracy for a low number of nodes
in the hidden layer. Increasing the number of nodes in the
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Fig. 6 Fractal analysis a 3D
view of segmented MRI, b
fractal analysis for enhanced
tumor, c fractal analysis for
necrosis. The box-counting
method [38] is used to
determine the fractal properties
of the 3D segmented MRI. In
this, we have considered up to 5
times box-count values, where
the size of the box decreases
each time and gives a measure

(a) (b) (c)

Table 1 Mean Dice score and
Hausdroff distance (unit:
pixels) comparison among the
3 models. ET enhancing tumor,
WT whole tumor, TC tumor
core

Model Dice Hausdorff

ET WT TC ET WT TC

Ours 0.7035 0.8760 0.7709 7.94 7.88 9.68

PixelNet [5] 0.6971 0.8701 0.7631 7.99 7.95 10.13

UNet [32] 0.7132 0.8758 0.7516 4.67 7.91 9.70

Fig. 7 Comparison of ground
truth and the modified PixelNet
predicted segmentation for Brats
2017 dataset. The colors red,
yellow, and green denote the
tumor regions, necrosis,
enhanced tumor, and edema
respectively
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Fig. 8 Visualization of the
predicted segmentation for our
dataset. The model is trained for
Brats 2017 dataset, and only
FLAIR and T1 contrast are used

T1c Flair Prediction

Table 2 Performance
comparison of radiogenomics
for different models such as
ANN (artificial neural
network), LR (linear
regression), SVM (support
vector machine), GB (gradient
boosting), RFR (random forest
regression), and MSE (mean
squared error). Here Acc.,
Sens., and Spec. denote as
accuracy, sensitivity, and
specificity respectively.

Model LR SVM ANN RFR GB

MSE 7576.36 12700.62 28026.79 75129.35 82734.59

Acc. 91.67% 80% 73.33% 41.67% 33.33%

Sens. S 95% 90% 80% 16.67% 13.33%

M 73.33% 46.66% 33.33% 66.66% 60%

L 100% 92% 92% 75% 44%

Spec. S 97.50% 90% 80% 78.53% 86.66%

M 97.78% 91.11% 88.89% 84.26% 44.44%

L 91.43% 88.57% 91.43% 51.24% 57.14%

Fig. 9 Performance comparison
of radiomics, genomics, and
radiogenomics for the three best-
performed regression models.
SVM and linear regression have
the best performance with RFE.
However, the linear regression
model gives a less mean squared
error compared with SVM
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hidden layer reduces accuracy and also gives a high MSE.
For validating our model, we have used the Brats 2017
validation dataset. Our work is notable as we address the
overall survival prediction as a regression problem other
than a classification problem, which is beneficial for the
clinicians to define the OS groups as they require.

In this study, we observe volume features have a high
correlation with overall survival. The minimal necrosis
and enhancement in GBM patients cause more prolonged
survival than extensive necrosis and enhancement in GBM
patients, as proved by previously done studies [15, 22].
Nevertheless, we perceive that histogram features obtained
from the necrosis contribute to the prognosis of GBM
patients. This further supports texture features are predictive
of overall survival, as reported by Yang, Dalu et al. [40].
In addition, SHAP (SHapley Additive exPlanations) is used
to explain the impact of the features for the output of
the linear regression model. Figure 10 shows the most
important features for the radiogenomic model, where the
shap values of each feature for each patient case is graphed.
This indicates that the genomic features have a higher
impact on linear regression model performance and only

one fradiomic feature is involved in the top 20 features.
High expression values of the most significant features,
i.e., KLHL4, ATP1A2, and TMSL8, increase the prediction
of the model. Further, high expression values of IL1B,
IQGAP2 genes have a high effect on reducing the prediction
of the model.

When analyzing genomics association with prognosis,
the most prominent gene is “IL1B” (interleukin-1β). This
gene has been identified as a promising feature which has
direct associations with GBM [37]. Our study identifies
that high expression of IL1B in GBM patients have a
significant impact for low overall survival in days. The other
meaningful relationship from our study is the effect of the
expressed TES gene for the survival of patients with GBM.
It is identified as a tumor suppressor gene and as a valuable
prognostic gene marker for glioblastoma [2]. Our analysis
further proves that high expression of TES gene can cause
for high overall survival in GBM patients.

This work has a limited dataset, which is challenging
in a regression framework. In the future, the study can
increase the imaging cohort by synthesizing the missing
MRI modalities from the available MRI modalities. This

Fig. 10 Radiogenomic features
explaining the linear regression
model, ordered by ascending
importance on the y-axis (each
point in the summary plot
represents an instance of the
feature shown in the y-axis)
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will also give a precise segmentation with more than 2 MRI
modalities (T1c and Flair) as the input for the deep learning
segmentation model.

5 Conclusion

In this retrospective study, we have presented a novel
approach to overall survival prediction by fusing radiomic
and genomic features. We have leveraged a well-known
segmentation model PixelNet and modified the model
to improve the prediction. We have identified that the
overall survival of glioblastoma is strongly associated
with both genomic and radiogenomic features. Fusing
genomic expression data with radiomic features boosts up
the regression accuracy of the overall survival prediction
in days. This study focuses on the relationship between
gene expression data together with radiomics and overall
survival. Future work will focus on adding gene mutation
data and deep features acquired from the MRI to enhance
the performance of our model.

Funding information This work is supported by the Singapore
Academic Research Fund under Grant R-397-000-297-114, and
NMRC Bedside and Bench under grant R-397-000-245-511 awarded
to Dr. Hongliang Ren.

Appendix

Initial 25 features selected for survival analysis:

• Centroid coordinates of enhancement region
• BBOX1
• LRAP
• TMSL8
• CAV2
• KLHL4
• TUBA4A
• PCDH9
• SLC38A1
• TSPAN13
• IQGAP2
• GBAS
• RSAD2
• MEST
• ASPN
• PLP1
• C8orf4
• RBP1
• MOBKL2B
• ECT2
• IL1B
• RPL39L

• TES
• ATP1A2
• DDIT3

Initial 25 features selected for survival analysis:

• Fractal dimensions of enhancement region
• Centroid coordiantes of enhancement region
• Second axis length of necrosis
• BBOX1
• LRAP
• TMSL8
• ALDH1L1
• SCG2
• PALMD
• CAV2
• MAPK4
• KLHL4
• COL3A1
• DIRAS3
• TUBA4A
• GSTM3
• PCDH9
• SLC38A1
• ARL4A
• TSPAN13
• EDNRA
• NEFL
• LIMS1
• D4S234E
• GABBR2
• IQGAP2
• RND3
• GBAS
• RSAD2
• MEST
• EYA4
• ATP10B
• C1QTNF3
• ASPN
• DCN
• PLP1
• C8orf4
• RBP1
• MOBKL2B
• ECT2
• GPC4
• IL1B
• RPL39L
• REV3L
• CCL20
• TES
• ECM2
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• DDIT3
• FAM46A

Most important 33 features features contributed for
survival analysis:

• Fractal dimensions of enhancement region
• Second axis length of necrosis
• BBOX1
• LRAP
• TMSL8
• CAV2
• ALDH1L1
• SCG2
• PALMD
• KLHL4
• TUBA4A
• PCDH9
• SLC38A1
• TSPAN13
• IQGAP2
• GBAS
• Centroid coordinates of enhancement region
• RSAD2
• MEST
• GABBR2
• ASPN
• PLP1
• C8orf4
• RBP1
• MOBKL2B
• ECT2
• IL1B
• RPL39L
• TES
• ATP1A2
• DDIT3
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