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Glioblastoma: Incidence and Demographics

Gliomas are the most common primary tumor of the central
nervous system (CNS) with an estimated annual incidence of
6.6 per 100,000 individuals in the United States,1 which is
predicted to rise to 22 per 100,000 by 2035.2 The revised
2016 World Health Organization (WHO) classification of
tumors of the CNS divides gliomas into low-grade glioma
(LGG; WHO I–II) and high-grade glioma (HGG; WHO III–IV)
based on integrated classic histologic features andmolecular
biomarkers.3 Approximately half of all newly diagnosed
gliomas are classified as glioblastoma (GB; WHO IV), the
most malignant type of brain cancer. TheWHO classification
further divides GB into isocitrate dehydrogenase wild type
(IDHwt; 90%) that corresponds to the primary or de novo GB

and predominates in patients aged> 55 years and IDH
mutant (IDHmut) corresponding to secondary GBs that
develop from lower grade or diffuse astrocytomas and occur
in younger patients.

The annual incidence of GB is currently 3.2 per 100,000
population. However, tumors occur more frequently with
advancing age, ranging from 0.4 per 100,000 population aged
20 to 34 years, to> 15 per 100,000 population aged 75 to
84 years.1 It is widely recognized that elderly populations are
rapidly increasing globally that will have a significant impact
on the burden of GB disease. Despite this trend, most studies
still focus on patients< 65 years.

The current gold standard treatment for newly diagnosed
GB is gross total resection (GTR), followed by radiotherapy
with concomitant and adjuvant temozolomide. The aim of
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Abstract Maximal safe resection is an essential part of the multidisciplinary care of patients with
glioblastoma. A growing body of data shows that gross total resection is an indepen-
dent prognostic factor associated with improved clinical outcome. The relationship
between extent of glioblastoma (GB) resection and clinical benefit depends critically on
the balance between cytoreduction and avoiding neurologic morbidity. The definition
of the extent of tumor resection, how this is best measured pre- and postoperatively,
and its relation to volume of residual tumor is still discussed. We review the literature
supporting extent of resection in GB, highlighting the importance of a standardized
definition and measurement of extent of resection to allow greater collaboration in
research projects and trials. Recent developments in neurosurgical techniques and
technologies focused on maximizing extent of resection and safety are discussed.

received
June 30, 2019
accepted after revision
October 22, 2019

© 2020 Georg Thieme Verlag KG
Stuttgart · New York

DOI https://doi.org/
10.1055/s-0040-1701635.
ISSN 2193-6315.

Review Article

D
ow

nl
oa

de
d 

by
: M

ac
qu

ar
ie

 U
ni

ve
rs

ity
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.

Published online: 2020-10-13

mailto:v.wykes@bham.ac.uk
https://doi.org/10.1055/s-0040-1701635
https://doi.org/10.1055/s-0040-1701635


treatment is to delay tumor progression and extend overall
survival (OS).4 Despite decades of refinement, this approach
results in a median survival time of 12 to 14 months. The
exception is a subgroup of patients with methylguanine
methyltransferase promotor methylationwho receive temo-
zolomide and have a 46% OS at 2 years.5 Overall, these
malignant CNS tumors hold the poorest prognosis, are
responsible for the highest estimated number of years of
potential life lost (mean: 20 years) among all cancers,6 and
survival trends have remained mainly static in comparison
with other cancers.7

Extent of Resection: Definition and
Measurement

GB is an intrinsic primary brain tumor that has no distinct
brain–tumor interface microscopically. Autopsy and imaging
studies demonstrate that gliomas infiltrate diffusely along
vessels and the white matter tracts of the brain into regions
that appear to be normal on magnetic resonance imaging
(MRI).8,9 Historically, hemispherectomies for GB were
attempted, but these failed to provide disease cure because
the tumor recurred on the contralateral side.10 Currently, the
relationship between the extent of resection (EOR) of GB and
clinical outcomes in terms of OS, progression-free survival
(PFS), and symptom control remain incompletely understood.
No validated metric is available to quantify EOR, and random-
ized clinical trials are impractical, hindering achievement of
level 1 evidence for EOR.

A challenge in determining the EORhas been assessing the
tumorburden throughmodern imaging technology. In a 2016
systematic reviewandmeta-analysis of the association of the
EORwithGB survival,11 theEORwasdefinedby theauthors of
the individual studies as the percentage volume of total
tumor resected including reports of GTR, subtotal resection
(STR), partial resection (PR) or biopsy. EOR was measured
in various ways including absence of contrast-enhanced
tumor on postoperative contrast computed tomography
(CT) performed within the first week postoperatively,12

absence of residual contrast enhancement on postoperative
MRI performed within 48 hours of surgery,13 and manual
segmentation of tumor volume and volumetric analysis of
pre- and postresection intraoperative contrast-enhanced
MRI scans.14 A further caveat regarding reporting EOR is
that it does not adequately depict the residual volume (RV)
and hence disease burden that must be targeted with adju-
vant therapies. For example, a 90% resection of a large tumor
may result in a greater volume of residual tumor than a lesser
resection of a smaller tumor. Thus the benefits of cytoreduc-
tion may not be highlighted.15

In response to a need for better standardization of image
acquisition, and to aid comparison in GB clinical trials, the
followingrecommendationsweremade including theResponse
Assessment in Neuro-Oncology criteria (two-dimensional
tumor measurement)16 and an international brain tumor
imaging protocol with recommended sequences and param-
eters.17,18 The key aspect of these protocols are parameter-
matched pre- and postcontrast volumetric images to allow

bidimensional and volumetric measurement of residual
enhancing tumor. However, both these techniques have limi-
tations. Bidimensional measurement has high measurement
variability,19,20 particularly with lesions that are irregularly
shaped, poorly defined, or have satellite regions,21 and is
sensitive to imaging quality.22 Volume measurement requires
an operator to outline the lesion manually and differentiate
between the different tissue compartments of the tumor and
the peritumoral region. This work requires considerable exper-
tise and training, and thus is highly operator dependent.
Consequently, manual tumor volumetry is time consuming,
prone to subjectivity, and associated with large interobserver
variability.23–25 One proposed solution is an automated seg-
mentation approach to assist with lesion delineation and
grading, and fully or semiautomated segmentation techniques
have been published.26–28

Currently there is an increasing trend toward neural
network based deep learning approaches.29 Although prom-
ising, these techniques still fail to outperform expert clini-
cian manual segmentation,29 and none are established in
routine clinical practice. These approaches depend highly on
the number of labeled training samples available, and very
large annotated data sets are typically required to achieve
high accuracies while avoiding problems with overfitting.30

As publicly available labeled data sets continue to increase in
size and availability, these automated methods may well
provide quick, accurate, and clinically viable tools that can be
used reliably and reproducibly across a wide spectrum of
tumor types but also to acquire data across different centers,
MRI scanners, and field strengths.

Even with optimized segmentation methods, the problem
remains that tumor infiltrationcan spreaddiffusely far beyond
visible lesion boundaries and cannot be detected using stan-
dardMRI techniques.Microstructural changes associatedwith
infiltration provide opportunities for more advanced imaging
methods. For example, MRI techniques optimized for vascular
imaging, such as brain perfusion imaging using modified
arterial spin labeling31 or susceptibility weighted imaging,32

can be used to measure the associated disruption of the
blood-brain barrier and neoangiogenesis. Diffusion-weighted
imaging (DWI) allows differences in water diffusion in, or
surrounding, white matter tracts to be quantified. A number
of noninfiltrative processes may also modify brain diffusion
properties includingperitumoredema.Previously, single-shell
DWI acquisitions failed to correlate with tumor cell density.33

DWI acquisitions involving three or more b-values were used
tomodel thenon-Gaussiandiffusionproperties of brain tissue,
and they have identified abnormalities in normal-appearing
white matter that are proposed to be biomarkers of tumor
infiltration.34 Tissue validation, however, is still pending.
Magnetic resonance spectroscopy (MRS) is a noninvasive
way of measuring the metabolic changes associated with
increased cellular proliferation and has biopsy-proven valida-
tion linking some of the spectra changes to tumor infiltra-
tion.35 Currently ultra-high field 7-TMRI coupledwith MRS is
under development and may offer high-resolution multi-
metabolite mapping for glioma.36 It represents an excellent
opportunity for translational research.
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Extent of Resection in Newly Diagnosed
Glioblastoma

The pursuit of maximal EOR in glioma surgery requires great
caution and must be balanced against functional outcome.
Failure to identify and preserve eloquent brain regions can
significantly compromise the patient’s quality of life and
performance status. It can also potentially render the patient
ineligible for further adjunctive treatment options with
consequent serious prognostic implications.37–39 In the last
decade, major advances have been made in brain tumor
imaging, intraoperative technologies, and neurosurgical
techniques. A growing body of clinical data supports the
prognostic importance of GTR in GB (►Table 1, adapted from
Ma et al40). This is being incorporated into European guide-
lines for the management of patients with GB.41,42

One of the first studies on EOR in GB using pre- and
postoperative volumetric MRI was performed by Lacroix
et al.43 It suggested a resection � 98% was necessary to
have an impact on OS. This led to the concept that only
maximal surgical resection was relevant in glioma manage-
ment.43 Studies by Orringer et al44 and Grabowski et al15 also
supported the need for high percentages of EOR to improve
OS (> 90% and> 98%, respectively). Publications in more

homogeneous patient populations rejected the idea that
complete or near-complete resections offered the only sur-
vival benefit.13,14,45,46 Chaichana and colleagues reported a
minimal EOR threshold of 70% to have an impact on survival
and recurrence, and they introduced a new concept of
evaluating the relationship between survival and RV. An
RV � 5 cm3 was identified as the threshold to achieve an
impact in survival.47 Subsequently a lower threshold for a
significant benefit to OS both for EOR (> 60%) and RV
(< 8 cm3) was reported.48 Awad et al disputed the step-
like influence of EOR because their study did not find that a
specific threshold for EOR or postoperative RV was essential
for improving OS. Rather there is a graded response in that
the greater the EOR, the better the OS statistically.49

A meta-analysis of 37 studies (41,117 patients with newly
diagnosed GB) concluded GTR substantially improved OS and
PFS in comparison with STR, PR, or biopsy; however, the
quality of the supporting evidence was moderate to low.11

Data extrapolated from two randomized trials support the
benefit of EOR in GB. In a phase 3 study, 176 patients with
malignant gliomas underwent fluorescence-guidedmicrosur-
gery using 5-aminolevulinic acid (5-ALA), and 173 patients
underwent conventional white-light microsurgery.50,51 More
patients in the 5-ALA group had complete resection (absence

Table 1 Summary of literature of extent of resection and survival advantage in newly diagnosed glioblastoma

Study No. of
patients

Maximal survival advantage Volumetric
imaging
study

Minimum resection
required

Lacroix et al 43 416 4.2 mo Yes 89%

Stummer et al115 243 4.9 mo No GTR

McGirt et al13 451 2 mo (GTR vs. NTR)
5 mo (GTR vs. STR)

No Improvement in OS
with GTR

Kuhnt et al14 88 5 mo Yes 98%

Sanai et al45 500 3.8 mo Yes 78%

Orringer et al44 46 44% 1-y survival Yes 90%

Stummer et al53 143 > 7.1 mo No RTV< 1.5 cm3

Grabowski et al15 128 4.5 mo Yes 98% or< 2 cm3 RTV

Chaichana et al47 259 3.9 mo Yes 70% or< 5 cm3 RTV

Chaichana et al46 292 4.7 mo GTR, 4.2 mo RTV Yes 95% or< 2 cm3

Brown et al11 20,769
20,699

16.1% 1-y survival
10.3% 2-y survival

No > 89%

Li et al58 1229 5.4 moþ 5.2 mo extra for addition
of> 50% FLAIR resection

Yes 100%�> 50% FLAIR
resection

Pessina et al59 178 3.2 mo (GTR vs. STR) Yes GTR

Yan61 31 3.4 mo (EOR> 89% vs.< 89%) Yes > 89%

Awad et al49 330 9 mo (EOR> 90% vs. 70–80%) Yes Incremental survival
benefit with EOR

Coburger et al48 67 > 60% resection median OS 11 mo;
< 8 cm3 RT median OS 13 mo

Yes EOR> 60%
< 8 cm3 RTV

Roh et al63 40 25.4 mo (noneloquent GTRþ lobectomy vs. GTR) Yes GTR

Abbreviations: EOR, extent of resection; FLAIR, fluid-attenuated inversion recovery; GTR, gross total resection; NTR, near-total resection; OS, overall
survival; RT, residual tumor; RTV, residual tumor volume; STR, subtotal resection.
Source: Adapted from Ma et al.40
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of contrast-enhancing tumor onMRI; 65% vs 36%; p< 0.0001),
and EOR was positively associated with PFS and OS.50,52

When stratified by completeness of resection, patients with
incomplete resections hadmore rapid neurologic deterioration
than thosewith complete resections.51Furthermore, a prospec-
tive cohort studyofpatientswithGBreceiving radiotherapyand
concomitant and adjuvant temozolomide chemotherapy
revealed that patients with no or minimal residual enhancing
tumor after surgery had an advantage in terms of PFS andOS.53

A prospective trial evaluating intraoperative MRI (iMRI) to
enhance EOR in patients with glioma demonstrated that com-
plete tumor resection corresponded to an extended PFS on
univariate and multivariate analysis, and EOR was a stronger
prognostic factor than age.54 Optimal EOR for GB according to
site, extension, and size was investigated in GB patients who
underwent GTR, STR, or open biopsy between 2005 and 2014
using the Surveillance, Epidemiology, and End Results data-
base.55 Although GTR remains the gold standard treatment for
GB, STR/open biopsywasperformedmore frequently in clinical
practice. GTR had a significant beneficial effect on OS in cases
where the tumorwasconfinedtoonecerebralhemispherewith
a size< 6 cmandwhentumorcrossed themidlinewitha sizeof
4 to 8 cm. For small-size tumors that crossed the midline, GTR
failed to increase OS compared with other surgery types.

Gliomas have a strong propensity to infiltrate through
white matter tracts, and it has been proposed that fluid-
attenuated inversion recovery (FLAIR) altered areas may rep-
resent nonenhancingnormal brainwithpathologic invasionof
GB that eventually represent sites of recurrence. An emerging
concept in neuro-oncology is supramaximal resection: where
“functionally safe,” the resection is extended beyond the MRI
abnormalities seen on T1-enhanced and T2-FLAIR imaging.
Duffau pioneered this approach with promising results in
patients with LGGs56 and in GB.57 Li et al reported the largest
single-center series of 1,229 patients undergoing complete
resection of GB.58 Resection of all T1 contrast-enhancing
tumor volumewas achieved in 70% of patients, with amedian
survival of 15.2months, significantly longer thanpatientswith
less than complete resection of 78 to 99% (9.8 months;
p¼ 0.001). This survival advantage was independent of age,
preoperative tumor volume, Karnofsky Performance Score
(KPS), and prior treatment status. Importantly, complete
resectionwas not associatedwith increased neurologic deficit
postoperatively. Additional resection�53%of thesurrounding
FLAIR abnormality beyond the complete contrast-enhancing
resectionwas associatedwith significant survival advantage in
comparison with less extensive resections (20.7 vs. 15.5
months; p< 0.001).

The concept that surgical resection beyond the contrast-
enhancing boundaries improves PFS and OSwas supported by
further studies59,60 including by extending the resection to
include abnormality documented by diffusion tensor imaging
(DTI).61Recentlya comparisonofan intralesionalversusperile-
sional surgical resection and effect on EOR and outcome
suggested that a circumferential perilesional resection of GB
is associated with significantly higher rates of GTR and lower
rates of neurologic complications than intralesional resection.
This was also the case for tumors arising in eloquent loca-

tions.62 A retrospective review of the survival benefit of
additional lobectomy after GTR versus GTR alone in IDHwt
GB located in either the nondominant frontal or temporal lobe
was recently performed.63 Of 40 patients evenly divided into
each arm, the median PFS for GTR was 11.5 months and 30.7
months for lobectomy (p¼ 0.007) and the OS for GTRwas 18.7
months versus 44.1 months for lobectomy 44.1 (p¼ 0.04). The
patient’s functionalityas assessedby theKPSwasnot impaired.
Because the EOR is the only modifiable prognostic factor
demonstrated for GB to date, the application of this surgical
method could improve the OS of GB patients. However, further
review, particularly with more detailed analysis of cognitive
function and quality of life, needs to be performed.

Interpreting the results reported in the literature reviewing
the advantages of EOR in GB is fraught with limitations due to
the heterogeneity of the available data. However, collectively
they emphasize the importance of minimal residual tumor
volume (RTV) and demonstrate the advantages of STR, GTR,
and even supramaximal EOR in terms of PFS and OS when
permanent neurologic deficits are avoided. Prospectivemulti-
center trials with standardized imaging and data capturewith
a focus on quality-of-life outcomes will provide further infor-
mation and help us counsel patientswith newly diagnosedGB.
A review throughout the United Kingdom of residual enhanc-
ing disease after surgery for GB identified a subset of patients
for whom GTR was thought possible preoperatively but not
achieved at surgery (16.3%).40 There are minimal data on
whether immediate revision surgery to resect residual
enhancing disease would be of benefit.64 Furthermore, multi-
ple factors need to be considered including extended hospital
stay with the inherent increased surgical and anesthetic risks
of infection, venous thromboembolic events, the social and
psychological factors, and also additional financial pressures
including longer hospital stay and scheduling additional oper-
ating room time on emergency/elective operating lists.

Extent of Resection in Recurrent
Glioblastoma

The main aims of repeat surgery for recurrent GB are to
increase PFS and OS, reduce symptoms and steroid dose, and
obtain an up-to-date pathologic diagnosis to enroll patients
in further adjuvant treatment or clinical trials. In keeping
with newly diagnosed GB, when GTR re-resection was
achieved, OS was improved in comparison with STR.65–69 A
survival benefit was reportedwhen the EORexceeds 80%70 or
with an RTV< 3 cm3.71At best these studies represent level 2
and level 3 evidence. A study of 578 patients reported that
recurrent GB can have improved survival with multiple
repeated resections.66 The median survival for patients
who underwent one, two, three, and four resections was
6.8, 15.5, 22.4, and 26.6 months (p< 0.05), respectively.

A more recent study of 503 patients undergoing resection
for recurrent GB suggested the patient’s median survival after
initial diagnosis was 25months and 11.9months after first re-
resection.68 Pre- and postoperative KPS, EOR and chemother-
apy after first re-resection were identified as parameters that
influenced survival significantly. Pessina et al reported that
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repeat GTR resection in 64 recurrent GB patients provided a
median OS of 10.3 months with 1- and 2-year OS rates of
31.3%.69 The oncologic benefits of re-resection need to be
carefully balanced against the complication rates of repeat
surgery. However, the risk of infection and iatrogenic deficit
did not increasewith repeated resections (p> 0.0565) andwas
similar to the rate of permanent new deficits after initial
resection (9%) and first re-resection (8%).68

Extent of Resection and Molecular Analysis

As the molecular characteristics of glioma are better under-
stood, attempts to classify patients into more homogeneous
groups based on similar genetic etiology and clinical out-
comes have been made. Eckel-Passow et al grouped gliomas
based on codeletion of chromosome arms 1p and 19q (1p19q
codeletion), mutations in IDH, and the telomerase reverse
transcriptase gene promoter (TERTp) mutations.72 Kaplan-
Meier estimates of OS demonstrated that gliomas (WHO
grade II and III) with TERTp mutation only (i.e., IDHwt,
non-1p19q codeleted) had poor survival with a similar
prognosis to GB with TERTp and IDHmut. Furthermore,
genetic aberrations identified in primary GB are also
reported in IDHwt-diffuse LGG and have a similarly poor
prognosis. These molecular characteristics include a combi-
nation of trisomyof chromosome 7, loss of chromosomal arm
10q, and the TERTp mutation.73–76 As we begin to better
understand the molecular biology of glioma, timely transla-
tional genomic approaches are essential for improving point-
of-care diagnosis andwill be critical in defining the relation-
ship between specific molecular characteristics in glioma
and EOR. Novel technologies such as intraoperative molecu-
lar genotyping77 and Raman scattering microscopy78 can
assist with intraoperative brain tumor diagnosis and will be
essential to delivering precision medicine in the operating
room.

Extent of Resection in the Older Population

The incidence of GB increases with age to peak in the 9th
decade.2 Because the global population of older people is
rising, the disease burdenof GBwill increase. The current gold
standard treatment of GB is the Stupp regime.4 However,
patients aged> 70 years were excluded from the study.
Subgroup analysis in patients aged 60 to 65 years only had
a trend toward a survival advantage, and patients aged 65 to
70 years had no survival advantage.79 A randomized trial of
newly diagnosedGB in patients aged� 65 years examined the
addition of temozolomide to radiotherapy (40 Gy in 15
fractions) over radiotherapy alone. An advantage in both a
PFS and OS was seen in the combined treatment and is now
becoming the standard of care in this age bracket.80 Under-
representation of this population in many GB trials and
concerns regarding treatment challenges (including comor-
bidities and frailty) are thought to impact why older patients
are more often treated conservatively. They are more likely to
undergo biopsy alone and are less likely to receive radiother-
apy and/or chemotherapy after surgery.81,82

Recently Pessina et al reviewed the effect of EOR on
prognosis of 178 patients aged � 65 years with newly diag-
nosedGB.83Patientswhounderwent complete resection, GTR,
or STR had better outcomes in comparison with patients
receiving STR or biopsy, suggesting a resection of at least
80% is required to obtain a survival benefit.83 Furthermore,
worsening or development of new postoperative neurologic
deficitswas foundto stronglyandnegatively influencesurvival
at 1 year. Similarly, a study by Babu and colleagues reviewed
the effect of EOR on the prognosis of 120 patients aged
� 65 years with newly diagnosed GB. More than 60% under-
went aGTR that conferred anOSmedianof 14.1months versus
9.6 months (p¼ 0.038) in those who underwent STR.84 A KPS
score< 80 was inversely correlated with survival outcomes;
however, advanced age did not have an impact on survival.85

This study also observed that elderly patients with resection
survived longer than those who underwent biopsy alone;
however, the complication rates were higher in the resection
group. These recent studies agree with the previous literature
suggesting that elderly patientswith newly diagnosedGBwho
undergo maximal resection rather than biopsy alone have an
improved PFS and OS and that EOR correlates with an incre-
mental survival benefit as reported in younger patients.86–89

Jordan et al90 provide a review.
Limited studies exist on the surgical management of recur-

rent GM following maximal first-line therapy in the elderly. A
multicenter retrospective analysis of 777 adult patients with
recurrent GB following maximal first-line treatment was
performed in which 117 GB patients were> 70 years of
age.91 Elderly patients were less likely to be offered further
repeat resective surgery (< 15% versus 33% if< 70 years) or
further oncologic care. Age> 70 years did not significantly
or independently impact OS from recurrence. When treated
for recurrence, elderly patients with KPS> 70 experienced a
similarOSasyoungerpatients.91TreatmentofGB in theelderly
patient remains an individual decisionwith priority onquality
of life. Future studies incorporating molecular advances need
to be performed.

Surgical Adjuncts to Optimize Extent of
Resection in Glioblastoma

Despite the limitations of the trials and studies reviewed,
collectively the data for patients with GB support the funda-
mental concept of neurosurgical oncology that maximal safe
surgical resection is positively correlated with clinical out-
come. Over the last decade, numerous intraoperative tools
have been developed to enhance the neurosurgeon’s ability
to identify tumor boundaries and augment resection while
simultaneously preserving eloquent brain function.

Fluorescent-Guided Resection Technique

The best studied intraoperative fluorescence imaging tech-
nology is 5-aminolevulinic acid (5-ALA). It allows real-time
intraoperative identification of residual tumor, therebymax-
imizing EOR in HGG.91,92 Oral administration of the prodrug
5-ALA (20mg/kg body weight) � 2 to 4 hours before surgery
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results in preferential accumulation of fluorescent protopor-
phyrin IX (PpIX) in proliferating tumor cells as a result of
incorporation into the heme-biosynthesis pathway. Under a
microscope with violet blue excitation light to visualize
fluorescence, PpIX is seen as bright pink and can guide
resection of HGG (►Fig. 1). In a phase 3 multicenter ran-
domized controlled trial, resection guided by 5-ALA resulted
in a 29% reduction in the proportion of patients with HGG RV
on early postoperative MRI and correlated with an increase
in PFS at 6 months50 and increased OS in Radiation Therapy
Oncology Group-Recursive Partitioning Analysis class IV
and V patients.52

A systemic literature reviewof 5-ALA–guided surgery and
intraoperativeMRI in GB demonstrated no superiority of one
technique over the other in outcome parameters, and it
suggested a combined use of 5-ALA and iMRI may be
promising to achieve a resection beyond gadolinium
enhancement.93 A recent review suggests that 5-ALA is
also useful adjunct in the resection of recurrent HGG.94

The authors report that 5-ALA has a high positive predictive
value, that is, intraoperatively a strong fluorescent signal is
correlated with the presence of cellular tumor even in
recurrent HGG. Coupled with a favorable safety profile,
they recommend 5-ALA be used routinely as a standard of
care in recurrent HGG resection.94 Commercially available

fluorescence imaging systems rely solely on visual assess-
ment of fluorescence patterns by the surgeon, making the
resection more subjective than necessary. New technologies
are being developed to optimize accurate estimation of PpIX
and allow more quantitative analysis.95

Intraoperative Cortical and Subcortical
Stimulation Mapping

Resection of GB involving eloquent areas requires preserva-
tion of both cortical and subcortical structures to optimize
postoperative functional status. A review of the various
techniques and approaches used for intraoperative cortical
and subcortical electrostimulation mapping either during
awake craniotomy or under general anesthesia are described
in detail elsewhere.96,97

Briefly, the aim of electrical stimulation mapping is to
identify and localize the cortical areas reliably and reproduc-
ibly and the subcortical pathways involved in language,motor,
sensory, and cognitive function. Cortical functional organiza-
tion varies considerably between patients, tumor mass effect
may distort anatomical relationships, and cortical plasticity
may result in reorganization of neural networks. Functional
MRI and DTI are useful in planning resections (►Fig. 2);
however, they do not always directly correlatewith functional

Fig. 1 A 5-aminolevulinic acid (5-ALA)–guided resection of glioblastoma. (a) Preoperative and (b) 24-hour postoperative axial contrast-
enhanced magnetic resonance imaging demonstrating complete resection of left temporal contrast-enhancing, pathology-confirmed
glioblastoma. (c) Microscope view under blue light at a wavelength of 400 nM on opening dura to visualize coral pink following 5-ALA
administration in patient with glioblastoma. Microscope view (d) under blue light and (e) under white light showing complete tumor resection.
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anatomy and cannot be used as a substitute for intraoperative
awake mapping and monitoring or neurophysiologic evalua-
tion to guide surgery.98 “The DTI challenge” recently demon-
strated a lack of standardization in reconstruction of different
tractography algorithms, producing different results that
could significantly impact clinical outcomes.99

Monitoring of eloquent function during resective surgery
can be performed by testing the function intraoperatively
during awake craniotomy. Language testing by the speech
and language team using preoperative and perioperative
paradigm testing100 or perioperative motor function testing
can be augmentedwith neurophysiologic techniques. Using a
strip electrode, a short train of electrical stimulation can be
delivered to elicit muscle responses. These motor-evoked
potentials can be recorded either by needle electrodes or
surface electrodes and provide a way of monitoring the
integrity of motor pathways. A suction monopolar system
was designed that can be used for dynamic “real-time”
continuous cortical and subcortical stimulation for mapping
of the distance from the subcortical corticospinal tract.101

Meta-analysis demonstrated that intraoperative stimula-
tionmapping reduces late severe neurologic deficits without
compromising EOR and suggests that stimulation mapping
should be integrated into standard of care for glioma surgery
when tumors arise in eloquent brain regions.102 Schucht and
colleagues demonstrated that for GB surgery, 5-ALA guid-
ance combined with intraoperative neurophysiologic map-
ping and monitoring resulted in increased GTR and reduced
mortality.103 Furthermore, in cases where GB is adjacent to
the motor eloquent areas, a synergistic benefit of using both
suction monopolar for intraoperative continuous dynamic
subcortical mapping to identify the corticospinal tract and
surgery guided by 5-ALA was demonstrated to achieve high
rates of complete resection of contrast-enhancing tumor.104

When combined with neuronavigation, tractography offers
an intraoperative approximation of major tract positions,
decreasing the number of subcortical stimulations needed
and making surgery quicker and easier.105 Reduced direct
electrical stimulation decreases the risk of stimulation-in-
duced seizures.

Fig. 2 Preoperative diffusion tensor imaging (DTI) tractography of the arcuate fasciculus (AF) to inform planning of awake craniotomy with
speech and motor mapping andmonitoring in a 72-year-old right-handed man diagnosed with glioblastoma. (a, d) Preoperative sagittal and axial
contrast-enhanced magnetic resonance imaging (MRI) demonstrating enhancing lesion in the dominant subcentral gyrus extending into the
posterior insular. (b) Silent word generation language functional MRI shows left-side language dominance. The activated anterior language areas
are seen in the inferior andmiddle frontal gyri, in close proximity to the anterior and superior border of the lesion. (c, e) Left AF three-dimensional
reconstruction to demonstrate relation of the tract to the lesion. (f) Intraoperative neuronavigation MRI with DTI tractography of the AF. (g)
Postoperative contrast-enhanced MRI demonstrates > 95% extent of resection. Postoperatively there was a transient subtle deterioration in
expressive dysphasia that improved to the patient’s baseline by postoperative day 10.

Journal of Neurological Surgery—Part A

Extent of Resection in Glioblastoma Wykes et al.

D
ow

nl
oa

de
d 

by
: M

ac
qu

ar
ie

 U
ni

ve
rs

ity
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.



Intraoperative Imaging Technologies

Recent advances in intraoperative neurosurgical imaging
including intraoperative neuronavigation, intraoperative MRI
(iMRI, and intraoperative ultrasound (iUS) have significantly
enhanced thepotential to achieve complete radiologic resection
of contrast-enhancing tumor, associated FLAIR anomaly, and
supramaximal resection. Real-time information regarding loca-
tion, size, and adjacent structures including vascular structures
can be obtained. Intraoperative MRI offers the advantage of
intraoperative real-time interval updates in the three-dimen-
sional neuronavigation imaging that can compensate for brain
shift resulting from cerebrospinal fluid loss after opening the
dura and for tissue edema. EOR inHGGwas significantly greater
in patients operated using iMRI compared with conventional
surgery.106,107Arandomized controlled trial demonstrated that
iMRI is ahelpful tool to increase theEOR, and theuseof iMRIdid
not result in any neurologic deterioration.54 IntraoperativeMRI
for glioma in 100 consecutive patients suggested iMRI-neuro-
navigated surgery providedmaximal EORwhatever the type of
glioma and location. It was evenmore useful for nonenhancing
or minimally enhancing tumors.108

Intraoperative US is convenient, immediate, simpler to use,
and more readily available, particularly in a resource-con-
strained setting, and it may provide a more pragmatic cost-
effective adjunct in comparisonwith iMRI. Intraoperative US is
accurate in distinguishing tumor from normal parenchyma.
Two studies that reviewed iUS use in the resection of predomi-
nantly HGG highlighted its efficacy.109,110 However, a recent
Cochrane review of intraoperative imaging technology to
maximize EOR for glioma concluded that although there was
evidence of benefit from iMRI and 5-ALA, the quality of
evidence was low, and impact on OS, PFS, and quality of life
was unclear.111

Integrated multimodal neuronavigation refers to novel
techniques to coregistermultiple imagingmodalities including

functional and structural information allowing real-time inte-
grated intraoperative information to assist safe and complete
resection of intracranial lesions, particularly within eloquent
brain areas. Functional MRI, MRI-based DTI tractography
(►Fig. 3), and navigated transcranial magnetic stimulation
(nTMS) enable the neurosurgeon to incorporate functional
data into preoperative planning and intraoperative navigation.
Both functional MRI and DTI were demonstrated to influence
clinical decisionmaking, surgical approach, and EOR in glioma
including GB.112

Navigated TMS is an emerging technology for preoperative
corticalmapping and planning before glioma resection located
within or in proximity to the motor and language areas. It is
used before surgery to plan a tailored strategy ofmaximal safe
resection and during surgery, with integrated nTMS-based
tractography, as a further guide to intraoperative neurophysi-
ologicmapping. The roleofnTMSonthe surgical outcome inGB
was reviewed in a controlled observational study by Picht
et al.113 Supplementing standard intraoperative cortical map-
pingwith preoperative nTMSmotormapping and nTMS-based
fiber tracking results in improved surgical outcomes without
compromising functional outcome in patients with GB. It is
further suggested that nTMSmapping can expand the popula-
tionofpatientswhocanbesafelyofferedsurgical treatment.113

Meta-analysis suggests nTMS is associated with a reduced
occurrence of postoperative permanent motor deficits, an
increased GTR rate, and a better tailored surgical approach
compared with standard surgery without using preoperative
nTMS mapping.114 However, further research is required to
provide high-level evidence of this emerging technology.

Conclusion

The available data from patients with GB overwhelmingly
support the fundamental principle of neurosurgical oncol-
ogy that safe maximal tumor resection improves PFS, OS,

Fig. 3 Use of navigated transcranial magnetic stimulation on a patient with left frontal high-grade glioma to maximize safe extent of resection.
(a) Three-dimensional magnetic resonance imaging (MRI) coregistered with preoperative navigated transcranial magnetic stimulation (nTMS).
Red arrows represent points with positive motor response of the right hand and arm recorded in preoperative nTMS mapping. (b) Preoperative
contrast-enhanced head MRI demonstrating lesion anterior to the motor strip. (c) Postoperative contrast-enhanced head MRI demonstrating
complete resection of the tumor with no neurologic deficit. Histopathologic analysis confirmed oligodendroglioma World Health Organization
class III, isocitrate dehydrogenase mutant, 1p19q codeleted.
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symptom control, and quality of life. Standardizing defini-
tions of EOR and imaging techniques, and harmonizing
clinical data collection in terms of outcomes including
quality of life will allow us to perform large-scale prospec-
tive studies to better understand the importance of EOR in
GB. It will also help us quantify the value of surgical
adjuncts in achieving this goal. In recent years, new intra-
operative techniques have been introduced into the neuro-
surgical armamentarium to improve EOR, minimize RV, and
improve the safety of surgery. They have different merits
and range from tools that assist in the planning of surgery
and resection of the tumor to techniques that improve
patient safety. Continued surgical research will be essential
if we are to optimize how different techniques can be used
in combination in molecularly stratified patient cohorts and
to quantify their clinical and cost-benefit value.
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