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Background: Preoperative differentiation of primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM)
is important to guide neurosurgical decision-making.
Purpose: To validate the generalization ability of radiomics models based on multiparametric-MRI (MP-MRI) for differenti-
ating PCNSL from GBM.
Study Type: Retrospective.
Population: In all, 240 patients with GBM (n = 129) or PCNSL (n = 111).
Field Strength/Sequence: 3.0T scanners (two vendors). Sequences: fluid-attenuation inversion recovery, diffusion-
weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (CE-T1WI). Apparent diffusion coefficients (ADCs)
were derived from DWI.
Assessment: Cross-vendor and mixed-vendor validation were conducted. In cross-vendor validation, the training set was
149 patients’ data from vendor 1, and test set was 91 patients’ data from vendor 2. In mixed-vendor validation, a training set
was 80% of data from both vendors, and the test set remained at 20% of data. Single and multisequence radiomics models
were built. The diagnoses by radiologists with 5, 10, and 20 years’ experience were obtained. The integrated models were
built combining the diagnoses by the best-performing radiomics model and each radiologist. Model performance was vali-
dated in the test set using area under the ROC curve (AUC). Histological results were used as the reference standard.
Statistical Tests: DeLong test: differences between AUCs. U-test: differences of numerical variables. Fisher’s exact test:
differences of categorical variables.
Results: In cross-vendor and mixed-vendor validation, the combination of CE-T1WI and ADC produced the best-
performing radiomics model, with AUC of 0.943 vs. 0.935, P = 0.854. The integrated models had higher AUCs than radiol-
ogists, with 5 (0.975 vs. 0.891, P = 0.002 and 0.995 vs. 0.885, P = 0.007), 10 (0.975 vs. 0.913, P = 0.029 and 0.995
vs. 0.900, P = 0.030), and 20 (0.975 vs. 0.945, P = 0.179 and 0.995 vs. 0.923, P = 0.046) years’ experiences.
Data Conclusion: Radiomics for differentiating PCNSL from GBM was generalizable. The model combining MP-MRI and
radiologists’ diagnoses had superior performance compared to the radiologists alone.
Level of Evidence: 4
Technical Efficacy Stage: 2
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PRIMARY CENTRAL NERVOUS SYSTEM LYM-
PHOMA (PCNSL) and glioblastoma (GBM) are two

commonly diagnosed malignant primary brain tumors.1 The
accurate differentiation of PCNSL from GBM is clinically
crucial due to the different treatment strategies between
them.2–4 The current treatment guidelines adopt aggressive
resection for GBM, while for PCNSL noninvasive therapy
including chemotherapy, targeted therapies, or whole brain
radiotherapy are mostly recommended.5 Although the refer-
ence standard for tumor diagnosis is histological examination
after stereotactic biopsy, this has a 6.6% probability of severe
complications such as cerebral hemorrhage or death.6 In addi-
tion, the stereotactic biopsy is more challenging to be carried
out for the deep part of the mid-brain than the superficial
part.7 Therefore, accurate noninvasive diagnosis of PCNSL
and GBM is important to guide neurosurgical decision-
making.

Magnetic resonance imaging (MRI) generally enables
the noninvasive differentiation of typical PCNSL from GBM
and advanced MRI techniques, such as dynamic contrast-
enhanced imaging, arterial spin labeling, magnetic resonance
spectroscopy, and dynamic susceptibility-weighted contrast-
enhanced imaging, have been helpful in the differentiation of
more complex cases.8 However, extra expense and time are
needed to perform advanced MRI techniques and these are
generally not performed in routine clinical practice.9 Conven-
tional multiparametric-MRI (MP-MRI) including contrast-
enhanced T1-weighted imaging (CE-T1WI), fluid-attenuation
inversion recovery (FLAIR), and diffusion-weighted imaging
(DWI) are almost always performed. However, using these
conventional techniques differentiation of PCNSL from
GBM is challenging. Atypical PCNSL with necrosis and
hemorrhage, for example, may mimic GBM, while atypical
GBM without visible necrosis is similar to PCNSL.10–12

Constructing a diagnostic model through machine-learning
techniques, which fully utilizes the conventional MRI data
and could be very useful.

Radiomics is a form of machine learning that is used to
extract high-throughput quantitative image features and train
a predictive model.13 Based on the large number of image
features extracted from MRI that describe tumor heterogene-
ity, radiomics has shown great potential in building models
that are capable of differentiating PCNSL from GBM.9,14–17

However, as different MRI sequences have been introduced
into clinical practice, it is important to determine the optimal
combination of MRI sequences for the development of the
radiomics model. In addition, previous studies have been con-
ducted with data acquired from a single MR scanner.9,14–17

This has resulted in concerns about the risk of overfitting the
models that may be biased by subtle differences between
MRI hardware or imaging parameters. The generalizability of
radiomics models to correctly interpret data acquired by dif-
ferent MR scanners with different protocol parameters is

important18 and would allow the application of radiomics in
clinical practice. Furthermore, while in previous studies the
performance of radiomics models were evaluated against
radiologists,9,14,16,17 models were initially developed as sup-
port tools to assist radiologists rather than to replace them.19

It would therefore be helpful to investigate the benefit of inte-
grating the diagnosis by the radiomics model with that of the
radiologist.

The aim of this study was to develop and validate the
generalizability of multiparametric-MRI (MP-MRI)-based
radiomics models for differentiating PCNSL from GBM and
to assess the additional benefit of integrating the radiomics
model with the radiologists’ diagnoses.

Materials and Methods
Patients
The Institutional Review Board of our center approved this retro-
spective study, and the requirement for evidence of informed con-
sent was waived. The inclusion criteria were as follows: 1)
histologically proven PCNSL or GBM from March 2011 to March
2019; 2) preoperative MRI. The exclusion criteria were as follows: i)
lacking any one of the following conventional MRI sequences: CE-
T1WI, FLAIR, DWI; ii) received prior treatment before MRI scan-
ning; iii) image data with miscellaneous artifacts. In total,
240 patients were enrolled in this study, including 129 patients with
GBM and 111 patients with PCNSL.

Image Acquisition
MRI was performed on 3T scanners with 8-channel head coils. MR
images of 149 patients were acquired with two Verio 3T scanners
(Vendor 1: Siemens, Erlangen, Germany), and MR images of
91 patients were obtained by one Signa 3T scanner (Vendor 2: GE
Healthcare, Milwaukee, WI). The MRI protocols are shown in
Table 1. FLAIR and DWI images were obtained. Based on DWI
images, the ADC maps were generated automatically by the MRI
workstation. After intravenous injection of gadopentetate dim-
eglumine (0.1 mmol/kg), axial CE-T1WI images were obtained.

Radiomics Feature Extraction
For each patient the tumor volume of interest (VOI) was delineated
manually using Medical Imaging Interaction Toolkit (MITK) soft-
ware (v. 2013.12.0; http://www.mitk.org/). The tumor VOI was
drawn on the FLAIR images, covering the tumor tissue and periph-
eral edema, and was adjusted following viewing of DWI and CE-
T1WI images. To enable the VOI to be used with images from all
MRI sequences, the CE-T1WI, DWI, and ADC images were res-
ampled and aligned to the same resolution, spacing, and position as
the FLAIR images using the open-source Insight Segmentation and
Registration Toolkit (ITK, v. 4.7.2; https://itk.org/).20 To standard-
ize the MR images from all sequences, the mean value and the stan-
dard deviation of intensity in the images from each MRI volume
were calculated, and each was normalized by the z-score method,
which consisted of subtracting the mean intensity and dividing by
the standard deviation of intensity.21–23
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MRI feature extraction was conducted using an open-source
Python package Pyradiomics (v. 2.1.2; http://www.radiomics.io/
pyradiomics.html).24 A total of 851 image features were calculated
for each MRI volume, including 14 shape-based features, 18 first-
order statistics features, 75 texture features, and 744 wavelet features.
The shape-based features were extracted in 3D by using shape
descriptors to quantify the shape of the tumor VOI. First-order sta-
tistic features described the distribution of voxel intensities within
the tumor VOI. Texture features employed gray-level matrixes to
represent the spatial heterogeneity of intensities within the tumor
VOI, with the bin width of intensity being set to 32. To extract
more image features quantifying the tumor heterogeneity, the 3D
wavelet filtering was applied to each MRI volume. The 3D wavelet
filtering decomposed the original volume V into eight decomposi-
tions. Let L and H be the low-pass and the high-pass filtering, the
wavelet decompositions of V can be labeled as V_LLL, V_LLH,
V_LHL, V_LHH, V_HLL, V_HLH, V_HHL, and V_HHH. For
instance, V_HHL is obtained from x-directional high-pass filtering,
y-directional high-pass filtering, and z-directional low-pass filtering
of V. The obtained decompositions have the same size of the original
image. For each of the eight decompositions, the 18 first-order statis-
tical features and the 75 texture features were calculated, thus the
corresponding 744 wavelet features were obtained. The wavelet fil-
tering was implemented by PyWavelets package (v. 1.0.1). The
details of all features are described online (https://pyradiomics.
readthedocs.io/en/2.1.2/features.html).24

Radiomics Model Development
To improve the generalizability of the radiomics model, the features
with low intra- or interobserver reproducibility were excluded.20,25

Two radiologists (B.H. and H.L.) with 5 years of experience per-
formed the same delineation of the tumor VOI for all patients: radi-
ologist 1 delineated the tumor VOI twice at different times and

radiologist 2 carried out the delineation once. The radiomics features
were calculated after each delineation and intra- and interobserver
reproducibility determined for each feature. Features with low repro-
ducibility (intra- or interobserver intraclass coefficient [ICC] below
0.75) were excluded.20 In addition, pairwise feature Spearman corre-
lation coefficients (SCCs) were calculated to build a correlation
matrix, and the feature pairs with SCC higher than 0.9 were identi-
fied as highly correlated.13,20 In each highly correlated feature pair,
the SCCs between a feature and all the other features was calculated,
and the feature with the larger mean SCC was considered to be
redundant and excluded. Subsequently, a minimum redundancy
maximum relevance (mRMR) feature selection method26 was
employed to control the number of features remaining to within
1/10 of the number of cases to reduce the risk of model
overfitting.27

The selected radiomics features were input to the least abso-
lute shrinkage and selection operator (LASSO) for radiomics model
building. LASSO is a generalized linear model (GLM) that performs
both feature selection and regularization to enhance the classification
accuracy and interpretability of the model,28 and has shown advan-
tages over other classifiers in radiomics studies.13,18 For each MRI
sequence, a single-sequence radiomics model was trained using
10-fold cross-validation. Multisequence radiomics models were gen-
erated by integrating single-sequence radiomics models using multi-
variable logistic regression with all possible combinations of
sequences. In total, four single-sequence radiomics models and
11 multisequence radiomics models were built. The single-sequence
radiomics models were the linear weighted sum of radiomics fea-
tures, and the multisequence radiomics models were the linear
weighted sum of the outputs of single-sequence radiomics models.
The outputs of models were transformed to probabilities by sigmoid
function. The radiomics models allowed assigning patients with a
radiomics score that was the diagnostic probability of PCNSL.

TABLE 1. MRI Scanning Protocols

Sequences Verio 3T (1) Verio 3T (2) Signa 3T

T1WI TR/TI/TE = 2000/860/9 msec,
matrix size = 320*199,
FOV = 213*240, slice
thickness = 8 mm, slice
spacing = 0.94 mm.

TR/TI/TE = 2000/857/17
msec, matrix size = 256*168,
FOV = 201*230, slice
thickness = 8 mm, slice
spacing = 0.9 mm.

TR/TI/TE = 1935/750/21
msec, matrix size = 288*192,
FOV = 240*240, slice
thickness = 8 mm, slice
spacing = 0.47 mm.

FLAIR TR/TI/TE = 9000/2501/94
msec, matrix size = 256*160,
FOV = 213*240, slice
thickness = 8 mm, slice
spacing = 0.45 mm.

TR/TI/TE = 9000/2500/102
msec, matrix size = 256*190,
FOV = 201*230, slice
thickness = 8 mm, slice
spacing = 0.45 mm.

TR/TI/TE = 8602/2100/123
msec, matrix size = 288*192,
FOV = 240*240, slice
thickness = 8 mm, slice
spacing = 0.47 mm.

DWI (b = 0,
1000 s/mm2)

TR/TE = 6600/100 msec,
matrix size = 192*192,
FOV = 240*240, slice
thickness = 8 mm, slice
spacing = 1.77 mm.

TR/TE = 5000/104 msec,
matrix size = 192*192,
FOV = 229*229, slice
thickness = 8 mm, slice
spacing = 1.2 mm.

TR/TE = 4800/74 msec,
matrix size = 128*130,
FOV = 240*240, slice
thickness = 8 mm, slice
spacing = 0.94 mm.

TR = repetition time; TI = inversion time; TE = echo time; FOV = field of view; T1WI = T1-weighted imaging; FLAIR = fluid-
attenuation inversion recovery; DWI = diffusion-weighted imaging.
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Comparison and Integration of Diagnosis by Model
and Radiologists
Three radiologists (Y.Y., Y.T., and Y.L. with over 5, 10, and
20 years’ experience in neuroradiology) blinded to the histological
results were assigned to review MRI images and classify the cases as
PCNSL or GBM independently. The radiologists with over 5, 10,
and 20 years’ experience were regarded as junior radiologist,
intermediate-level radiologist, and senior radiologist, respectively.
For each radiologist, an integrated model was built using multivari-
able logistic regression to make a final decision by combining the
diagnoses by radiologist with the best-performing radiomics model.

Model Validation
A cross-vendor validation was conducted to test the cross-vendor
generalizability of the models developed; the images of the
149 patients acquired by the Vendor 1’s scanners were grouped as
the training set for model development; and the images of the
91 patients acquired by the Vendor 2’s scanner were used as the test
set. All models were built using the training set and independently
validated on the test set.

In addition, a mixed-vendor validation was conducted to test
the robustness of the model development procedure. The models
were trained on the dataset and consisted of 80% of the patients’
images from Vendor 1 and 80% of the patients’ images from Ven-
dor 2. Then the models were tested on a dataset of the remaining
20% patients’ images from both vendors. The results of mixed-
vendor validation were compared to the cross-vendor validation.

Statistical Analysis
The diagnostic performances of the models were assessed using
receiver operating characteristic (ROC) curve analysis and measured

by the area under the ROC curve (AUC). Differences between
ROC curves were assessed by the DeLong test using MedCalc soft-
ware (v. 11.4.2.0, http://www.medcalc.be/).29 By designating the
patients with PCNSL as positive cases, the sensitivity, specificity,
and accuracy of the models were calculated. In statistical tests of clin-
ical characteristics, the Mann–Whitney U-test was used for numeri-
cal variables, and Fisher’s exact test was used for categorical variables.
The intra- and interobserver reproducibility of features was deter-
mined by the ICC. The feature selection, the development and vali-
dation of models, and statistical tests were conducted using R
software (v. 3.6.2, https://www.r-project.org/). P < 0.05 was consid-
ered statistically significant. The flowchart of model development
and validation is depicted in Fig. 1.

Results
Patient characteristics are provided in Table 2. There were no
significant differences in the age, gender, or pathology
between the training set and the test set in both cross-vendor
and mixed-vendor validations.

A total of 851 radiomics features were extracted for each
MRI sequence. After the features with low reproducibility
were excluded, this was reduced to 669, 501, 711, and
631 for CE-T1WI, FLAIR, DWI, and ADC, respectively.
Further exclusion of redundant features following identifica-
tion of highly correlated feature pairs resulted in 141 (179)
CE-T1WI features, 85 (85) FLAIR features, 151 (140) DWI
features, and 133 (141) ADC features remained in cross-
vendor validation (mixed-vendor validation). After LASSO
feature selection, there were 6 (6), 3 (1), 2 (4), and 5 (6) fea-
tures in the CE-T1WI, FLAIR, DWI, and ADC-based

FIGURE 1: Flowchart of model development and validation. 1) Data acquisition: the MRI images were acquired from two vendors’
scanners; 2) Dataset splitting: The cross-vendor approach split the data as training and test sets according to vendor type, and
the mixed-vendor approach split the data from both vendors as training and test sets by a ratio of 8:2; 3) Feature extraction: the
radiomics features were extracted from the delineated tumor VOI; 4) Radiomics model development: on each training set, the
feature reduction and selection were conducted, and the single-sequence radiomics models were built by LASSO with 10-fold cross
validation, then the multisequence models were built by integrating single-sequence models; 5) integrating models with
radiologists: on each training set, the integrated model was built by combining the diagnoses by each radiologist with the best-
performing radiomics model; 6) model validation: the cross-vendor and mixed-vendor-based models were tested and compared.
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radiomics models in cross-vendor validation (mixed-vendor
validation), respectively. The details of the single-sequence
radiomics model are listed in Table S1–S4 of Supplement A,
and the details of multisequence radiomics models are listed
in Table S5–S15 of Supplement A.

The test performances of the models are listed in
Table 3. In both cross-vendor and mixed-vendor validation,
among the single-sequence radiomics models the model based
on CE-T1WI achieved the best performance with the highest
AUC. For the multisequence radiomics models, the best-
performing radiomics model was derived from the combina-
tion of CE-T1WI and the ADC map (CE-T1WI + ADC
model). The ROC curves of the CE-T1WI + ADC model is
given in Fig. 2. In addition, there were no statistically signifi-
cant differences in the AUC of models between cross-vendor
and mixed-vendor validation.

The diagnostic performances of the three independent
radiologists are shown in Table 3 and the corresponding
ROC curves are presented in Fig. 2. In both cross-vendor
and mixed-vendor validation, the AUC of CE-T1WI + ADC
model was comparable to that of the senior radiologist (0.943
vs. 0.945, P = 0.948 and 0.935 vs. 0.923, P = 0.824). Inte-
grating the diagnoses of the junior radiologist and the CE-
T1WI + ADC model resulted in significantly higher AUC
than the junior radiologist (0.975 vs. 0.891, P = 0.002 and
0.995 vs. 0.885, P = 0.007) and intermediate-level radiologist
(0.975 vs. 0.913, P = 0.029 and 0.995 vs. 0.900, P = 0.030),
and higher than the senior radiologist (0.975 vs. 0.945,
P = 0.179 and 0.995 vs. 0.923, P = 0.046). Integrating the
diagnoses of the intermediate-level radiologist and the CE-
T1WI + ADC model resulted in a significant improvement in
AUC compared with the intermediate-level radiologist (0.981

vs. 0.913, P = 0.009 and 0.997 vs. 0.900, P = 0.019), and
higher than the senior radiologist (0.981 vs. 0.945, P = 0.088
and 0.997 vs. 0.923, P = 0.045). Integrating the diagnoses of
the senior radiologist and the CE-T1WI + ADC model also
resulted in improvement in AUC compared with the senior
radiologist alone (0.980 vs. 0.945, P = 0.074 and 0.995
vs. 0.923, P = 0.046). The integrated models’ parameters are
given in Table S16 of Supplement A. The ROC curves of the
integrated models are given in Fig. 2.

The chord diagrams30 are illustrated in Fig. 3 and show
the corrective effect of the integrated models. The chord dia-
grams of the cross-vendor validation are plotted in Fig. 3a–c.
In Fig. 3a, it can be seen that six out of 10 patients who were
misdiagnosed by the junior radiologist were correctly diag-
nosed by the integrated model. In Fig. 3b, there are four out
of eight patients who were misdiagnosed by the intermediate-
level radiologist and were correctly diagnosed by the inte-
grated model. In Fig. 3c, it can be seen that three out of five
patients who were misdiagnosed by the senior radiologist
were correctly diagnosed by the integrated model, but there
was one patient correctly diagnosed by the senior radiologist
who was misdiagnosed by the integrated model. Similar
results can be found in the mixed-vendor validation and
shown in Fig. 3d–f. The MR images of representative cases
are shown in Fig. 4.

Discussion
In this study we developed radiomics models using the image
features extracted from MP-MRI for differentiating PCNSL
from GBM. The MR images used in routine radiology
workflow—CE-T1WI, FLAIR, DWI, and ADC—were used

TABLE 2. Patient Profiles of Training and Test Set

Characteristic Overall

Cross-vendor validation Mixed-vendor validation

Training set Test set P-value Training set Test set P-value

Age (years) 53.8 � 13.0 53.3 � 12.7 54.6 � 13.5 0.332 54.1 � 13.0 52.7 � 13.2 0.486

Gender 0.892 1.000

Male 142 89 53 114 28

Female 98 60 38 78 20

Pathology 0.350 0.258

GBM 129 84 45 107 22

PCNSL 111 65 46 85 26

Total number 240 149 91 192 48

Ages are shown as mean � standard deviation, and others are number of patients. The P values are derived from the comparison
between training set and test set.
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individually and in all combinations for model building. The
diagnostic performance of models were cross-vendor and
mixed-vendor validated, and good results were acquired in both
validations. The CE-T1WI model achieved the best perfor-
mance with the highest AUC among all single-sequence
models. For the multisequence radiomics models, the CE-
T1WI + ADC model achieved the best performance. The
models were compared with three radiologists, and the CE-
T1WI + ADC model was comparable to the senior radiologist.
Furthermore, the integrated models were built by combining
the diagnoses by the CE-T1WI + ADC model and the radiolo-
gists to provide a final decision. The integrated models achieved
better performance than radiologists or radiomics models alone.

Both cross-vendor and mixed-vendor validations were
performed, and there were no statistically significant differ-
ences in the AUC of models between the two validations. In
both validations, the best-performing radiomics model
achieved good performance that was comparable to the senior
radiologist. The encouraging performance suggested that the
radiomics approach was robust and generalizable, regardless
of specific MR vendor and protocol.

Among single-sequence radiomics models, the CE-
T1WI-based model achieved the highest AUC. CE-T1WI is
the preferred MRI sequence in brain tumor diagnosis and can
clearly show the tumor entity and necrosis. Heterogeneous
enhancement was commonly observed in GBM, while

TABLE 3. Test Performance of Models and Radiologists

Models and radiologists

Cross-vendor validation Mixed-vendor validation

P-valueAUC ACC SEN SPE AUC ACC SEN SPE

CE-T1WI 0.937 0.890 0.870 0.911 0.933 0.896 0.846 0.954 0.937

FLAIR 0.897 0.868 0.804 0.933 0.884 0.854 0.730 1.000 0.846

DWI 0.905 0.857 0.783 0.933 0.886 0.833 0.692 1.000 0.757

ADC 0.925 0.868 0.782 0.956 0.900 0.854 0.846 0.864 0.648

CE-T1WI + DWI 0.927 0.890 0.870 0.911 0.925 0.917 0.923 0.909 0.973

CE-T1WI + FLAIR 0.937 0.890 0.870 0.911 0.918 0.895 0.923 0.863 0.716

CE-T1WI + ADC 0.943 0.912 0.891 0.933 0.935 0.917 0.923 0.909 0.854

FLAIR+DWI 0.898 0.868 0.804 0.933 0.886 0.833 0.846 0.818 0.852

FLAIR+ADC 0.926 0.879 0.804 0.956 0.913 0.854 0.769 0.954 0.788

DWI + ADC 0.928 0.890 0.826 0.956 0.897 0.854 0.807 0.909 0.656

CE-T1WI + FLAIR+DWI 0.939 0.890 0.848 0.933 0.916 0.895 0.923 0.864 0.665

CE-T1WI + FLAIR+ADC 0.940 0.901 0.870 0.933 0.923 0.896 0.923 0.864 0.728

CE-T1WI + DWI + ADC 0.935 0.879 0.870 0.889 0.927 0.917 0.923 0.909 0.859

FLAIR+DWI+ ADC 0.917 0.824 0.740 0.911 0.900 0.812 0.730 0.909 0.744

CE-T1WI + FLAIR+DWI + ADC 0.930 0.868 0.847 0.889 0.923 0.875 0.884 0.863 0.879

Junior radiologist 0.891 0.890 0.804 0.978 0.885 0.875 0.769 1.000 0.903

Integrated model_junior 0.975 0.956 0.935 0.978 0.995 0.958 0.923 1.000 0.265

Intermediate-level radiologist 0.913 0.912 0.870 0.956 0.900 0.896 0.846 0.954 0.814

Integrated model_intermediate 0.981 0.945 0.935 0.956 0.997 0.979 1.000 0.954 0.349

Senior radiologist 0.945 0.945 0.913 0.978 0.923 0.917 0.846 1.000 0.607

Integrated model_senior 0.980 0.956 0.935 0.978 0.995 0.979 1.000 0.954 0.383

CE-T1WI = contrast-enhanced T1-weighted imaging; FLAIR = fluid-attenuation inversion recovery; DWI = diffusion-weighted imaging;
ADC = apparent diffusion coefficient; Integrated model_x = integrating the diagnoses by the x (junior, intermediate, or senior) radiolo-
gist and the CE-T1WI + ADC model; AUC = area under the receiver operating characteristic curve; ACC = accuracy; SEN = sensitivity;
SPE = specificity. The sensitivity and specificity were calculated by designating PCNSL as a positive case. The P values are derived from
the comparisons of ROC curves between cross-vendor and mixed-vendor validation.
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homogenous enhancement was always seen in PCNSL. Previ-
ous radiomics studies based on CE-T1WI showed that the
CE-T1WI-based model could achieve promising diagnostic
performance, with results similar to ours.14–16 The ADC
map-based model showed the second highest diagnostic per-
formance. ADC values measure the water diffusional restric-
tion and can indicate the cellularity, necrosis, and cystic
degeneration in tumors.31 Previous studies have shown that

cellularity was higher in PCNSL compared to GBM.32 In the
features that make up the ADC model, there is a feature
named original_firstorder_10Percentile, which is the 10th
percentile of ADC values within the tumor VOI, which sug-
gests that this feature is important for differentiating PCNSL
from GBM, and this is consistent with a previous study.33 In
the CE-T1WI and ADC-based model, the wavelet features
had the largest number, and similar findings were reported in

FIGURE 2: The ROC curves of radiologists and models. (a) Cross-vendor validation, (b) Mixed-vendor validation.

FIGURE 3: The chord diagrams for showing the corrective effect of the integrated models. (a–c) The chord diagrams for comparison
of the diagnoses by junior, intermediate-level, and senior radiologist and the corresponding integrated model in cross-vendor
validation. (d–f) The chord diagrams for comparison of the diagnoses by junior, intermediate-level, and senior radiologist and the
corresponding integrated model in mixed-vendor validation.
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previous studies that showed that wavelet features were the
major components in radiomic models.20,34,35 The FLAIR-
based model had inferior performance compared with other
sequences, as FLAIR mainly identifies edema that is not as
significant as tumor tissue for differentiation in clinical prac-
tice. Among the multisequence radiomics models, the combi-
nation of CE-T1WI and ADC achieved better performance
than the combination of all sequences; this may due to the
fact that DWI and FLAIR could not provide complementary
information for CE-T1WI and ADC, and introducing redun-
dant information may decrease the model performance based
on the principle of machine learning.

The diagnostic performance of the models were com-
pared with the radiologists. The sensitivity of all radiologists
was lower than the specificity. This is consistent with previ-
ous studies that showed that atypical PCNSL was a challenge
in radiological diagnosis.14,16,17 For all radiologists, the inte-
grated model showed improvement in the AUC compared

with that of the radiologists or radiomics model alone. In par-
ticular, for the junior and intermediate-level radiologists, the
integrated model significantly improved the AUC compared
to the radiologists themselves, and had higher AUC than the
senior radiologist. This indicated that the machine-learning
derived knowledge and human knowledge were mutually
complementary and that the integration approach may facili-
tate effective cooperation between machines and human
readers for more accurate diagnosis.

Limitations
First, the models developed need to be further validated in
different centers before application in clinical work. The
development tools for model building are publicly available
and the features and coefficients used in the models have
been provided, ensuring that they can be reproduced at other
centers for validation. Second, while the models were devel-
oped to differentiate PCNSL from GBM, there are many

FIGURE 4: MR images of representative cases. (a,e,i,m) CE-T1WI images. (b,f,j,n) FLAIR images. (c,g,k,o) DWI images. (d,h,l,p) ADC
images. (a–d) A case with histologically confirmed PCNSL who was misdiagnosed as GBM by radiologists and were correctly
diagnosed by the CE-T1WI + ADC model. (e–h) A case with histologically confirmed GBM who was misdiagnosed as PCNSL by the
junior radiologist and were correctly diagnosed by the CE-T1WI + ADC model. (i–l) A case with histologically confirmed PCNSL who
was misdiagnosed as GBM by the CE-T1WI + ADC model and all radiologists. (m–p) A case with histologically confirmed GBM who
was misdiagnosed as PCNSL by the CE-T1WI + ADC model was correctly diagnosed by all radiologists.
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more types of brain lesions that should be included in future
studies in order to build a nondichotomous diagnostic model
that can realize fully automated diagnosis.

Conclusion
In this study we developed and validated MP-MRI-based
radiomics models for differentiating PCNSL from GBM,
which proved to be accurate and generalizable. The model
has the potential to provide supplementary diagnoses to radi-
ologists and to improve diagnostic performance.
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