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Abstract

Glioblastoma is the most aggressive primary brain tumor

in adults. The prognosis of patients with primary glio-

blastoma treated with the current standard of care, tu-

mor resection followed by radiation therapy and auxiliary

temozolomide, remains poor. Integrative genomic ana-

lyses have identified essential core signaling pathways

and frequent genetic aberrations, which provide poten-

tial drug targets for glioblastoma treatment. Drugs

against these therapeutic targets have been developed

rapidly in recent years. Although some have shown pro-

mising effects on models in preclinical studies, many have

shown only modest efficacy in clinical trials. New ther-

apeutic strategies and potent drugs are urgently needed

to improve the prognosis of patients with glioblastoma.

The goal of this review is to summarize the current ad-

vances in drug development for targeted glioblastoma

therapies and to reveal the major challenges encountered

in clinical trials or treatment. This study will provide new

perspectives for future studies of targeted therapeutic

drug development and provide insights into the clinical

treatment of glioblastoma.
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1 | INTRODUCTION

Glioblastoma is the most malignant brain tumor and occurs frequently in the central nervous system.1 In the

USA, the annual incidence of glioblastoma is 3.22/100 000 population, and glioblastoma accounts for

14.6% of all primary brain tumors and 48.3% of malignant brain tumors.1 The incidence increases with age

and is the highest for elderly adults aged 75 to 84 years.1 Following diagnosis, the 5‐year survival rate

of patients with glioblastoma (6.8%) is much worse than patients with other malignant brain tumors

(35.8%).1

According to the World Health Organization (WHO) classification, glioblastoma is the most malignant

grade IV glioma.2 Two types of glioblastoma are defined by the origins of the tumors: primary glioblastoma,

which arises de novo as a malignant high‐grade glioma (HGG) and accounts for more than 90% of all tumors,

and secondary glioblastoma (<10%), which usually develops from a previously established low‐grade glioma.3

Four subtypes of glioblastoma have been identified according to the molecular expression patterns: classical,

neural, proneural, and mesenchymal subtypes.4,5 The specific molecular characteristics of the four subtypes

of glioblastoma were revealed in comprehensive genomic studies by The Cancer Genome Atlas (TCGA)

program.6

Methylation of the O (6)‐methylguanine DNA methyltransferase (MGMT) gene promoter is one of the most

widely studied prognostic biomarkers of glioblastoma7 and can improve the prognosis of patients with glioblastoma

who are treated with temozolomide (TMZ).8 MGMT promoter methylation inhibits the transcription of the MGMT

gene, which has important functions in the DNA repair process, thus promoting tumor cell death and subsequently

improving the beneficial effects of alkylating agents such as TMZ on patients.8 Mutations in the isocitrate dehy-

drogenase 1 (IDH1) gene, such as IDH1 (R132H), frequently occur in glioblastoma and are usually considered

another prognostic marker for the survival of patients with glioblastoma.9 IDH mutations sensitize tumor cells to

radiotherapy and TMZ, thus prolonging the survival of patients with glioblastoma.9 Mutations in the telomerase

reverse transcriptase gene promoter are also a crucial prognostic factor for glioblastoma, but predict poor treat-

ment response in patients.10,11

With the recent rapid development of next‐generation sequencing technology, many studies have been

conducted to explore the genomic landscape of glioblastoma.6,12 A TCGA Research Network study involved a

comprehensive study of more than 500 glioblastoma tumors at the genomic, epigenomic, transcriptomic, and

proteomic levels. This multidimensional dataset revealed the most frequent genomic characteristics of

glioblastoma tumors.6 The whole‐exome sequencing results in this study identified the most significantly

mutated genes or genomic loci, including the phosphatase and tensin homolog (PTEN), tumor protein p53

(TP53), epidermal growth factor receptor (EGFR), phosphatidylinositol‐4,5‐bisphosphate 3‐kinase catalytic

subunit alpha (PIK3CA), phosphoinositide‐3‐kinase regulatory subunit 1 (PIK3R1), neurofibromin 1 (NF1),

retinoblastoma 1 (RB1), isocitrate dehydrogenase (NADP[+]) 1 (IDH1), and platelet‐derived growth factor

receptor alpha (PDGFRA) genes; chromosome 7 (containing the EGFR, MET, and cyclin‐dependent kinase 6

[CDK6] genes); chromosome 12 (containing the CDK4 and MDM2 genes); and chromosome 4 (containing the

PDGFRA gene).6 Moreover, the most frequently occurring gain of function mutations were detected in genes

such as SRY (sex‐determining region Y)‐box 2, the MYCN proto‐oncogene, cyclin D1, and cyclin E2 (CCNE2),

and the most frequently occurring loss of function mutations were detected in the cyclin‐dependent kinase
inhibitor 2A/B (CDKN2A/B), chromosome 6q26, parkin RBR E3 ubiquitin protein ligase (PARK2), QKI, LDL

receptor‐related protein 1B, neuronal PAS domain protein 3, limbic system associated membrane protein,

and SET and MYND domain containing 3 genes.6

The current standard of care for patients with newly diagnosed glioblastoma is surgical resection followed by

concomitant radiotherapy and TMZ. Although TMZ chemotherapy improves the 2‐year survival rate of patients

with glioblastoma from 10.4% (radiation only) to 26.5% (radiation + TMZ), the benefit of current treatment is still

limited, as the median survival time of patients was only increased by ~2 months.13 The development of novel
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therapeutic strategies and related drugs is urgently needed to substantially improve the prognoses of patients with

glioblastoma.

Deep sequencing and comprehensive analysis of the genomic profiles of glioblastoma tumor samples have

identified multiple potential therapeutic targets for the development of drugs specific for this malignant disease.6,12

In this review, we introduce the most extensively studied potential therapeutic targets and related candidate drugs

that have been developed for the treatment of glioblastoma (Figure 1). A comprehensive understanding of the

current status of targeted therapies for glioblastoma would provide new insights into the future development of

drugs to treat patients with glioblastoma.

F IGURE 1 Overview of the main strategies for targeted therapies and related drug development for
glioblastoma. A, Targeting the RTK/PI3K/AKT/mTOR pathway and cell proliferation/survival/translation processes
by EGFR/EGFRvIII inhibitors, PI3K inhibitors, AKT inhibitors, and mTOR inhibitors in glioblastoma. B, Targeting the

p53 pathway and apoptosis process by MDM2 inhibitors in glioblastoma. C, Targeting the Rb pathway and cell cycle
by CDK4/CDK6 inhibitors in glioblastoma. D, Targeting transcriptional dysregulation by CDK7 inhibitors in tumor
cells, including malignant gliomas. E, Targeting tumor angiogenesis by VEGF inhibitors in glioblastoma. F, Targeting

immune checkpoints by PD‐1 and PD‐L1 inhibitors in glioblastoma. CDK, cyclin‐dependent kinase; EGFR, epidermal
growth factor receptor; PD‐1, programmed cell death protein 1; PI3K, phosphatidylinositol 3 kinase; RTK, receptor
tyrosine kinase; VEGF, vascular endothelial growth factor [Color figure can be viewed at wileyonlinelibrary.com]
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2 | CURRENT STATUS OF DRUG DEVELOPMENT FOR TARGETED
THERAPIES FOR GLIOBLASTOMA

2.1 | Targeting core signaling pathways in glioblastoma

Genetic alterations identified in the TCGA study defined three core signaling pathways in glioblastoma: the

phosphatidylinositol 3 kinase (PI3K) pathway (with genetic alterations in the PIK3CA, PIK3R1, PTEN, EGFR, PDGFRA,

and NF1 genes), the p53 pathway (with genetic alterations in the MDM2, MDM4, and TP53 genes), and the Rb

pathway (with genetic alterations in the CDK4, CDK6, CCND2, CDKN2A/B, and RB1 genes).6 A rational therapeutic

strategy for glioblastoma is to target core signaling pathways involved in glioblastoma.

2.1.1 | Targeting EGFR

EGFR, also known as HER1 or ERBB1, is a transmembrane receptor tyrosine kinase (RTK) that belongs to the ERBB

family.14 By binding to different extracellular ligands, such as epidermal growth factor (EGF), transforming growth

factor‐α (TGF‐α), or heparin‐binding EGF‐like growth factor (HB‐EGF), EGFR forms dimers with either itself or

other ERBB family receptors.15 Dimerized EGFR subsequently causes transphosphorylation of the C‐terminal

domain and activates downstream signaling pathways (including the RAS/RAF/ERK, PI3K/AKT/mTOR, and Janus

kinase/signal transducer and activator of transcription [JAK/STAT] pathways) and numerous physiological

processes.16

Genetic alterations (gene amplification/mutation/rearrangement/altered splicing) and hyperactivation in EGFR

were commonly observed in glioblastoma and were present in 57% of invested glioblastoma tumors in the TCGA

report.6 An EGFR variant III (EGFRvIII) mutation, resulting from the deletion of exons 2 to 7 in the extracellular

domain of the EGFR receptor, is the most common oncogenic mutation in glioblastoma.17 This deletion leads to the

expression of an EGFR variant truncated in the extracellular region and the constitutive activation of the EGFR

kinase function and downstream pathways.18,19 In addition to the EGFRvIII mutation, other mutations in the

extracellular domain of EGFR, including R10K, A289, and G598, were observed in 24% of glioblastomas.6

Frequent genetic alterations in EGFR, such as EGFR amplification and the EGFRvIII mutation, play critical roles

in maintaining the aberrant activation of multiple signaling pathways and important cellular processes in tumor

progression, indicating that EGFR/EGFRvIII might be therapeutic targets for glioblastoma drug development.

EGFR/EGFRvIII‐targeted drugs

The currently developed EGFR/EGFRvIII‐targeted drugs include EGFR tyrosine kinase inhibitors, anti‐EGFR anti-

bodies, and anti‐EGFRvIII vaccines (summarized in Table 1).

First‐generation EGFR inhibitors, such as gefitinib, erlotinib, and lapatinib, were designed to compete with ATP

and then bind to and activate the tyrosine kinase domain of EGFR. Although these inhibitors were indicated to

exert potent effects on improving cell survival and inhibiting tumor growth in preclinical studies, only limited

efficacy was observed in clinical trials.20‐26 Second‐generation EGFR inhibitors, including afatinib and dacomitinib,

inhibit EGFR activation by irreversibly binding to its tyrosine kinase domain. Afatinib was reported to be safe, but

displayed limited activity in treating glioblastoma.27 Dacomitinib showed potent efficacy in primary cultures and

xenografts of EGFR‐amplified glioblastoma in preclinical studies,28 but a phase II study of dacomitinib only revealed

limited activity in patients with an EGFR amplification in recurrent glioblastoma.29 The blood‐brain barrier (BBB),

which may prevent drugs from penetrating tumors, is a potentially important explanation for the resistance of

glioblastoma to EGFR inhibitors.30 Third‐generation EGFR inhibitors, which have irreversible binding activity with

EGFR, including rociletinib and osimertinib, were initially designed to target the EGFR (T790M) mutant for the

treatment of non–small cell lung cancer (NSCLC).31‐33 A phase I/II clinical trial (NCT01526928) revealed an active
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efficacy of rociletinib in patients with EGFR‐mutated NSCLC.34 Osimertinib is being evaluated in ongoing clinical

trials in patients with NSCLC either as a monotherapy (NCT03790397) or as a combination therapy

(NCT02856893 and NCT03133546). According to preclinical studies, osimertinib efficiently inhibits the growth of

glioblastoma cell lines both in vitro and in vivo.35 Although osimertinib shows lower potency than afatinib toward

wild‐type EGFR in preclinical tumor xenograft models,31 it is currently being investigated in phase II clinical trial

recruiting patients with EGFR‐activated recurrent glioblastoma (NCT03732352).

Anti‐EGFR antibodies, including cetuximab and nimotuzumab, were designed to bind the extracellular domain

of EGFR, inhibit the dimerization of EGFR on the membrane and subsequently trigger the activation of EGFR and

downstream signaling pathways.36 EGFR blockade with cetuximab improves the effectiveness of radiation therapy

in EGFR‐amplified glioblastoma intracranial mouse models,37 and two clinical trials (NCT02800486 and

NCT02861898) are now recruiting patients with recurrent/newly diagnosed glioblastoma to evaluate the efficacy

of cetuximab. The survival of patients with newly diagnosed glioblastoma was increased by nimotuzumab plus

temozolomide and radiation therapy in phase II multicenter clinical study.38

Anti‐EGFRvIII vaccines such as rindopepimut (CDX‐110) contain short peptides with EGFRvIII mutation sites

and activate the immune system of patients with glioblastoma by specifically targeting EGFRvIII‐harboring tumor

cells.39 Although the results of the phase I and phase II trials were promising,40‐42 rindopepimut failed in a currently

established phase III trial (NCT01480479) in patients with newly diagnosed glioblastoma.43

2.1.2 | Targeting the PI3K/AKT/mTOR signaling pathway

PI3Ks are intracellular lipid kinases that catalyze the phosphorylation of phosphatidylinositol and activate downstream

signaling pathways to maintain biological functions such as cell survival, cell cycle, metabolism, and protein translation.44

According to the preference for different substrates, PI3Ks are divided into three classes: class I‐III PI3Ks. Among these

classes, class I PI3Ks are involved in the production of phosphatidylinositol‐3,4,5‐trisphosphate (PIP3) from

phosphatidylinositol‐4,5‐bisphosphate (PIP2). The two subfamilies of class I PI3K proteins, class IA and class IB, are

categorized by the membrane receptors that activate them: RTKs and G‐protein‐coupled receptors (GPCRs), respec-

tively.45 Class IA PI3Ks are composed of a p85 regulatory subunit and a p110 catalytic subunit. The p85 regulatory subunit

has three isoforms, p85α, p85β, and p55γ, which are encoded by the PIK3R1, PIK3R2, and PIK3R3 genes, respectively. The

p110 catalytic subunit also has three isoforms, p110α, p110β, and p110γ, which are encoded by the PIK3CA, PIK3CB, and

PIK3CD genes, respectively. When upstream RTKs are activated by specific ligands, they bind to and cause conformational

changes in the p85 subunit of class IA PI3Ks. The p110 catalytic subunit is then activated and catalyzes the phosphor-

ylation of PIP2 to form PIP3, which then activates its downstream effector AKT and initiates the mTORC1 signaling

pathway to ultimately induce protein translation.46

The comprehensive genomic study of glioblastoma identified the overactivation of the PI3K pathway, which results

from alterations in RTK genes, PI3K genes, and PTEN, in 89.6% of tumors.6 In addition, approximately 25.1% of glio-

blastoma tumors had PI3K mutations, including 18.3% with mutations in the p110α and/or p85α subunits and 6.8% with

mutations in other PI3K family members.6 Inhibition of key effectors of PI3K pathways may result in glioblastoma cell

death or tumor suppression. We summarize the development of PI3K‐targeted therapeutic drugs in Table 1.

PI3K pathway inhibitors

At the early stage of pan‐PI3K inhibitor development, wortmannin and LY294002 showed good effects on tumor

inhibition in a glioblastoma cell line in vivo and in vitro models in preclinical studies.47‐49 However, these two drugs

did not enter clinical trials because of their toxicity and nonspecific selectivity.49 Thus, a new type of pan‐PI3K
inhibitor with higher safety and efficacy, represented by buparlisib, was developed.50 Buparlisib displays good oral

bioavailability and can penetrate the BBB.50 It showed good potency in preclinical studies and efficiently inhibited

tumor growth in intracranial xenograft models of a glioblastoma cell line (U87) with no obvious side effects.51
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However, buparlisib showed limited efficacy as a single agent in an open‐label, multicenter phase II clinical trial

(NCT01339052)52 and is now undergoing widespread testing in several clinical studies in combination with

radiotherapy or other chemotherapies.

Perifosine is an extensively studied AKT inhibitor that blocks the activity of the AKT protein and its down-

stream signaling pathways.53 Although it showed promising effects to inhibit the PI3K/AKT pathways, a phase II

clinical trial did not observe the efficacy of monotherapy with perifosine in improving the survival of patients with

recurrent glioblastoma.54

Sirolimus (rapamycin), an allosteric mTOR inhibitor, alters the conformation and inhibits the kinase activity of

mTOR; however, it is not an effective agent because of its immunosuppressive effects.55 Thus, the rapamycin

analogs everolimus (RAD001) and temsirolimus (CCI‐779), with reduced immunosuppressive effects and enhanced

pharmacological functions, were designed.56 Although rapamycin and its analogs showed good efficacy in inhibiting

the activity of mTOR in both in vivo and in vitro studies, they inevitably induced overactivation of their upstream

regulator AKT via feedback loop.57

Dual PI3K/mTOR inhibitors targeting both PI3K and mTOR were produced to avoid feedback or crosstalk

between mTOR and its upstream effectors. PI‐103, the first‐studied dual PI3K/mTOR inhibitor,58 showed good

effects on inhibiting tumor growth in vivo,59 but did not enter clinical trials because of its unfavorable pharma-

cological characteristics. Dactolisib (BEZ235) is a newly developed dual PI3K/mTOR inhibitor that significantly

improved the survival of glioblastoma cell lines in animal models.60,61 This drug is a promising candidate for the

treatment of malignant tumors but showed limited efficacy in phase I clinical trial combined with everolimus in

patients with advanced solid tumors, including glioblastoma (NCT01508104).62

2.1.3 | Targeting the p53/ARF/MDM2 signaling pathway

The p53 protein is a transcription factor encoded by the TP53 gene, which is located on chromosome 17.63 When the

DNA‐binding domain of p53 recognizes and interacts with a specific DNA sequence, it triggers the activity of

regulatory pathways downstream of p53.63,64 The p53 protein plays an important role in maintaining cellular

homeostasis by controlling multiple cellular processes, such as cell proliferation, cell survival, and genome integrity.63

In normal cells, the level of the p53 protein is relatively low and the function of p53 is inhibited by interacting with

MDM2 and MDM4.65 DNA damage disrupts the interaction of p53 with MDM2/MDM4, activates the regulatory

function of p53, and triggers events such as cell cycle arrest and apoptosis.66 As a guardian to maintain the genomic

integrity of cells, p53 is a tumor suppressor that plays important roles in controlling tumor growth.67 Deregulated

expression of the TP53 gene and genes encoding other components of the p53/ARF/MDM2 pathway is commonly

observed in cancer. According to the TCGA report, 85.3% of glioblastomas exhibited dysregulation of the p53

pathway, including 27.9% with TP53 gene mutations/deletions, 15.1% withMDM1/2/4 gene amplifications, and 57.8%

with CDKN2A gene deletion.6 The prevalence of dysregulation of the p53/ARF/MDM2 pathway in glioblastoma

suggests that targeting this pathway represents a promising therapeutic strategy for this malignant tumor.

MDM2 inhibitors

One of the promising strategies for targeting the p53/ARF/MDM2 signaling pathway is to inhibit the interaction of

MDM2 and p53 to reactivate p53 function. Small molecule inhibitors targeting MDM2 have been developed and

tested in glioblastoma and other types of cancer. RG7112 is a first‐in‐class MDM2 inhibitor that exerted

good therapeutic effects on patient‐derived glioblastoma cells and animal models in preclinical studies.68 In

MDM2‐amplified glioblastoma cells, RG7112 exhibited a good ability to restore p53 function and cross the BBB,

thus effectively inhibiting tumor growth in xenograft models and prolonging the survival of the animals.69

Other inhibitors, such as AMG232, were also developed and characterized as potent MDM2 inhibitors in preclinical

studies, with good selective inhibitory effects on the tumor initiation of glioma stem cells.70 AMG232 is being
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tested in two phase I studies recruiting patients with advanced solid tumors, including glioblastoma

(NCT01723020) and newly diagnosed or recurrent glioblastoma (NCT03107780), for an evaluation of its dose

escalation or side effects.

2.1.4 | Targeting the Rb signaling pathway

The Rb signaling pathway plays an important role in controlling the G1‐to‐S phase cell cycle transition and in

regulating DNA replication and cell division.71,72 CDK4 and CDK6 share highly similar amino acid sequences and

functions, and both interact with cyclin D to regulate the phosphorylation of the Rb protein.73 After activation by

upstream mitogenic signaling pathways, such as the PI3K/AKT/mTOR, mitogen‐activated protein kinase, Wnt,

JAK/STAT, and nuclear factor‐κB (NF‐κB) signaling pathways, cyclin D interacts with CDK4/6 and activates the

function of CDK4/6 to phosphorylate Rb.74 Phosphorylation of Rb causes the dissociation of the E2 family (E2F)

transcription factor from Rb and ultimately activates the target genes of E2F and the G1‐to‐S cell cycle

transition.75,76

Dysregulation of the Rb pathway is frequently observed in many types of tumors, including glioblastoma.12,77 Gene

alterations in the Rb pathway are present in 78.9% of glioblastomas, with 7.6% exhibiting RB1mutations/deletions, 15.5%

exhibiting CDK4/6 amplification, and 55.8% exhibiting CDKN2A deletions.6 Because of the importance of the Rb pathway

in cell cycle control and the prevalence of Rb pathway‐related gene alterations in glioblastoma, the major components of

this pathway are attractive targets for potential therapies and drug development.77,78

CDK4/6 inhibitors

Palbociclib (PD0332991) is a specific CDK4/6 inhibitor that is designed to inhibit the function of CDK4/6, thus

reducing the phosphorylation of Rb protein and leading to cell cycle arrest during cancer treatment.79,80 A phase II

clinical trial of palbociclib as a treatment for breast cancer showed that it significantly improves the survival of

patients with estrogen receptor‐positive and HER2‐negative breast cancer.81 Based on the promising effects

observed in clinical trials, palbociclib was approved by the FDA in 2015 as a treatment for breast cancer. In

preliminary preclinical studies, palbociclib showed good effects on inhibiting tumor growth in xenograft models of

glioblastoma cell lines and primary tumor cells, and thus became a promising candidate for the treatment of

glioblastoma.82,83 However, a phase II study of palbociclib in patients with recurrent Rb‐positive glioblastoma

(NCT01227434) revealed its lack of effectiveness as a treatment for glioblastoma.84

Ribociclib (LEE011) is a specific inhibitor of CDK4/6 with good oral bioavailability.85 Due to its good ther-

apeutic effects on several types of cancer in both preclinical and clinical studies,86 ribociclib was approved by the

FDA as a treatment for HR‐positive and HER2‐negative breast cancer in combination with an aromatase inhibitor.

Ribociclib showed promising efficacy and good safety at inhibiting neuroblastoma growth in phase I clinical study.87

As preclinical studies revealed the good ability of ribociclib to penetrate the BBB, several clinical trials were

recently developed to explore the possibility of using this drug as a clinical treatment for glioblastoma. A phase 0

clinical trial in patients with recurrent glioblastoma showed that ribociclib exhibited good penetration into tumor

regions and effectively inhibited Rb phosphorylation88; however, a phase Ib clinical study only identified limited

efficacy of ribociclib monotherapy, suggesting that combination therapies with CDK4/6 inhibitors and inhibitors of

other signaling pathways might be a new therapeutic strategy for glioblastoma.89

2.2 | Targeting transcriptional dysregulation

Precise transcriptional regulation is important for maintaining the specific gene expression patterns of different

cell types, and transcriptional dysregulation may be related to many types of diseases, including cancer.90
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This relationship is partially explained by the discovery that many types of cancer cells rely on aberrant gene

expression programs that are regulated by master transcription factors to maintain a specific oncogenic status.91

Although transcription factors are promising therapeutic targets in cancer cells, the development of direct phar-

macological targeted therapies has long been extremely difficult. However, several studies have recently shown

that targeting transcriptional cofactors, such as cyclin‐dependent kinases (CDKs), represent a new approach to the

development of drugs for cancer treatment.92

Oncogenic EGFR mutations (such as EGFRvIII) in glioblastoma were considered to promote tumor progression

by activating downstream signal transduction. Meanwhile, the efficacies of target therapies for EGFR or compo-

nents of downstream signaling pathways were not promising. However, a recent study provided an alternative

therapeutic strategy for EGFR‐mutated glioblastoma, showing that EGFR mutation promoted tumor growth by

activating the expression of key transcription factors and remodeling the gene transcriptional program in glio-

blastoma cells.93 Based on this finding, targeting transcriptional dysregulation driven by the hyperactivation of

oncogenic pathways may be a new strategy for drug development in glioblastoma.

2.2.1 | CDK7 inhibitors

CDK7 is the kinase subunit of the general transcription factor TFIIH and plays an important role in activating

transcription initiation by phosphorylating the C‐terminal domain of RNA polymerase II (RNA Pol II‐CTD).94 THZ1 is

designed to covalently bind to the Cys312 residue outside the kinase domain of CDK7 and shows relatively selective

inhibition of CDK7 at lower doses.92 According to several preclinical studies, THZ1 exhibits potent efficacy in

inhibiting tumor cell growth both in vitro and in vivo in several types of cancer, such as T‐cell acute lymphoblastic

leukemia,92 small cell lung cancer,95 triple‐negative breast cancer,96 peripheral T‐cell lymphoma,97 pancreatic can-

cer,98 human renal cell carcinoma,99 and ovarian cancer.100 Targeting transcriptional dysregulation in diffuse intrinsic

pontine glioma (DIPG) by using CDK7 inhibitor THZ1 can effectively reduce the in vitro proliferation of patient‐
derived DIPG cells and in vivo tumor growth in xenograft models, especially in combination therapy with HDAC

inhibition.101 CDK7 inhibition with THZ1 is also reported to significantly disrupt the survival of patient‐derived
primary HGG cells, suggesting that CDK7 is a promising therapeutic target for malignant gliomas.102

2.3 | Targeting tumor angiogenesis

Angiogenesis is suggested to participate not only in the early stage of tumorigenesis but also in later processes,

such as tumor progression and metastasis.103 Necrosis and microvascular proliferation are the most distinct his-

topathological characteristics of glioblastoma that distinguish it from low‐grade gliomas,104 suggesting that tar-

geting tumor angiogenesis‐related pathways is a rational therapeutic strategy for glioblastoma. Tumor angiogenesis

is primarily regulated by proangiogenic factors, including vascular endothelial growth factor (VEGF), PDGF, and

basic fibroblast growth factor.105 Upregulated VEGF expression is usually detected in higher grade glioma and is

related to a worse prognosis.106,107 The VEGF signaling pathway is a widely studied pathway related to tumor

angiogenesis, and drugs targeting VEGF signaling have been characterized in clinical studies as good therapeutic

candidates for inhibiting cancer including glioblastoma.

2.3.1 | VEGF inhibitors

Bevacizumab is a humanized VEGF‐specific monoclonal antibody108 and is currently the most extensively studied

antiangiogenic drug in clinical trials of glioblastoma. It was approved by the FDA for the treatment of multiple types
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of cancer, such as colon, lung, kidney, and cervical cancers. Due to its promising effects in phase II trials, bev-

acizumab received FDA approval for the treatment of recurrent glioblastoma in 2009. Since then, many clinical

trials have been conducted in patients with glioblastoma to assess the effects of combination therapy with bev-

acizumab and standard treatment or other chemotherapies, but promising results have not yet been reported.

2.4 | Targeting immune checkpoint pathways

The immune system is a natural defense mechanism that relies on extensive cooperation among immune cells,

tissues, and organs within the body. The immune system functions to recognize and eliminate foreign materials or

antigens, and protect the body from invasion by harmful substances, such as transplanted grafts, bacteria, or cancer

cells. However, some cancer cells manage to escape immune system surveillance through several mechanisms and

maintain their own immunosuppressive microenvironment. Immunotherapy is a promising approach for cancer

treatment that has developed rapidly in recent years. Immune checkpoints are stimulatory or inhibitory regulators

of the immune response that regulate antigen recognition by T‐cell receptors. Inhibitory immune checkpoints, such

as cytotoxic T‐lymphocyte‐associated antigen 4 (CTLA‐4) and programmed cell death protein 1 (PD‐1), function to

inhibit the overactivation of the immune response and protect normal cells from being erroneously eliminated by

the immune system. However, some cancer cells manage to escape the immune response by deregulating the

CTLA‐4/PD‐1 immune checkpoint pathways. Immunotherapy targeting inhibitory immune checkpoints such as

CTLA‐4/PD‐1 reactivate the T‐cell‐mediated immune response to eliminate tumor cells.

2.4.1 | Immune checkpoint inhibitors

Currently, CTLA‐4 and PD‐1/PD‐L1 are the most extensively studied immunotherapeutic targets in many types of

cancers, including glioblastoma (summarized in Table 2).109 Ipilimumab, a CTLA‐4 inhibitor, received FDA approval

as a treatment for metastatic melanoma.110 PD‐1/PD‐L1 inhibitors, including nivolumab and pembrolizumab, also

showed promising effects as treatments for melanoma.111,112 In addition, clinical trials of nivolumab and pem-

brolizumab as treatments for brain metastases of other types of cancer showed that these inhibitors effectively

cross the BBB and exert activity in the brain.113,114 The promising results of immune checkpoint inhibitors in other

types of cancer have led to extensive preclinical studies and clinical assessments of the activity of these inhibitors

in brain tumors, including glioblastoma.115,116 The results of preclinical studies support the good effectiveness of

PD‐1 inhibitors in animal models. Clinical trials with combination therapies of ipilimumab and nivolumab are now

recruiting patients with newly diagnosed or recurrent glioblastoma (NCT02311920/NCT03233152/

NCT03367715). Nivolumab was compared with bevacizumab in a phase III study for recurrent glioblastoma

treatment (CheckMate 143, NCT02017717) and was reported to exhibit a failure to meet the primary endpoint of

improved overall survival (OS).117 It is also being assessed in a phase III study (CheckMate 498, NCT02617589) in

combination with radiation therapy in patients with newly diagnosed MGMT‐unmethylated glioblastoma. The

report of CheckMate 498 by Bristol‐Myers Squibb (BMS) showed that nivolumab plus radiation therapy failed to

meet the primary endpoint of OS in the patients with glioblastoma.118 In addition, a phase III study (CheckMate

548, NCT02667587) evaluated the efficacy of nivolumab as an adjuvant treatment with TMZ and radiation therapy

in patients with MGMT promoter methylation. The BMS report of CheckMate 548 revealed that nivolumab did not

meet its primary endpoint, the progression‐free survival, of patients with standard therapy in glioblastoma, and the

trial is still ongoing as the OS data are not complete.119 Besides, another two phase II clinical trials with combi-

nation therapies of nivolumab are also recruiting patients with newly diagnosed or recurrent glioblastoma

(NCT03743662/NCT04195139). Pembrolizumab, another PD‐1 inhibitor, is also being assessed either as mono-

therapy or combined with standard radiation plus TMZ treatment in phase I or phase II studies recruiting patients
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with newly diagnosed or recurrent glioblastoma (NCT02530502/NCT03661723/NCT03899857). Pidilizumab,

which was also developed as a PD‐1 inhibitor, was assessed in an ongoing phase I/II trial in patients with diffuse

intrinsic pontine glioma (NCT01952769). The effectiveness of durvalumab, a PD‐L1 inhibitor, is currently being

evaluated in an ongoing phase II trial in patients with glioblastoma (NCT02336165). A phase I trial (NCT01375842)

revealed the good tolerability of atezolizumab, another promising PD‐L1 inhibitor, in patients with recurrent

glioblastoma,120 and it is also included in current phase I or phase II studies recruiting patients with glioblastoma

(NCT02458638/NCT03174197).

3 | POTENTIAL CHALLENGES AND FUTURE PERSPECTIVES

As mentioned above, the current clinical treatment for glioblastoma includes maximal tumor resection, subsequent

radiation therapy, and concurrent TMZ chemotherapy. However, complete surgical resection of tumor tissues in

the brain is practically impossible, possibly partially because of the infiltrative characteristics of glioblastoma tumor

cells, which rapidly intrude into other parts of the brain. Although the combination therapy with radiation and TMZ

showed effects in some clinical studies, the prognosis of patients with glioblastoma remains poor. Chemother-

apeutic or biological agents targeting core signaling pathways or key biological processes in tumor progression have

been rapidly developed in the last two decades. However, as we previously noted in this review, drug resistance

and tumor recurrence are the most common obstacles to drug development in current preclinical or clinical studies

of glioblastoma.

Tumor heterogeneity has long been presumed to be an important reason for drug resistance and tumor

recurrence in patients with glioblastoma and is a challenge for the drug development in glioblastoma. Intensive

genomic exploration has revealed the genetic landscape of glioblastoma and the complexity of genetic alterations in

glioblastoma.6,12 The differences in gene expression profiles among individual tumor samples imply that intertumor

heterogeneity is a characteristic of glioblastoma. In addition, the intratumor heterogeneity of glioblastoma has been

observed at the single‐cell level. Recently, single‐cell RNA‐seq analysis of five primary glioblastoma tumor samples

revealed that diverse transcriptional profiles usually coexist in individual cells from the same tumor.121 Due to the

widespread intertumor or intratumor heterogeneity in glioblastoma, drug resistance is inevitable. Tumor hetero-

geneity has important implications for the drug development of targeted therapies for glioblastoma. It underscores

the importance of developing appropriate prognostic and predictive biomarkers for specific targeted therapies and

suggests that combination therapies represent a potentially valid option to avoid the failure of monotherapies.

Most patients with proneural subtype of glioblastoma are young adults and correlated with better clinical

outcomes. Proneural tumors are usually characterized with PDGFRA amplification/PDGFRA mutations/IDH1 mu-

tations/TP53 mutations, with high‐level expression of oligodendrocytic development genes (eg, NKX2‐2/OLIG2) and

proneural development genes (eg, SOX genes/DCX/DLL3/ASCL1/TCF4).4 Most classical glioblastoma tumors harbor

chromosome 7 amplification and chromosome 10 deletion.4 High‐level expression of EGFR/stem cell marker genes

(eg, NES)/Notch and Sonic hedgehog pathway genes (eg, NOTCH3/JAG1/LFNG), and homozygous deletion of

CDKN2A are frequently associated with a classical subtype of glioblastoma.4 Patients with mesenchymal subtype

are usually in older age and have worse prognosis than other subtypes. Low‐level expression of NF1, and high‐level
expression of mesenchymal marker genes (eg, CHI3L1/MET) and TNF/NF‐κB pathway genes (eg, TRADD/RELB/

TNFRSF1A) are correlated with mesenchymal subtype.4 Neural subtype has a relatively higher level expression of

neuron marker genes, such as NEFL, GABRA1, SYT1, and SLC12A5.4 Retrospective studies of clinical trials/cases

revealed that the clinical outcomes of a specific treatment verified in patients with different subtypes. A retro-

spective analysis of phase III clinical trial of bevacizumab plus temozolomide and radiotherapy in patients with

newly diagnosed glioblastoma showed that the addition of bevacizumab specifically improved the OS of patients

with IDH1 wide‐type proneural subtype.122 Another retrospective evaluation of the data of bevacizumab treatment
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in patients with recurrent glioblastoma showed that the patients with classical subtype had worse responses to

bevacizumab than mesenchymal or proneural subtypes.123

The BBB, which is composed of capillary endothelial cells, astrocyte endfeet, and pericytes, is a highly selective

and dynamic cellular structure located between the blood compartment and the brain.124 Under physiological

conditions, the normal function of the BBB is to separate the brain from the blood vessels, protecting it from

potentially harmful materials, and maintaining the stability of the microenvironment of the brain. Although high‐
grade gliomas affect the organization of the BBB by altering the normal functions of blood vessels, the function of

the tumor BBB resembles the BBB under normal conditions and impedes the penetration of drugs into the tumor

environment in the brain.124 The development of drug delivery techniques to overcome the obstacle of the BBB is

another critical challenge in the development of targeted therapies. As mentioned above, some promising ther-

apeutic candidates that showed potent efficacy in preclinical studies showed high rates of failure in subsequent

clinical trials. An important cause of these failures was that these drugs were unable to penetrate the BBB and

function at the tumor site with effective doses. Novel strategies for drug delivery to overcome the obstacle of the

BBB, including using focused ultrasound with microbubbles to mechanically disrupt the BBB 125 or the design of

BBB‐crossing nanoparticles,126,127 should be considered in future drug development of targeted therapies for

glioblastoma.
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